CHAPTER 1

FIRST-ORDER DIFFERENTIAL EQUATIONS

SECTION 1.1
DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS

The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of
differential equations, and to show the student what is meant by a solution of a differential
equation. Also, the use of differential equations in the mathematical modeling of real-world
phenomena is outlined.

Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the
given differential equations. We include here just some typical examples of such verifications.

3. If y,=cos2x and y,=sin2x, then »/=-2sin2x and y,=2cos2x so
¥ = —4cos2x = -4y, and y, = —4sin2x = —4y,.
Thus y/+4y, = 0 and y,+4y, = 0.
4. If yy=¢ and y,=e", then y, =3¢ and y,=-3e"" so

y=9e" =9y and ] =9 =9y,

5. If y=e"—e™, then y'=e*+e*so y'—y = (ex+e"x)—(ex—e"x) = 2¢*. Thus
V' = y+2e.

6. If yy=e¢” and y,=xe”", then y/ =-2e7, y/=4e™", y, =" —2xe”", and

yy=—4e +4xe*. Hence
yi+4y +dy = (4e77)+4(2e7)+4(e™) = 0

and
Vyi+4y,+4y, = (—4e"2x+4xe"2x)+4(e_2x—2xe"2x)+4(xe_2x) = 0.
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8.

11.

13.

14.

15.

16.

If y, =cosx—cos2x and y, =sinx—cos2x, then y/ =-sinx+2sin2x,

¥/ =—cosx+4cos2x, and y,=cosx+2sin2x, y, =—sinx+4cos2x. Hence
v +y = (—cosx+4cos2x)+(cosx—cos2x) = 3cos2x

and
Vi+y, = (—sinx+4cos2x)+(sinx—cos2x) = 3cos2x.

If y=y,=x7 then y’=-2x" and y"=6x"", so
X’y +5xy' +4y = x2(6x’4)+5x(—2x’3)+4(x’2) = 0.
If y=y,=x7Inx then y’=x"-2x"Inx and y"=-5x"+6x"Inx, so
X2y +5xy' +4y = xz(—Sx"‘+6x’4lnx)+5x(x’3—2x’3lnx)+4(x’2lnx)

= (—Sx_z+5x_2)+(6x_2—le_2+4x_2)lnx = 0.

Substitution of y =¢™ into 3)'=2y gives the equation 3re™ = 2™ that simplifies
to 3r=2. Thus r=2/3.

Substitution of y=e™ into 4y”=y gives the equation 4r°e”™

4r>=1. Thus r=+1/2.

= ¢" that simplifies to

Substitution of y=e™ into y”+3) -2y = 0 gives the equation r°e™ +re™ —2e™ =0
that simplifiesto 7 +r—2 = (r+2)(r—1) = 0. Thus r=-2 or r=1.

Substitution of y=¢™ into 3y”"+3)'—4y = 0 gives the equation
3r’e™ +3re™ —4e™ =0 that simplifies to 37> +3r—4 = 0. The quadratic formula then
gives the solutions » = (—3 +./57 )/ 6.

The verifications of the suggested solutions in Problems 17-26 are similar to those in Problems
1-12. We illustrate the determination of the value of C only in some typical cases. However,
we illustrate typical solution curves for each of these problems.
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19. If y(x) = Ce"—1 then y(0)=5 gives C—1 = 5, so C = 6. The figure is on the
left below.

51 (0,5) ] (0,10

10 -20

20. If y(x) = Ce™*+x—1 then y(0)=10 gives C—1 = 10, so C = 11. The figure is
on the right above.

21. C = 7. The figure is on the left at the top of the next page.
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22. If y(x) = In(x+C) then »(0)=0 gives InC = 0, so C = 1. The figure is on the
right above.

23.  If y(x) = +x’+Cx7 then y(2)=1 gives the equation 1-32+C-1 =1 with
solution C=-56. The figure is on the left below.
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24, C = 17. The figure is on the right above.
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25. If y(x) = tan(x*+C) then »(0) =1 gives the equation tan C = 1. Hence one value
of C is C=m/4 (asis this value plus any integral multiple of 7).
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26. Substitution of x=7 and y=0 into y = (x+ C)cosx yields the equation
0=(@x+C)-1),s0 C =—n.

10

-10
0

27. Y = x+y

28. The slope of the line through (x,y) and (x/2,0) is y = (y—-0)/(x—x/2) = 2y/x,
so the differential equationis x)” = 2y.
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29.

30.

31.

If m =y’ is the slope of the tangent line and m” is the slope of the normal line at
(x,y), then the relation mm’=—1 yields m" = 1/y" = (y—1)/(x—-0). Solution for
y" then gives the differential equation (1—y)y" = x.

Here m=y" and m'=D_(x’+k) = 2x, so the orthogonality relation mm’=—1 gives
the differential equation 2xy” = —1.

The slope of the line through (x,y) and (-y,x) is " = (x—y)/(-y—x), so the
differential equation is (x+ )y’ = y—x.

In Problems 32-36 we get the desired differential equation when we replace the "time rate of
change" of the dependent variable with its derivative, the word "is" with the = sign, the phrase
"proportional to" with %, and finally translate the remainder of the given sentence into symbols.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

dP/dt = kNP
dvi/dt = kv?
dv/dt = k(250-v)

dN/dt = k(P-N)

dN/dt = kN(P-N)

The second derivative of any linear function is zero, so we spot the two solutions
y(x) =1 or y(x) = xofthe differential equation " =0.

A function whose derivative equals itself, and hence a solution of the differential
equation ) =y is y(x) = e".

We reason that if y = kx”, then each term in the differential equation is a multiple of x°.

The choice k=1 balances the equation, and provides the solution y(x) = x°.

If y is a constant, then )" =0 so the differential equation reduces to y*> =1. This gives
the two constant-valued solutions y(x) = 1 and y(x) = —1.

We reason that if y = ke”, then each term in the differential equation is a multiple of e*.

The choice k=7 balances the equation, and provides the solution y(x) = fe".
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42.

43.

44.

(b)

4s.

Two functions, each equaling the negative of its own second derivative, are the two
solutions y(x) = cosx and y(x) = sinx of the differential equation y”=—y.

(a) We need only substitute x(z) =1/(C —kt) in both sides of the differential

equation x’=kx” for a routine verification.

(b) The zero-valued function x(¢) =0 obviously satisfies the initial value problem
x' =kx*, x(0)=0.

(a) The figure on the left below shows typical graphs of solutions of the differential

equation x"=1x’.

The figure on the right above shows typical graphs of solutions of the differential
equation x"=-1x’. We see that — whereas the graphs with k =1 appear to "diverge

to infinity" — each solution with k =—4 appears to approach 0 as ¢ — co. Indeed, we
see from the Problem 43(a) solution x(#)=1/(C—3t) that x(¢#) - o as t —2C.
However, with &k =—1 it is clear from the resulting solution x(z)=1/(C++t¢) that
x(¢) remains bounded on any finite interval, but x(z) - 0 as ¢ — +oo.

Substitution of P’=1 and P =10 into the differential equation P’ =kP’ gives k=,
so Problem 43(a) yields a solution of the form P(¢) =1/(C —¢/100). The initial

condition P(0)=2 now yields C =1, so we get the solution
1 100
P(t) = = .
© 1 ¢ 50-¢
2 100
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46.

47.

48.

We now find readily that P =100 when ¢#=49, andthat P =1000 when ¢#=49.9.
It appears that P grows without bound (and thus "explodes") as ¢ approaches 50.

Substitution of v'=-1 and v =35 into the differential equation V' =kv* gives
k = —35, so Problem 43(a) yields a solution of the form v(z) =1/(C +¢/25). The initial

condition v(0) =10 now yields C =+, so we get the solution
1 50
V() = = .
© 1t 5+
10 25

We now find readily that v=1 when #=22.5, andthat v=0.1 when ¢=247.5.

It appears that v approaches 0 as ¢ increases without bound. Thus the boat gradually
slows, but never comes to a "full stop" in a finite period of time.

(@  1(10)=10 yields 10=1/(C-10), so C =101/10.

(b) There is no such value of C, but the constant function y(x)=0 satisfies the

conditions y"=y* and y(0)=0.

() It is obvious visually (in Fig. 1.1.8 of the text) that one and only one solution
curve passes through each point (a,b) of the xy-plane, so it follows that there exists a

unique solution to the initial value problem "= y*, y(a)=5.

(b) Obviously the functions u(x)=-x* and v(x)=+x" both satisfy the differential
equation xy” = 4y. But their derivatives u'(x)=—4x" and V/(x)=+4x match at

x = 0, where both are zero. Hence the given piecewise-defined function y(x) is
differentiable, and therefore satisfies the differential equation because u(x) and v(x)
doso (for x<0 and x>0, respectively).

() If a>0 (forinstance), choose C, fixed sothat C,a* = b. Then the function

) C x* if x<0,
X =
4 Cx' if x>0

satisfies the given differential equation for every real number value of C_.
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SECTION 1.2
INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS

This section introduces general solutions and particular solutions in the very simplest situation
— a differential equation of the form y’= f(x) — where only direct integration and evaluation

of the constant of integration are involved. Students should review carefully the elementary
concepts of velocity and acceleration, as well as the fps and mks unit systems.

1. Integration of ) =2x+1 yields y(x) = I(2x+1)dx = x’ +x+C. Then substitution
of x=0, y=3gives 3 =0+0+C = C, so y(x) = x*+x+3.

2. Integration of "= (x—2)* yields y(x) = _[(x—Z)z dx = +(x=2)’+C. Then
substitution of x=2, y=1gives 1 = 0+C = C, so y(x) = L(x—-2)".

3 Integration of '=/x yields y(x) = I\/; dx = 2x’"?+C. Then substitution of
x=4, y=0 gives 0=1+C, so y(x) = 3(x"*-8).

4. Integration of y"=x7 vyields y(x) = J-x_2 dx = —1/x+C. Then substitution of
x=1, y=5gives 5=—-1+C, so y(x) = —1/x+6.

5. Integration of "= (x+2)"? yields y(x) = I(x +2)""?dx = 2Jx+2+C. Then
substitution of x =2, y=—-1 gives —-1=2-2+C, so y(x) = 2+/x+2-5.

6. Integration of " =x(x*+9)"* yields y(x) = Jx (x> +9)"?dx = L(x*+9)* +C.
Then substitution of x=-4, y=0 gives 0=1(5)+C, so
y(x) = H (" +9)7 -125].

7. Integration of y"=10/(x*+1) yields y(x) = IlO/(x2+1)dx = 10tan”' x+C. Then
substitution of x=0, y=0 gives 0=10-0+C, so y(x) = 10tan™" x.

8. Integration of y’=cos2x yields y(x) = Icos 2xdx = 1sin2x+C. Then substitution
of x=0, y=1gives 1=0+C, so y(x) = +sin2x+1.

9. Integration of y'=1/+/1-x" yields y(x) = J.l/\/l—x2 dx = sin” x+C. Then

substitution of x=0, y=0 gives 0=0+C, so y(x) = sin”'x.
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10.  Integration of y'=xe™ yields
y(x) = fxe”‘dx = Iue”du = (u-1e" = —(x+D)e " +C

(when we substitute u =—x and apply Formula #46 inside the back cover of the
textbook). Then substitution of x=0, y=1 gives 1=—1+C, so

y(x) = —(x+1)e " +2.

11. If a(¢t) = 50 then v(¢) = JSOdt = 50¢t+v, = 50¢+10. Hence
x(t) = J'(50t+10)dt: 25¢ +10t+x, = 252 +10¢+20.

12. If a(t) = —20 then v(¢) = I(—ZO)dt = —20t+v, = —20¢—-15. Hence
x(t) = J'(—201—15)dt: —10£° =15t+x, = —10£7 —15¢+5.

13, If a() = 3t then v(t) = [3tdr = 3£ +v, = 3£ +5. Hence
x(f) = J'(%t2+5)dt: LA 4514x, = 1P 451

14, If a(t) = 2t+1 then () = [(2t+1)dt = £ +t+v, = £*+¢—7. Hence
X(6) = [0 +t=T)dt= 10 +41=Tt+x, = 16 +L1=Tt+4.

15.  If a(t) = 4(t+3)°. then v(¢) = j4(t+3)2 dt = £(t+3)’+C = 4(¢t+3)’ -37 (taking
C=-37 so that v(0)=-1). Hence

x(6) = [[$(t+3)=37]de = 4(t+3)' =37+ C = L(¢+3)' =37t -26.

16. If a(t) = 1/\/t+4 then v(¢) = J'l/\/t+4 dt = 2Jt+4+C = 2Jt+4 -5 (taking

C=-5 sothat v(0)=-1). Hence
x(t) = J'(2\/1+4—5)dt: 1(t+4)7 =5t+C = 4(t+4)* -51-2

(taking C=-29/3 sothat x(0)=1).
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17.

18.

19.

If a(t) = (t+1)7° then v(¢) = J-(t+1)‘3 dt = —L(t+D)7?+C = L@+ +1
(taking C =7 sothat v(0)=0). Hence

x(0) = [[-4@+D)7+1]de= 2+ +4e+C = e+ +1-1]
(taking C=-1 sothat x(0)=0).
If a(t) = 50sin5¢ then v(¢) = J-SOSinSt dt = —10cos5t+C = —10cos5t (taking
C =0 sothat v(0)=-10). Hence

x(f) = j(—10cos5z)dz: —2sin5t+C = —2sin5¢+10

(taking C =-10 so that x(0)=38).

Note that v(¢) =5 for 0<¢<5 and that v(¢)=10—¢ for 5<7<10. Hence
x(t)=5t+C/for 0<t<5 and x(¢)=10t—1£*+C, for 5<¢<10. Now C,=0
because x(0) =0, and continuity of x(¢) requires that x(z)=5¢ and

x(t) =10t —1¢* + C,agree when ¢=35. This implies that C, =-2, and we get the

following graph.

40

30F

(5.25)

10
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20.

40

30

101

21.

22,

12

Note that v(t)=¢ for 0<¢<5 and that v(f)=5 for 5<¢<10. Hence x(¢)=1f+C,
for 0<¢<5 and x(¢)=5t+C, for 5<¢<10. Now C, =0 because x(0)=0, and
continuity of x(¢) requires that x(¢)=1¢* and x(¢)=5¢+C, agree when ¢=35.
This implies that C, =—2%, and we get the graph on the left below.

40

30

> 20

(5.125)

(512.5) ol

Note that v(¢)=¢ for 0<¢<5 and that v(¢)=10—¢ for 5<¢<10. Hence
x(t)=1£+C, for 0<¢t<5 and x(¢)=10t—1# +C, for 5<¢<10. Now C, =0
because x(0) =0, and continuity of x(¢) requires that x(¢)=1¢* and

x(t) =10t —1¢* + C,agree when ¢=5. This implies that C, =-25, and we get the
graph on the right above.

For 0<t<3: w(t)=3¢t so x(t)=2t'+C,. Now C, =0 because x(0)=0, so

x(t)=2¢" on this first interval, and its right endpoint value is x(3)=71.

For 3<¢<7: v(t)=5 so x(¢t)=5t+C,. Now x(3)=7% implies that C,=-71,

so x(¢t)=5t—7% on this second interval, where its right endpoint value is x(7) =271.
For 7<t<10: v—5=-3(t=7), so v(t)=—-3t+2L. Hence x(t)=-3t'+L¢+C,,

and x(7)=27% implies that C,=—22. Finally, x(¢)=1(-5¢>+100¢—290) on this
third interval, and we get the graph at the top of the next page.
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23.

24.

25.

26.

27.

40

30-

(7.275)

10

(3.75)

v = -9.8¢t+49, so the ball reaches its maximum height (v =0) after #=15 seconds. Its

maximum height then is y(5) = —4.9(5)2 +49(5) = 122.5 meters.

v = 32t and y = —167 + 400, so the ball hits the ground (y = 0) when
t = 5sec, and then v = -32(5) =-160 ft/sec.

a =-10m/s’> and vy = 100 km/h =~ 27.78 m/s, so v = —10¢+27.78, and hence
x(f) = =5 +27.78¢. The car stops when v = 0, ¢t = 2.78, and thus the distance
traveled before stopping is x(2.78) = 38.59 meters.

v =-98t+100 and y = —4.9/ + 100¢ + 20.

(a) v = 0 when ¢#=100/9.8 so the projectile's maximum height is
1(100/9.8) = —4.9(100/9.8)* + 100(100/9.8) + 20 ~ 530 meters.

(b) It passes the top of the building when »(f) = —4.97 + 1007+ 20 = 20,
and hence after 1= 100/4.9 = 20.41 seconds.

() The roots of the quadratic equation (/) = —4.97 + 100z +20 = 0 are
t = —0.20, 20.61. Hence the projectile is in the air 20.61 seconds.

a=-98m/s’> sov=-98¢10 and
y =-497-10¢+y,.

The ball hits the ground when y = 0 and

v =-98¢-10 = -60,
so t=5.10s. Hence

yo = 4.9(5.10)* + 10(5.10) =~ 178.57 m.
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28.

29.

30.

31.

32.

33.

14

v = —32t—40 and y = —16¢ — 407+ 555. The ball hits the ground (y = 0)
when ¢ = 4.77 sec, with velocity v = v(4.77) = —192.64 ft/sec, an impact
speed of about 131 mph.
Integration of dv/dt=0.12 7+ 0.6 ¢, w(0)=0 gives ()= 0.3 £+ 0.04 £. Hence
w(10) =70. Then integration of dx/dt=0.3 £ +0.04, x(0)=0 gives
x()=0.17+0.04 !, so x(10)=200. Thus after 10 seconds the car has gone 200 ft and
is traveling at 70 ft/sec.
Taking xo = 0 and vy = 60 mph = 88 ft/sec, we get
v = —at+ 88,
and v = 0 yields ¢+ = 88/a. Substituting this value of # and x = 176 in
x = —af’/2 + 88,
we solve for a = 22 ft/sec’. Hence the car skids for ¢ = 88/22 = 4 sec.
If a = 20 m/sec® and x, = 0 then the car's velocity and position at time ¢ are given
by
v =-20t+vy, x= —10t2+v0t.
It stops when v = 0 (so vy = 20¢), and hence when
x=75=-107+ Q20 = 10~
Thus ¢+ = V7.5 sec so

vo = 2047.5 = 54.77 m/sec = 197 km/hr.

Starting with xo = 0 and vo = 50 km/h = 5%10* m/h, we find by the method of
Problem 30 that the car's deceleration is a = (25/3)x10” m/h’. Then, starting with xo =
0 and vy = 100 km/h = 10° m/h, we substitute ¢ = vo/a into

x = —at2 + Vot

and find that x = 60 m when v = 0. Thus doubling the initial velocity quadruples the
distance the car skids.

If vo = 0 and yp = 20 then

v = —at and y = —Lar* +20.
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34.

3s.

36.

37.

Substitution of ¢ = 2, y = 0 yields a = 10 ft/sec’. If vo = 0 and
yo = 200 then

v = —10¢ and y = —5¢ + 200.
Hence y = 0 when ¢ = J40 = 2410 sec and v = —20/10 = —63.25 ft/sec.

On Earth: v = -32¢+ vy, so t = vy/32 at maximum height (when v = 0).
Substituting this value of ¢ and y = 144 in

y = —16£ + vot,

we solve for vy = 96 ft/sec as the initial speed with which the person can throw a ball
straight upward.

On Planet Gzyx: From Problem 27, the surface gravitational acceleration on planet
Gzyx is a = 10 ft/sec’, so

v=-10+96 and y = —5¢+96t.

Therefore v = 0 yields ¢t = 9.6 sec, and thence ymax = 1(9.6) = 460.8 ft is the
height a ball will reach if its initial velocity is 96 ft/sec.

If vo = 0 and yo = h then the stone’s velocity and height are given by

v =—-gt, y=-05g’+h.
Hence y = 0 when ¢t = 2h/g so

—g\2hlg = —\/2gh .

The method of solution is precisely the same as that in Problem 30. We find first that, on
Earth, the woman must jump straight upward with initial velocity vy = 12 ft/sec to
reach a maximum height of 2.25 ft. Then we find that, on the Moon, this initial velocity
yields a maximum height of about 13.58 ft.

<
Il

We use units of miles and hours. If xo = vy = 0 then the car’s velocity and position

after ¢ hours are given by

£.

=

v =at, x =

Since v = 60 when ¢ = 5/6, the velocity equation yields a = 72 mi/hr>. Hence the
distance traveled by 12:50 pm is

x = (0.5)(72)(5/6)* = 25 miles.
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38.

39.

40.

41.

42,

16

Again we have

2

v = at, x = 5t.

=

Butnow v = 60 when x = 35. Substitution of a = 60/t (from the velocity equation)
into the position equation yields

35 = (0.5)(60/t)() = 30t

whence ¢ = 7/6 hr, thatis, 1:10 p.m.

Integration of )" = (9/vs)(1 — 4x%) yields
y = Bh)(Bx—4x)+ C,
gnd the initial condition y(—1/2) = 0 gives C = 3/vs. Hence the swimmer’s trajectory
° y(x) = Blvs)(Bx—4x> +1).
Substitution of y(1/2) = 1 now gives vy = 6 mph.
Integration of y* = 3(1 — 16x") yields
y = 3x—(48/5x° + C,
gnd the initial condition y(-1/2) = 0 gives C = 6/5. Hence the swimmer’s trajectory
° y(x) = (1/5)(15x — 48x’ + 6),

so his downstream drift is »(1/2) = 2.4 miles.

The bomb equations are a =-32, v=-32, and s, =s=-16¢"+800, with #=0 at the
instant the bomb is dropped. The projectile is fired at time ¢ =2, so its corresponding
equations are a =-32, v=-32(¢t-2)+v,, and

s, =8 = —16(t=2) +v,(t—2)

for ¢>2 (the arbitrary constant vanishing because s,(2)=0). Now the condition

s,(t)=—16t" +800 =400 gives ¢=15, and then the requirement that s,(5) =400 also
yields v, =544/3=181.33 ft/s for the projectile's needed initial velocity.

Let x(¢) be the (positive) altitude (in miles) of the spacecraft at time ¢ (hours), with
t = 0 corresponding to the time at which the its retrorockets are fired; let v(¢) = x’(¢) be
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43.

44.

the velocity of the spacecraft at time ¢. Then v, =-1000 and x, = x(0) is unknown.
But the (constant) acceleration is a =+20000, so

y(t) = 20000£—1000 and  x(¢)=10000£ —1000¢+ x,.

Now v(¢) = 20000t —-1000 = 0 (soft touchdown) when ¢=4; hr (that is, after exactly
3 minutes of descent. Finally, the condition

0 = x(35) =10000(5)° —1000(%) + x,
yields x, =25 miles for the altitude at which the retrorockets should be fired.

The velocity and position functions for the spacecraft are v¢(f) =0.0098¢ and
x,(¢) =0.0049¢°, and the corresponding functions for the projectile are

vp(t) =55¢=3X% 10"and x,(t)=3x10"¢. The condition that x, = x, when the
spacecraft overtakes the projectile gives 0.0049¢*=3x10"¢, whence

7
p = X100 192455107 sec

0.0049
6.12245x%10°

(3600)(24)(365.25) 19

4 vyears.

Since the projectile is traveling at 5 the speed of light, it has then traveled a distance of
about 19.4 light years, which is about 1.8367x10"" meters.

Let a>0 denote the constant deceleration of the car when braking, and take x, =0 for

the cars position at time ¢ =0 when the brakes are applied. In the police experiment
with v, =25 ft/s, the distance the car travels in ¢ seconds is given by

x(f) = —lat2+§-25t
2 60

(with the factor £ used to convert the velocity units from mi/hr to ft/s). When we solve
simultaneously the equations x(¢) =45 and x'(r) =0 we find that a =110 ~14.94 ft/s?.

With this value of the deceleration and the (as yet) unknown velocity v, of the car
involved in the accident, it position function is

x(t) = —5-—t + VL.
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The simultaneous equations x(¢) =210 and x'(r) =0 finally yield v, = %\/E =79.21
ft/s, almost exactly 54 miles per hour.

SECTION 1.3
SLOPE FIELDS AND SOLUTION CURVES

The instructor may choose to delay covering Section 1.3 until later in Chapter 1. However,
before proceeding to Chapter 2, it is important that students come to grips at some point with the
question of the existence of a unique solution of a differential equation — and realize that it
makes no sense to look for the solution without knowing in advance that it exists. It may help
some students to simplify the statement of the existence-uniqueness theorem as follows:

Suppose that the function f(x,y) and the partial derivative df /dy are both

continuous in some neighborhood of the point (a, ). Then the initial value
problem

j—y = f) @) = b
X

has a unique solution in some neighborhood of the point a.

Slope fields and geometrical solution curves are introduced in this section as a concrete aid in
visualizing solutions and existence-uniqueness questions. Instead, we provide some details of
the construction of the figure for the Problem 1 answer, and then include without further
comment the similarly constructed figures for Problems 2 through 9.

1. The following sequence of Mathematica commands generates the slope field and the
solution curves through the given points. Begin with the differential equation
dy/dx = f(x,y) where
flx , y 1 := -y - Sin[x]

Then set up the viewing window

a=-3; b=3; ¢c¢c=-3;d-=3;

The components (u,v) of unit vectors corresponding to the short slope field line
segments are given by

1/Sqrtll + £[x, yl*2]
flx, yl/Sqrtll + £[x, yl*2]

ulx , y 1
vix , v 1

The slope field is then constructed by the commands

Needs ["Graphics PlotField ™ "]

dfield = PlotVectorField[{ulx, yl, vIx, y1}, {x, a, b}, {y., ¢, d},
HeadWidth -> 0, HeadLength -> 0, PlotPoints -> 19,
PlotRange -> {{a, b}, {c, d}}, Axes -> True, Frame -> True,
FrameLabel -> {"x", "y"}, AspectRatio -> 1];
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The original curve shown in Fig. 1.3.12 of the text (and its initial point not shown there)
are plotted by the commands

x0 = -1.9; y0 = 0;
point0 = Graphics[{PointSize[0.025], Point[{x0, y0}1}1;
soln = NDSolvel[{Derivativell] [y] [x] == f[x, yI[x]]l, yI[x0] == y0},

yIxl, {x, a, b}l;
soln([[1,1,2]];
curve0 = Plot[soln[[1,1,21]1, {x, a, b},
PlotStyle -> {Thickness[0.0065], RGBColor[0, 0, 11}1;

The Mathematica NDSolve command carries out an approximate numerical solution of

the given differential equation. Numerical solution techniques are discussed in Sections
2.4-2.6 of the textbook.

The coordinates of the 12 points are marked in Fig. 1.3.12 in the textbook. For instance

the 7th point is (2.5, 1). It and the corresponding solution curve are plotted by the

commands

x0 = -2.5; y0 = 1;

point7 = Graphics[{PointSize[0.025], Point[{x0, y0}1}1;

soln = NDSolve[{Derivativel[l] [y] [x] == f[x, y[x]], y[x0] == y0},

yIxl, {x, a, b}l;
soln[[1,1,21];
curve7 = Plotl[soln[[1,1,211, {x, a, b},
PlotStyle -> {Thickness[0.0065], RGBColor[0, 0, 11}1;

Finally, the desired figure is assembled by the Mathematica command

Show[ dfield, pointO,curveO,
pointl, curvel, point2,curve2, point3,curve3,
point4,curve4, point5,curve5, pointé6,curvesb,
point7,curve7, point8,curve8, point9,curve9,
pointl0,curvell, pointll,curvell, pointl2,curvell];
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Because both f(x,y) = 2x*»* and 9f/dy = 4x’y are continuous everywhere, the

existence-uniqueness theorem of Section 1.3 in the textbook guarantees the existence of a
unique solution in some neighborhood of x = 1.

Both f(x,y) = xIny and df/dy = x/y are continuous in a neighborhood of

(1, 1), so the theorem guarantees the existence of a unique solution in some
neighborhood of x = 1.

Both f(x,y) = »" and 9f/dy = (1/3)y** are continuous near (0, 1), so the
theorem guarantees the existence of a unique solution in some neighborhood of x = 0.

Section 1.3 21



14.

15.

16.

17.

18.

19.

20.

21.

22

f(x,y) = y"* is continuous in a neighborhood of (0, 0), but of /dy = (1/3)y>* is

not, so the theorem guarantees existence but not uniqueness in some neighborhood of
x = 0.

f(x,y) = (x— y)l/ 2 is not continuous at (2, 2) because it is not even defined if y > x.

Hence the theorem guarantees neither existence nor uniqueness in any neighborhood of
the point x = 2.

f(x,y) = (x— )" and 9f /9y = —(1/2)(x — y) " are continuous in a neighborhood

of (2, 1), so the theorem guarantees both existence and uniqueness of a solution in some
neighborhood of x = 2.

Both f(x,y) = (x—1/y and 9f/dy = —(x— 1)/y* are continuous near (0, 1), so the
theorem guarantees both existence and uniqueness of a solution in some neighborhood of
x = 0.

Neither f(x,y) = (x—1)/y nor 9f/dy = —(x— 1)/y* is continuous near (1, 0), so the
existence-uniqueness theorem guarantees nothing.

Both f(x,y) = In(1+ y*) and 9f /dy = 2y/(1+ ) are continuous near (0, 0), so
the theorem guarantees the existence of a unique solution near x = 0.

Both f(x,y) = x*— )* and 0f /dy = —2y are continuous near (0, 1), so the theorem
guarantees both existence and uniqueness of a solution in some neighborhood of x = 0.

The curve in the figure on the left below can be constructed using the commands
illustrated in Problem 1 above. Tracing this solution curve, we see that y(—4) = 3.

An exact solution of the differential equation yields the more accurate approximation
y(—4)=3.0183.
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Tracing the curve in the figure on the right at the bottom of the preceding page , we see
that y(—4)=-3. An exact solution of the differential equation yields the more accurate

approximation y(—4)=-3.0017.

Tracing the curve in figure on the left below, we see that y(2) =1. A more accurate
approximation is y(2) =1.0044.
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Tracing the curve in the figure on the right above, we see that »(2) =1.5. A more
accurate approximation is y(2) =1.4633.

The figure below indicates a limiting velocity of 20 ft/sec — about the same as jumping
off a 64 -foot wall, and hence quite survivable. Tracing the curve suggests that v(¢) =19

ft/sec when ¢ is a bit less than 2 seconds. An exact solution gives ¢ =1.8723 then.
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26. The figure below suggests that there are 40 deer after about 60 months; a more accurate
value is £ = 61.61. And it's pretty clear that the limiting population is 75 deer.
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27.  If b <0 then the initial value problem )’ = 2\/; , ¥(0)=5b has no solution, because the

square root of a negative number would be involved. If 5> 0 we get a unique solution
curve through (0,b) defined for all x by following a parabola — in the figure on the left

below — down (and leftward) to the x-axis and then following the x-axis to the left. But
starting at (0,0) we can follow the positive x-axis to the point (¢,0) and then branching

off on the parabola y =(x—c)>. This gives infinitely many different solutions if 5 =0.
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28. The figure on the right above makes it clear initial value problem xy =y, y(a)=5b has
a unique solution off the y-axis where a #0; infinitely many solutions through the
origin where a =>b=0; no solutionif a=0 but »#0 (so the point (a,b) lies on the
positive or negative y-axis).
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29.  Looking at the figure on the left below, we see that we can start at the point (a,b) and

follow a branch of a cubic up or down to the x-axis, then follow the x-axis an arbitrary
distance before branching off (down or up) on another cubic. This gives infinitely many

solutions of the initial value problem y"=33?", y(a)=>b that are defined for all x.
However, if b#0 there is only a single cubic y = (x—c)’ passing through (a,b), so
the solution is unique near x =a.

L NN
AN
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X

30. The function y(x) =cos(x—c), with y’(x) =—sin(x —c), satisfies the differential

equation 3’ =—/1—y* ontheinterval c¢< x<c+7x where sin(x—c)>0, so it follows

that
—J1-9" = —yl-cos’(x—¢) = —fsin’(x—¢) = —sin(x—c¢) = y.

It |b| >1 then the initial value problem )"=—/1—3, y(a)=5b has no solution because

the square root of a negative number would be involved. If |b| <1 then there is only one
curve of the form y =cos(x —c¢) through the point(a,b); this give a unique solution.
But if b =1 then we can combine a left ray of the line y =+1, a cosine curve from the
line y =+1 to the line y =-1, and then a right ray of the line y =—1. Looking at the

figure on the right above, we see that this gives infinitely many solutions (defined for
all x) through any point of the form (a,%1).

31. The function y(x) =sin(x —c), with y’(x) =cos(x—c), satisfies the differential

equation y’ =./1—y” ontheinterval c—7z/2<x<c+m/2 where cos(x—c)>0, soit
follows that

\/l—y2 = \/l—sinZ(x—c) = \/cosz(x—c) = —sin(x—c) = y.
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32.

33.

26

It |b| >1 then the initial value problem )"=+/1—3*, y(a)=5b has no solution because

the square root of a negative number would be involved. If |b| <1 then there is only one
curve of the form y =sin(x —c¢) through the point(a,b); this give a unique solution.
But if » ==*1 then we can combine a left ray of the line y =—1, a sine curve from the
line y =—1 to the line y =+1, and then a right ray of the line y =+1. Looking at the

figure on the left below, we see that this gives infinitely many solutions (defined for all x)
through any point of the form (a,=x1).
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Looking at the figure on the right above, we see that we can piece together a "left half" of
a quartic for x negative, an interval along the x-axis, and a "right half" of a quartic curve

for x positive. This makes it clear he initial value problem )’ = 4x\/; , y(a)=>b has

infinitely many solutions (defined for all x) if 5= 0; there is no solution if <0
because this would involve the square root of a negative number.

Looking at the figure provided in the answers section of the textbook, it suffices to
observe that, among the pictured curves y = x/(cx —1) for all possible values of c,

e there is a unique one of these curves through any point not on either coordinate axis;
e there is no such curve through any point on the y-axis other than the origin; and
e there are infinitely many such curves through the origin (0,0).

But in addition we have the constant-valued solution y(x)=0 that "covers" the x-axis.
It follows that the given differential equation has near (a,b)

e aunique solutionif a #0;

e nosolutionif a=0 but b#0;
e infinitely many different solutions if a=5=0.
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SECTION 1.4
SEPARABLE EQUATIONS AND APPLICATIONS

Of course it should be emphasized to students that the possibility of separating the variables is
the first one you look for. The general concept of natural growth and decay is important for all
differential equations students, but the particular applications in this section are optional.
Torricelli's law in the form of Equation (24) in the text leads to some nice concrete examples and
problems.

.
1. d_y = — J-Zxa’x; Iny = —x*+¢;  y(x) = et = Ce
J Y
("
2. d—JZ/ = —JZxdx; 1 —-xX'=C; y(x) = 21
Jy y x +C
.
3. Y _ _[sinxdx; Iny = —cosx+c;  y(x) = e = Ce ™™
J Y
("
4. Y _ ﬂ; Iny = 4In(1+x)+InC;,  y(x) = C(1+x)*
J oy 1+x
.
5, dy = dx ; sin‘ly = \/;+C; y(x) = sin(\/;+C)
J \/1—y2 2\/;
.
6. A [3xdx 2y =2x7+2C; y(x) = (x2+cC)
NG
‘4 3/2
7. ) yl—); = J.4x”3 dv, 3y*7 =3x""+3C  y(x) = (2x4/3+C)

8. J-cosydy = I2xdx; siny = x*+C;  y(x) = sin_l(x2+C)

9. J Y _ J 2 de = J(L + Lj dx (partial fractions)
y l1-x l+x 1-x

Iny = In(l+x)-In(l-x)+InC,  p(x) = Cr—x
- X
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

28

dy dx 1 I o _1+C+x)

A+y)?  Jd+0?  1+y  1+x 1+x
by = = g x—C(1+x)
1+C(+x) I1+C(1+x) 1+C(+x)

- 2 -

d—J; = | xdv; - 12 = x__g; y(x) = (C—xz) v
15 2y 2 2

([ ydy 2 2 2 :
Ik [xdx; 4in(3”+1) = 4x’+3InC; Y’ +1 = Ce
(" 3d

y4 Y _ Icosxdx; %ln(y4+l) = sinx+C
)y +1

J-(1+\/;)dy = J-(1+x/;)dx; y+2y"? = x+2x7+C

R
(%—%)dy = J(l—%jdx; —g+% = ln|x|+l+C
J\y oy X X y 3y X

(sinydy J x dx

cosy L —In(cosx) = %ln(1+x2) +InC
J

secy = CV1+x*;  p(x) = sec‘l(C 1+x2)

y = 1+x+y+xy = (1+x)(1+y)

dy

= J(1+x)dx; 1n|1+y| = x+ix’+C
I+y

X’y = 1-x"+1y*=x"y* = (1-x)(1+?%)

J1+y° X

.
L .[exdx; Iny = e +InC;  y(x) = Cexp(e’)
J Y

y(0)=2e implies C=2 so y(x) = 2exp(e’).

Chapter 1
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20.

21.

22,

23.

24,

25.

26.

27.

J b J.3x2 de; tan”'y = X’+C;  y(x) = tan(x3+C)
y(0)=1 implies C=tan'1=7/4 so y(x) = tan(x3+7c/4).
JZydy S ¥y =P -16+C

Vx*—16
y(5)=2 implies C=1 so y° = l+yx*—16.

Jd_y = J(4x3—l)dx; Iny = x*—x+InC; y(x) = Cexp(x* —x)
y

y(1)==3 implies C=-3 so p(x) = —3exp(x*—x).

Jd_y - de; lIn@2y-1) = x+1InC; 2y-1= Ce™
2y—1

y(l) =1 lmplles C= 672 SO y(x) — %(1 + er—Z) .

Jd_y - Jco?x‘lx; Iny = In(sinx)+InC;  y(x) = Csinx
y sin x

y(£)=% implies C=% so y(x) = Zsinx.
dy _ 1 . _ 2 . _ 2
- = —+2x|; Iny =Inx+x"+InC; y(x) = Cxexp(x’)
v X

y()=1 implies C=¢" so yp(x) = xexp(x*—1).

dy
v

J(2x+3x2); —é = x+x+C;  y(x) = ﬁ

y()=—1 implies C=-1 so y(x) = — -
I—-x"—x

Jeydy = I6e2xdx; e =3 +C;  p(x) =ln(3e2x+C)

¥(0)=0 implies C=-2 so y(x) =In(3e*-2).
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28.

29.

30.

30

dx
sec’ yd :J—; tany = Vx+C; x) =tan” (Vx +C
J YT ) Y () (Vx+c)
K=5 imples =1 s 50 =t (45 1),

(a) Separation of variables gives the general solution

1 1 1
J[——zjdy = —J xdx; —=-x+C; y(x) = ———.
y y x-=C

(b) Inspection yields the singular solution y(x)=0 that corresponds to no value of

the constant C.

(c) In the figure below we see that there is a unique solution curve through every

point in the xy-plane.

IS
T

N
T

J B

When we take square roots on both sides of the differential equation and separate

variables, we get

J% = | ds Jy=x-C yx) = (x-C).

This general solution provides the parabolas illustrated in Fig. 1.4.5 in the textbook.
Observe that y(x) is always nonnegative, consistent with both the square root and the

original differential equation. We spot also the singular solution y(x)=0 that

corresponds to no value of the constant C.
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31.

(a) Looking at Fig. 1.4.5, we see immediately that the differential equation
(y")> =4y has no solution curve through the point (a,b) if b<O0.

(b) But if >0 we obviously can combine branches of parabolas with segments
along the x-axis to form infinitely many solution curves through (a,b).

(©) Finally, if />0 then on a interval containing (a,b) there are exactly two

solution curves through this point, corresponding to the two indicated parabolas through
(a,b) , one ascending and one descending from left to right.

Problem 31 Figure

The formal separation-of-variables process is the same as in Problem 30 where, indeed,
we started by taking square roots in (3")> =4y to get the differential equation

y'= 2\/; . But whereas )" can be either positive or negative in the original equation, the
latter equation requires that )" be nonnegative. This means that only the right half of
each parabola y=(x-C )2 qualifies as a solution curve. Inspecting the figure above, we

therefore see that through the point (a,b) there passes

(a) No solution curve if <0,
(b) A unique solution curve if 5> 0,
(©) Infinitely many solution curves if b =0, because in this case we can pick any

¢ > a and define the solution y(x)=0 if x<e¢, y(x)=(x-c)’ if x>c.
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33.

32

Problem 32 Figure (a)
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Separation of variables gives

dy -1
X=| —F=— = sec |y|+C
Jy\/yz—l

if | y| > 1, so the general solution has the form y(x)=zxsec(x —C). But the original

differential equation )" = y./y* —1 implies that y">0 if y>1, while )’ <0 if
y < —1. Consequently, only the right halves of translated branches of the curve
y =secx (figure above) qualify as general solution curves. This explains the plotted

general solution curves we see in the figure at the top of the next page. In addition, we
spot the two singular solutions y(x)=1 and y(x)=-1. It follows upon inspection of

this figure that the initial value problem ' = y\/ﬁ , y(a)=>b has a unique solution if
|b| >1 and has no solution if |b| <1. Butif b=1 (and similarly if b=-1) then we can
pick any ¢ >aand define the solution y(x) =1 if x<¢, y(x)=[sec(x—c)| if
c<x<c+%. Sowesee thatif b==1, then the initial value problem

¥ =yyy’ =1, y(a)=>b has infinitely many solutions.

The population growth rate is & = In(30000/25000)/10 = 0.01823, so the population
of the city ¢ years after 1960 is given by P(t) = 25000e"*"**. The expected year
2000 population is then P(40) = 25000e"""*>* = 51840.
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36.

37.

38.
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The population growth rate is & = In(6)/10 = 0.17918, so the population after ¢
hours is given by P(¢) = P,e"'”". To find how long it takes for the population to

double, we therefore need only solve the equation 2P = B,e”'”"™ for
t = (In2)/0.17918 = 3.87 hours.

As in the textbook discussion of radioactive decay, the number of *C atoms after ¢
years is given by N(t) = N,e """
LN, = N e ™™ for t = (In6)/0.0001216 = 14735 years to find the age of the
skull.

. Hence we need only solve the equation

As in Problem 35, the number of "“C atoms after ¢ years is given by
N(t) = 5.0x10" ™" Hence we need only solve the equation

4.6x10" = 5.0x10" """ for the age ¢ = (In(5.0/4.6))/0.0001216 ~ 686 years

of the relic. Thus it appears not to be a genuine relic of the time of Christ 2000 years
ago.

The amount in the account after ¢ years is given by A(¢) = 5000e"**. Hence the

amount in the account after 18 years is given by A(18) = 5000&"**"* = 21,103.48
dollars.

When the book has been overdue for ¢ years, the fine owed is given in dollars by
A(t) = 0.30€"”". Hence the amount owed after 100 years is given by

A(100) = 0.30e"*'™ ~ 44.52 dollars.
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39.

40.

41.

42.

43.

34

To find the decay rate of this drug in the dog's blood stream, we solve the equation
1 = ¢7* (half-life 5 hours) for k=(In2)/5=0.13863. Thus the amount in the dog's

—0.13863¢

bloodstream after ¢ hours is given by A(t) = A4,e . We therefore solve the

equation A(l) = A4, = 50x45 = 2250 for A4, =~2585mg, the amount to
anesthetize the dog properly.

To find the decay rate of radioactive cobalt, we solve the equation 1+ = ¢*7* (half-life
5.27 years) for k=(In2)/5.27 =0.13153. Thus the amount of radioactive cobalt left

after ¢ yearsis givenby A(t) = A4,e """
A(t) = 4,7 = 0.014, for ¢=(In100)/0.13153 =35.01 and find that it will be

about 35 years until the region is again inhabitable.

. We therefore solve the equation

Taking ¢ = 0 when the body was formed and ¢ = T now, the amount O(7) of ***U in
the body at time ¢ (in years) is given by Q(f) = Qoe*kt, where k& = (In 2)/(4.51x10%).
The given information tells us that

or)  _
0,-0(T)

After substituting Q(T) = Qe ™, we solve readily for ¢/ = 19/9, so
T = (1/k)In(19/9) = 4.86x10°. Thus the body was formed approximately 4.86 billion
years ago.
Taking ¢ = 0 when the rock contained only potassium and ¢ = 7 now, the amount
O(f) of potassium in the rock at time ¢ (in years) is given by Q(f) = Qpe ™, where
k = (In 2)/(1.28x10°). The given information tells us that the amount A(¢) of argon at
time ¢ is

A(r) = 35[0, - 0()]
and also that A(7) = Q(T). Thus

Q,—9(T) = 90(T).
After substituting Q(T) = Q,e"" we readily solve for

T = (In10/1n2)(1.28 x10°) = 4.25x10°.

Thus the age of the rock is about 1.25 billion years.

Because 4 = 0 the differential equation reduces to 7" = kT, so 7(t) = 25¢ ™. The
fact that 7(20) = 15 yields k£ = (1/20)In(5/3), and finally we solve
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45.

46.

47.

48.

5=25" for = (In5)k = 63 min.

The amount of sugar remaining undissolved after ¢ minutes is given by A(f) = A4,.e™;
we find the value of k by solving the equation A(1) = Ae™ = 0.754, for
k=—-In0.75=0.28768. To find how long it takes for half the sugar to dissolve, we solve
the equation A(t) = Ae ™ =14, for t=(In2)/0.28768 =2.41 minutes.

(a) The light intensity at a depth of x meters is given by 1(x)=1I,e"**. We solve
the equation /(x)=1Ie """ =11, for x=(In2)/1.4=0.495 meters.

(b)  Atdepth 10 meters the intensity is /(10) = /e "’ = (8.32x107) I,.

(¢)  We solve the equation I(x)=1I,e** =0.01/, for x=(In100)/1.4 =3.29
meters.

(a)  The pressure at an altitude of x miles is given by p(x)=29.92¢7"**. Hence the

pressure at altitude 10000 ftis p(10000/5280) = 20.49 inches, and the pressure at
altitude 30000 ftis p(30000/5280) = 9.60 inches.

(b)  To find the altitude where p = 15 in., we solve the equation 29.92¢™°** =15 for
x=(In29.92/15)/0.2 = 3.452 miles = 18,200 ft.

If N(#) denotes the number of people (in thousands) who have heard the rumor after ¢
days, then the initial value problem is

N’ = k(100 —N), N(0) = 0

and we are given that N(7) = 10. When we separate variables (dN /(100— N) =kdt)
and integrate, we get In(100— N)=—kz+ C, and the initial condition N(0) =0 gives
C=In100. Then 100—N =100e™, so N(1)=100(1-¢™*). We substitute /=7,

N =10 and solve for the value k& =1n(100/90)/7 = 0.01505. Finally, 50 thousand
people have heard the rumor after = (In2)/k = 46.05 days.

Let N,(¢) and N,(¢) be the numbers of 281 and *°U atoms, respectively, at time ¢ (in

—kt

billions of years after the creation of the universe). Then N, (¢)= N "' and

Ny(t)=N,e ', where N, is the initial number of atoms of each isotope. Also,
k=(n2)/4.51 and c¢=(In2)/0.71 from the given half-lives. We divide the equations
for N, and N, and find that when ¢ has the value corresponding to "now",
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51.

52.

36

e(c—k)f — 8 _ 1377

5

Z|=

Finally we solve this last equation for ¢ = (In137.7)/(c—k) = 5.99. Thus we get an

estimate of about 6 billion years for the age of the universe.

The cake's temperature will be 100° after 66 min 40 sec; this problem is just like Example

6 in the text.
(@) A(t)=10€". Also 30=A(%)=10e"*"?, soso
&M =3 k= Zm3 = In(3*").
15

Therefore A(t)=10(e") =10-3*"".

(b) After 5 years we have A(5)=10-3*" =20.80 pu.

(c) A(t)=100 when A(¢) = 10-3*'7%; ¢ = 15 In(0) _ 15.72 years.
e
(@) A(t)=15¢"; 10= A(5)=15¢"",so
3. .k ==In=
2

Therefore

t 3 3 —t/5 2 t/5
A() = 15exp| ——In=| = 15| = =15 — .
« p( 5 2J (zj (3]

(b) After 8 months we have

2 8/5
A®8) = 15-&} ~ 7.84su.

(¢) A(t)=1 when
15 L
At) = 15.(gj =1 ¢= S-M =~ 33.3944.
3 In(3)

Thus it will be safe to return after about 33.4 months.

If L(¢) denotes the number of human language families at time ¢ (in years), then
L(t) = €" for some constant k. The condition that L(6000) = e*™* =1.5 gives
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54.

5S.

56.

1

~ 6000
L(T)=¢"=3300,s0 T = %ln3300 = 60001n 3300 ~119887.18. This result suggests

In(3/2)
that the original human language was spoken about 120 thousand years ago.

3 . :
lna. If "now" corresponds to time ¢=7, then we are given that

If L(t) denotes the number of Native America language families at time ¢ (in years),
then L(#)=e" for some constant k. The condition that L(6000)=¢e** =1.5 gives

k= ! lné. If "now" corresponds to time ¢=7, then we are given that
6000 2
L(T)=¢€" =150,s0 T = %lnISO = %11/121)50 ~74146.48. This result suggests that the
n

ancestors of today's Native Americans first arrived in the western hemisphere about 74
thousand years ago.

With A(y) constant, Equation (19) in the text takes the form

d_y:k\/;

dt

We readily solve this equation for 2\/; = kt+C. The condition y(0) = 9 yields

C = 6, and then y(1) = 4 yields £ = 2. Thus the depth at time ¢ (in hours) is
) = (3- 7)?, and hence it takes 3 hours for the tank to empty.

With 4 = 7(3)* and a = #(1/12)?, and taking g = 32 ft/sec’, Equation (20)
reduces to 162 )" = —\/; . The solution such that y = 9 when ¢ = 0 is given by
324\/_ = —t+972. Hence y = 0 when ¢ = 972 sec = 16 min 12 sec.

The radius of the cross-section of the cone at height y is proportional to y, so A(y) is
proportional to )*. Therefore Equation (20) takes the form

and a general solution is given by
2% = 5kt + C.

The initial condition »(0) = 16 yields C = 2048, and then y(1) = 9 implies that
S5k = 1562. Hence y = 0 when

t = C/5k = 2048/1562 = 1.31 hr.
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The solution of )" = —k/y is given by
2y = -kt +C.

The initial condition y(0) =4 (the height of the cylinder) yields C =2 Jh . Then
substitution of t =17, y=0 gives k= (2 Jh )/T. 1t follows that

y = h(1-4T)
If » denotes the radius of the cylinder, then
V(y) = nr'y = nr'h(1-t/T)* = V,(1-t/T)".

2

Since x = y**, the cross-sectional areais A(y) = zx* = mwy*>. Hence the

general equation A(y)) = —a4/2gy reduces to the differential equation yy' =—k

with general solution
12y = —kt+ C.

The initial condition »(0) = 12 gives C = 72, and then y(1) = 6 yields & = 54.
Upon separating variables and integrating, we find that the the depth at time ¢ is

y(t) = /1441081 y(?).
Hence the tank is empty after ¢ = 144/108 hr, that is, at 1:20 p.m.

(a) Since x* = by, the cross-sectional areais A(y) = mx> = mby. Hence the

equation A(y)y" = —a+/2gy reduces to the differential equation

Y2y = —k = —(alwb)\2g
with the general solution
QBY*"? = —kt + C.

The initial condition »(0) = 4 gives C = 16/3, andthen y(1) = 1 yields k£ = 14/3.
It follows that the depth at time ¢ is

(@) = 87"

(b) The tank is empty after + = 8/7 hr, thatis, at 1:08:34 p.m.

() We see above that &k = (a/7b)/2g = 14/3. Substitution of @ = nr, b =1,
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61.

62.

g = (32)(3600)* ft/hr® yields r = (1/60)/7/12 ft=0.15 in for the radius of the
bottom-hole.

With g = 32 ft/sec® and a = 7(1/12)?, Equation (24) simplifies to
dy /4
A(y)— = ——/y.
M= ==y

If z denotes the distance from the center of the cylinder down to the fluid surface, then
y =3—zand A(y) = 10(9—z%)"2 Hence the equation above becomes

1/2%

dt
180(3+2)"%dz = rdt,

10(9—2%) - %(3—2)“,

and integration yields
1203+2)"* = mt+C.

Now z = 0 when t = 0, so C = 120(3)3/2. The tank is empty when z = 3 (that is,
when y = 0) and thus after

t = (120/m)(6”% = 3*%) = 362.90 sec.

It therefore takes about 6 min 3 sec for the fluid to drain completely.

A(y) = m(8y—y*) asin Example 7 in the text, but now @ = 7/144 in Equation (24),
so the initial value problem is

8@ - = —Jy. 20 =8
We seek the value of # when y = 0. The answer is 7= 869 sec = 14 min 29 sec.

The cross-sectional area function for the tank is 4 = 7z(1—3*) and the area of the

bottom-holeis @ = 1077, so Eq. (24) in the text gives the initial value problem

n(1—y2)% = —10*72x9.8y, »(0) = 1.

Simplification gives
(yl/z_ys/z)cjl_y — —1.4X1074\/ﬁ
t

so integration yields

Section 1.4 39



63.

64.

40

2y1/2_%y5/2 — _1_4><10’4\/Et+c-

The initial condition y(0) =1 implies that C = 2 - 2/5 = &/5, so y=0 after
t = (8/5) /(1.4><10’4\/E) ~ 3614 seconds. Thus the tank is empty at about 14
seconds after 2 pm.

(a) As in Example 8, the initial value problem is

w@y- )L = —xkfy,  w(0)=4
dt
where k = 0.67°\/2g = 4.87°. Integrating and applying the initial condition just in
the Example 8 solution in the text, we find that

16 55 2 sn 448
= Ly O sy
37 75 15

When we substitute y = 2 (ft) and ¢ = 1800 (sec, that is, 30 min), we find that
k = 0.009469. Finally, y = 0 when

t = @ =~ 3154 sec = 53 min 34 sec.
15k

Thus the tank is empty at 1:53:34 pm.

(b) The radius of the bottom-hole is
r = Jk/4.8 =0.04442 ft = 0.53 in, thus about a half inch.

The given rate of fall of the water level is dy/dt = —4 in/hr = —(1/10800) ft/sec. With
A =7nx’ and a = 71, Equation (24) is

(7x*)(1/10800) = —(r*)\2gy = —8mr*[y.

Hence the curve is of the form y = kx*, and in order that it pass through (1, 4) we
must have & = 4. Comparing \/; = 2x* with the equation above, we see that

(8/%)(10800) = 1/2,

so the radius of the bottom hole is » = 1/(240\/5) ft = 1/35in.
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Let ¢+ = 0 at the time of death. Then the solution of the initial value problem

T'" = k(70 - T), 7(0) = 98.6
1S
T(t) = 70+28.6¢e™".

If + = a at 12 noon, then we know that

T(f) = 70+28.6¢™ = 80,

T(a+1) = 70+28.6e*“" = 75,

Hence
28.6¢" =10 and 28.6e¢"e* = 5.

It follows that e* = 1/2, so k = In 2. Finally the first of the previous two equations
yields

a = (In2.86)/(In2) = 1.516 hr = 1 hr 31 min,
so the death occurred at 10:29 a.m.

Let t+ = 0 when it began to snow, and ¢ = 7, at 7:00 am. Let x denote distance along
the road, with x = 0 where the snowplow begins at 7:00 a.m. If y = ct is the snow
depth at time ¢, w is the width of the road, and v = dx/dt is the plow’s velocity, then
"plowing at a constant rate" means that the product wyv is constant. Hence our
differential equation is of the form

e L
dt t

The solution with x = 0 when ¢ = 1y is

t =ty

We are given that x = 2 when ¢t = #p+1 and x = 4 when ¢ = ¢, + 3, so it follows
that

Hht+1 =1 ezk and Hh+3 =1 €4k.
Elimination of #, yields the equation

e3¢ +2 = (- 1) -2) =0,
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so it follows (since k> 0) that e** = 2. Hence to+1 = 2t), so ty = 1. Thus it began
to snow at 6 a.m.
We still have ¢ = ¢ ekx, but now the given information yields the conditions

k

tHht+1 = 1‘084 and tHh+2 = Z‘()G7k

at 8 a.m. and 9 a.m., respectively. Elimination of #, gives the equation
20 k1 = 0,

which we solve numerically for £ = 0.08276. Using this value, we finally solve one of
the preceding pair of equations for #y = 2.5483 hr = 2 hr 33 min. Thus it began to
snow at 4:27 a.m.

(a) Note first that if @ denotes the angle between the tangent line and the horizontal,
then ¢=2-6 so cota=cot(£—0)=tanf = y'(x). It follows that

sin o 1 1

sina = = = :
Jsinla+cos’ar Jl+cot’ \/1 +y'(x)

Therefore the mechanical condition (sin¢r)/v = constant (positive) with v =/2gy
translates to

= constant, so y[1+())’] = 2a

1
L1+

for some positive constant a. We readily solve the latter equation for the differential
equation

, d 2a —
yo b [2a-y
dx y

(b) The substitution y=2asin’t, dy =4asintcostdt now gives

. [2a—2asin’t cost
4asintcostdt = \|——————dx = —dx,
2asin” t sint

dx = 4asin’tdt.
Integration now gives
x = j4asin2zdt = 2aj(1—cos2z)dz
= 2a(t—%sin2t)+C = a(2t—-sin2t)+C,

and we recall that y = 2asin’ ¢ = a(1—cos2t). The requirement that x =0 when =0
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implies that C =0. Finally, the substitution 6 =2¢ (nothing to do with the previously
mentioned angle € of inclination from the horizontal) yields the desired parametric
equations

x =a(@—sinf), y=a(l—cos8)

of the cycloid that is generated by a point on the rim of a circular wheel of radius a as it
rolls along the x-axis. [See Example 5 in Section 10.4 of Edwards and Penney, Calculus,
6th edition (Upper Saddle River, NJ: Prentice Hall, 2002).]

69. Substitution of v =dy/dx in the differential equation for y = y(x) gives
a dv = N1+,
dx
and separation of variables then yields
a’x; sinh™'v = £+C1; & _ smh( +C, j
V1+v° a dx
The fact that )’(0) =0 implies that C, =0, so it follows that
dy . X X
— = sinh| — |; y(x) = acosh| — |+ C.
dx a a
Of course the (vertical) position of the x-axis can be adjusted so that C =0, and the units
inwhich 7" and p are measured may be adjusted so that a =1. In essence, then the
shape of the hanging cable is the hyperbolic cosine graph y =coshx.
SECTION 1.5

LINEAR FIRST-ORDER EQUATIONS

pzexp(Jldx)zex; Dx(y.ex):2ex; y-e=2e"+C; y(x) =2+Ce”

y(0)=0 implies C=—-2 so y(x) = 2—-2¢ "

p=exp(J(—2)dx)=e72x; Dx(y-efzx)=3; y-e=3x+C; y(x) = Bx+C)e™

¥(0)=0 implies C=0 so yp(x) = 3xe**

p=exp(J3dx):e3x; Dx(y.e3x):2x; y-e=x"+C; yx) = (xX*+C)e™
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p=exp(I(—2x)dx)=e_x2; Dx(y-e_xz)zl; y-e‘”2 =x+C; y(x) = (x+C)e)Cz

pzexp(J(Z/x)dx)zezlnx=x2; Dx(y-x2)=3x2; y-xl=x+C
y(x) = x+C/x* y()=5 implies C=4 so y(x) = x+4/x’
pzexp(J(S/x)dx)zeSI“x=x5; Dx(y-x5)=7x6; y-x=x"+C
y(x) = x¥*+C/x°;  p(2)=5 implies C=32 so y(x) = x*+32/x°
p=exp(J-(1/2x)dx)=e““x)/2=\/;; Dx(y-\/;)=5; yJx=5x+C
y(x) = 5Vx+C/x

p:exp(j(l/sx)dx):e““)”=%/§; D (yx)=4dx; ydx=3*"+C
y(x) = 3x+Cx7'"3

pzexp(J(—l/x)dx)ze*I“X:l/x; D (y-1/x)=1/x; y-1/x=Inx+C
y(x) = xInx+Cx; y(1)=7 implies C=7 so y(x) = xlnx+7x

P =exp(J(—3/2x)dx) =PV = 2,

Dx(y-x_3/2)=9x”2/2; y-x7? =37+ y(x) = 3x°+Cx*?

p=exp([(1/x=3)dx) =" =xe™; D (yxe™)=0; yxe=C

y(x) = Cx7'e*;  y(1)=0 implies C=0 so p(x) = 0 (constant)
p=exp(J(3/x)dx)=e31“X =x; Dx(y-x3)=2x7; y-x =%x8+C
y(x) = 1x°+Cx7;  p(2)=1 implies C=-56 so y(x) = +x°—56x7°
p=exp(J-ldx)=ex; Dx(y-ex)ze“; ye =1+ C

y(x) =3 +Ce™;  p(0)=1 implies C=% so y(x) = 1e'+1e

p=exp(J(—3/x)dx)=e731“x:x73; Dx(y-x%):x*l; y-x"=lnx+C
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16.

17.

18.

19.

20.

21.

22,

23.

y(x) = ¥Inx+Cx’;  y(1)=10 implies C=10 so p(x) = x’Inx+10x’

2

pzexp(JZxdx)zexz; Dx(y-exz)zxex ; y-ex2 =%ex2+C

_xz

y(x) = 1+Ce™;  p(0)=-2 implies C=—3 so y(x) = L—3e

sin x sin x

pzexp(J-cosxdx):eSi“x; Dx(y-esm)ze cosx; y-e"=e"4+C

—sinx

y(x) = 14Ce™™;  y(r)=2 implies C=1 so y(x) = l+e

p=exp(Jl/(1+x)dx):eln(1+x):1+x; D, (y-(1+x))=cosx; y-(l+x)=sinx+C

m; y(0)=1 implies C=1 so y(x) = I +sinx
I+x I+x

y(x) =

) =exp(J-(—2/x)dx) =e”™ =x7; D, (y-x‘z) =cosx; y-x_ =sinx+C
y(x) = x*(sinx+C)

p= exp( J-cotxdx) =" =ginx; D, (y-sinx)=sinxcosx
y-sinx=1sin’x+C; y(x) = LIsinx+Ccscx

P =exp(J(—l—x)dx)ze’x’xz/z; D (y-e’x’xz/z) =(1+x)e””2/2

2 2 2
y'e—x—x /2 :_efxfx /2+C; y(x) — _1+Cefx7x /2

—x—x*/2

»(0)=0 implies C=1 so y(x) = —l+e
p=exp(J-(—3/x)dx)=e_31“x =x7; Dx(y-x_3)=cosx; y-x~ =sinx+C
y(x) = X’sinx+Cx’;  y(27)=0 implies C=0 so y(x) = x’sinx
p=exp(J-(—2x)dx)=e_xz; Dx(y-e_x2)=3x2; ye =x+C

y(x) = (x3+C)e”2; »(0)=5 implies C=5 so p(x) = ()c3+5)e”2
p=exp(J-(2—3/x)dx)=e2x_3lnx=x_362x; Dx(y-x_Sezx)=4ezx

y-x7e =2 +C;  p(x) = 2x’ +Cx’e ™"
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p= exp( J'3x /(xz +4) dx) _ A2 (xz +4)3/2; D, (y_(xz +4)3/2) _ x(xz +4)1/2

y-(F+4) =L +4)7+C; y(x) = t+C (P +4)77

»(0)=1 implies C=% so y(x) = +[1+16(x* +4)"7]

First we calculate

3x° dx 3x 3r , )
,[x2+1 H g x2+1} v = S[x -G+

It follows that p = (x> +1)7"? exp(3x*/2) and thence that

D, (y-(x*+1)*exp(3x”/2)) = 6x(x +4)7",
y- (x> + D) exp(3x?/2) = —2(x*+4)7? +C,
y(x) = =2exp(3x°/2)+ C(x* +1)? exp(-3x>/2).

Finally, »(0) =1 implies that C =3 so the desired particular solution is

y(x) = =2exp(3x*/2)+3(x* +1)¥? exp(=3x>/2).

With x"=dx/dy, the differential equation is y’x"+4y°x=1. Then with y as the

independent variable we calculate

p(y) = exp( [(4/p)dy) = ™ =y D (x-p*) =y

1 1 C
xyt ==y +C x(y) = —

+
2 2y°

With x"=dx/dy, the differential equationis x"—x= ye”’. Then with y as the
independent variable we calculate

p(y) = exp( [(-Ddy) = e D,(x-¢”) =y

x-e? =1y’ +C x(y) = (47 +C)e

With x"=dx/dy, the differential equationis (1+y*)x’—2yx=1. Then with y as the

independent variable we calculate
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p(y) = exp( [(2p/(1+)")dy) = ™ = (14 )"
D, (x-(1+y*)7") = A+y")7

An integral table (or trigonometric substitution) now yields

d = = &y > :l —y2+tan"1y+C
I+y (1+y2) 2\1+y

x(y) = %[y+(l+y2)(tan_ly+C)]

pzexp(J‘(—Zx)dx):e“Z; D, (y-e*xz)ze*xz; yet=CH _[)Xe*’2 dt
y(x) = e (C+imerf(v))

After division of the given equation by 2x, multiplication by the integrating factor
P = x' yields

-1/2 -3/2 -1/2
x Yy =Lx7y = x P eosy,

D, (x"?y) = xcosx,

x "y = C+ J;x t™"*cost dt.
The initial condition (1) = 0 implies that C = 0, so the desired particular solution is

y(x) = x'? J:x t"*cost dt.
@ = Ce*jpdx(—P) =-Py,s0 y,+Py, = 0.

® ¥, = (—P)e_Ide-{J(erpdxjdx}+e_“dx-erpdx = —Py,+0

(a) If y=Acosx+ Bsinx then
Y +y = (A+B)cosx+(B— A)sinx = 2sinx

provided that 4 =—1 and B =1. These coefficient values give the particular solution
Yp(X) = sinx —cos x.
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(b) The general solution of the equation )+ y =0 is y(x) = Ce™ so addition to the
particular solution found in part (a) gives y(x) = Ce ™ + sin x — cos x.

() The initial condition y(0) =1 implies that C =2, so the desired particular
solution is y(x) = 2e ™ + sin x — cos x.

The amount x(¢) of salt (in kg) after ¢ seconds satisties the differential equation
¥ =—x/200, so x(¢t) = 100e™"**. Hence we need only solve the equation

10 = 100e™* for t =461 sec =7 min 41 sec (approximately).

Let x(¢) denote the amount of pollutants in the lake after ¢ days, measured in millions of
cubic feet (mft’). The volume of the lake is 8000 mft’, and the initial amount x(0) of
pollutants is x, = (0.25%)(8000) = 20 mft’. We want to know when

x(¢) = (0.10%)(8000) =8 mft’. We set up the differential equation in infinitesimal form
by writing

X

dx = [in]—[out] = (0.0005)(500)ds— -5004t,
xx =[in]-[out] = ( )(500)dt =20

which simplifies to
dx 1 «x dx 1 1

, or = —.
dt 4 16 dt 16 4

t/16 —t/16

Using the integrating factor p =e¢'"", we readily derive the solution x(¢) =4+16e
for which x(0)=20. Finally, we find that x =8 when #=16In4 =22.2 days.

The only difference from the Example 4 solution in the textbook is that ¥ = 1640 km’
and =410 km’/yr for Lake Ontario, so the time required is

t = K1n4 = 4In4 = 5.5452 years.

r

(a) The volume of brine in the tank after # minis V(f) = 60 — ¢ gal, so the initial
value problem is

d _ o, 3% x(0) = 0.
dt 60—¢
The solution is
(60—1)°
x(t) = (60—¢)——=—.
@) = ( ) 3600

(b) The maximum amount ever in the tank is 40/+/3 =23.09 Ib. This occurs after
t=60—20~/3 ~25/36 min.
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37.

38.

39.

The volume of brine in the tank after # minis V(¢) = 100 + 2¢ gal, so the initial value

problem is
x5 3x x(0) = 50.
dt 100+ 2¢

The integrating factor p(¢f) = (100 + 2)** leads to the solution

50000

x(t) = (100+2t)_(1()()+—2r)3/2'

such that x(0) = 50. The tank is full after # = 150 min, at which time
x(150) = 393.75 Ib.

(a) dx/dt = —x/20 and x(0)=50s0 x(¢) = 50",
(b) The solution of the linear differential equation

dy _ 5x 5y _ éefz/zo_L

dt 100 200 2 40

with »(0) = 50 1is
y(t) = 1507 —~100e™*.

(¢) The maximum value of y occurs when

’ 15 —t/40 —1/20 5 —t/40 —t/40
) = ——e + Se =——¢ 3—4e =0.
Y = - i )

We find that yp.,x = 56.251b when ¢ = 40 In(4/3) = 11.51 min.
(a) The initial value problem

o _x x(0) = 100
dt 10

—t/10

for Tank 1 has solution x(¢#) = 100e™"". Then the initial value problem

dy x y VT
A L AN [ ey 0) = 0
dt 10 10 ()

for Tank 2 has solution y(¢) = 10te™""".
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40.

41.

42.

43.

50

(b) The maximum value of y occurs when
y'(t) = 1010 e = 0
and thus when t=10. We find that yp = »(10) = 100e' = 36.79 gal.

(b)  Assuming inductively that x, = ¢"e™" 2/(74!2”) , the equation for x,.; is

e, 1 1 e 1

X, —=X, = ——— =X,
dt 27 T gt g

We easily solve this first—order equation with x,,,(0) = 0 and find that

t”+1 eft/Z

T a2
thereby completing the proof by induction.
(@ A'() = 0.064+0.125 = 0.064+3.6e""
(b) The solution with 4(0) = 0 is

A(r) = 360(™%" — "),
so A(40) = 1308.283 thousand dollars.

The mass of the hailstone at time ¢ is m = (4/3)xr’ = (4/3)7k’t’. Then the equation
d(mv)/dt = mg simplifies to

wv'+3v = gt
The solution satisfying the initial condition w(0) = 0 is v(t) = gt/4, so v'(¢) = g/4.
The solution of the initial value problem y'=x—y, y(=5)=y, is

y(x) = x=1+(y, +6)e’x’5.

Substituting x =5, we therefore solve the equation 4+ (y,+6)e’ = y,

with y; = 3.998, 3.999, 4, 4.001, 4.002 for the desired initial values
yo = —50.0529, -28.0265, —6.0000, 16.0265, 38.0529, respectively.
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44.

45.

46.

The solution of the initial value problem Y =x+y, y(=5)=y, is
y(x) = —x—1+(y,—4)e™.

Substituting x =5, we therefore solve the equation —6+(y,—4)e" = y,

with y; = —10, =5, 0, 5, 10 for the desired initial values
vo = 3.99982, 4.00005, 4.00027, 4.00050, 4.00073, respectively.

With the pollutant measured in millions of liters and the reservoir water in millions of
cubic meters, the inflow-outflow rate is » =1, the pollutant concentration in the inflow

is ¢, =10, and the volume of the reservoiris V" =2. Substituting these values in the

equation x"=rc, —(r/V)x, we get the equation

& _, 1.
dt 10
for the amount x(¢) of pollutant in the lake after # months. With the aid of the

t/10

integrating factor p=¢""", we readily find that the solution with x(0)=0 is

x(1) = 20(1-e"").

Then we find that x =10 when ¢#=10In2 = 6.93 months, and observe finally that, as
expected, x(z) — 20 as t —> oo,

With the pollutant measured in millions of liters and the reservoir water in millions of
cubic meters, the inflow-outflow rate is » =1, the pollutant concentration in the inflow

is ¢, =10(1+cost), and the volume of the reservoir is ' =2. Substituting these values

in the equation x”"=rc,—(r/V)x, we get the equation

ax = 2(1+cost)—Lx, that is, @+Lx: 2(1+cost)
dt 10 dt 10

for the amount x(¢) of pollutant in the lake after # months. With the aid of the

t/10

integrating factor p=e''", we get

x-e'" = I(Ze’“o +2¢""" cost) dt

t/10
e

= 20" +2 ———
()" +1°

(—cost +sin tj +C.
10

When we impose the condition x(0) =0, we get the desired particular solution
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x(t) = £(101—102e"”°+cost+IOsint).
101

In order to determine when x =10, we need to solve numerically. For instance, we can
use the Mathematica commands

x = (20/101) (101 - 102 Exp[-t/10] + Cos[t] + 10 Sin[t]);
FindRoot[ x == 10, {t,7} 1

{t -> 6.474591767017537}

and find that this occurs after about 6.47 months. Finally, as ¢# — e we observe that
x(t) approaches the function 20+ -2-(cost+10sin¢) that does, indeed, oscillate about

the equilibrium solution x(z) = 20.

SECTION 1.6
SUBSTITUTION METHODS AND EXACT EQUATIONS

It is traditional for every elementary differential equations text to include the particular types of
equations that are found in this section. However, no one of them is vitally important solely in
its own right. Their main purpose (at this point in the course) is to familiarize students with the
technique of transforming a differential equation by substitution. The subsection on airplane
flight trajectories (together with Problems 56-59) is included as an application, but is optional
material and may be omitted if the instructor desires.

The differential equations in Problems 1-15 are homogeneous, so we make the substitutions

L

, = vx, )
Y dx dx

For each problem we give the differential equation in x, v(x),and Vv =dv/dx that results,
together with the principal steps in its solution.

1. x(v+1)v’:—(v2+2v—l); f%:—ﬁxdx; 1n(v2+2v—1):—21nx+1nC
y V-

xz(v2+2v—1) = C; y2+2xy—x2 =C

2. 2xvv' =1; JZVdVIJ@; v=lnx+C;, 3> = x*(Inx+C)
X

3. xv' =2v; J v :f@; Jv = Inx+C;  y = x(Inx+C)’
2\/; X
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10.

11.

12.

x(v—l)v':—(v2+1); fZ(l;v)dv:Jhlx; 2tan'v—In(v> +1)=2Inx+C
vo+1 X

2tan” (y/x)—In(3*/x*+1) = 2Inx+C

x(v+1)V ==2v% J(lJrszdv:—f%; lnv—l:—2lnx+C

v v X \%

Iny—-lnx—2> = —2lnx+C; In(xy) = C+>
y y

x(2v+1)V ==2v% J(2+L2jdv:_ %; lnvz—l=—2lnx+C
v v X v

21ny—2lnx—£ = —2lnx+C; 2ylny = x+Cy
y

xv V=1, I3v2dv=J3—dx; Vi =3lnx+C  y = X’ (3nx+C)
X

dx

xv=e"; —J.e*”dv:— —; €' =-Inx+C;, -v =In(C-Inx)
x
y = —xIn(C-Inx)
Ja’v dx L ~Inx+C; x = y(C-Inx)
N

vV =2V 41 J4V2dv :f“dx; In(2v*+1) = 4lnx+InC
2vi+1 X

2y*/x*+1 = Cx*; x*+2y> = Cx°

2
x(l—vz)v'=v+v3; 1-v dv = ﬁ; 1 dv = dx
Vi X v o vi+l X

1nv—1n(v2+l) = Inx+InC; v = Cx(v2+1); y = C(x2+y2)

xvv =V +4; J vdy de v +4 = Inx+C
Vv +4

Vvi+4 = (lnx+C)2; 4x°+y* = xz(lnx+C)2
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13.

14.

15.

16.

17.

18.

54

dv dx
xvV =V +1; J =J—; 1n(v+\/v2+1)=lnx+lnC
VW +1 X

vV +l = Cx;  y+xi+y* = Cx°
xvv = \/1+v2—(1+v2)

Iny = J vdv
V14V —(14v?)

B l du _ )
= 2J—\/;(1_\/;) (u = 1+v7)
= _Jd_w = —lnw+InC

w

with w=1-+/u . Back-substitution and simplification finally yields the implicit

solution x—+/x*+)* = C.

x(v+1)v'=—2(v2 +2v); j—2(v+l)dv :_j4_dx;

5 1n(v2+2v) = —4Inx+InC
Ve +2v

X

VV+2v = ClxY; x*y*+2x’y=C
The substitution v = x+ y+ 1 leads to

X_Jdv _J2udu o = )
1+«/; 1+u

2u—-2In(1+u)+C

2yx+y+1=-2In(l+x+y+1)+C

=
Il

dv 1. v C
3 = —tan —+—
v:+4 2 2 2

v = 2tan(2x—-C); y = 2tan(2x—-C)—4x

v=x+ty v =v+] xzjﬂz 1- ! dv = v—-In(v+1)-C
v+1 v+1

v=dx+y V=VvV+4 x=

y=Inx+y+1)+C.
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Problems 19-25 are Bernoulli equations. For each, we indicate the appropriate substitution as
specified in Equation (10) of this section, the resulting linear differential equation in v, its
integrating factor p, and finally the resulting solution of the original Bernoulli equation.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

v=y?, V-4v/x = -10/x*; p=1/x" = x/(Cx5+2)

v=y% V46xv =18x; p=e; 3P =3+Ce™

-2

v=y7 V42v = -2 p=et; ¥ = 1/(Ce 1)
v=y7; V-6v/x = -15/x*; p=x° y = 7x/(7Cx7+15)

RS VR

v=y"" V=2v/x = -1, p=x7 yz(ersz)_3

v:y—Z; V,+2V — e—Zx/x; p:er; yZ — eZX/(C+lnx)

v=y" V+3v/x = 3/N1+xY; p=x’; Yy = (C+3 1+x4)/(2x3)

The substitution v = y* yields the linear equation v'+v = ¢ with integrating
factor p = ¢'. Solution: )’ = e*(x+ C)

The substitution v = ) yields the linear equation xv'—v = 3x* with integrating
factor p = 1/x. Solution: y = o+ Ccx)'?

The substitution v = ¢’ yields the linear equation x v'—2v = 2x’¢** with integrating

factor p = 1/x*. Solution: y = In(Cx* + x*™)

The substitution v = sin y yields the homogeneous equation 2xvv' = 4x* + %
Solution: sin’y = 4x*— Cx

First we multiply each side of the given equation by ¢". Then the substitution v = ¢’
gives the homogeneous equation (x +v)v' = x—v of Problem 1 above.
Solution: x*—2x ¢’ —¢** = C

Each of the differential equations in Problems 31-42 is of the form M dx+ Ndy = 0, and the
exactness condition dM /dy =dN /dx is routine to verify. For each problem we give the
principal steps in the calculation corresponding to the method of Example 9 in this section.

31.

F = I(2x+3y)dx = x*+3xp+g(»); F, = 3x+g'(y) = 3x+2y = N

g() =2y, gy =y X +3xy+y’ = C
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32. F = I(4x—y)dx =2x"—xy+g(y); F =-x+g(y) =6y—-x =N

y

gy = 6y; g(y) =3y% x*—xy+3y? = C

33. F = I(3x2+2y2)dx = X +xp° +g(»); F, =4xy+g'(y) = 4xy+6y° = N

2 3

() =6y gy = 2y% X +2xp7+2y° = C

3. F =[x +3x0)dx = X +27y +g(y); F

y

2x°y+g'(y) = 2x°y+4y’= N

2 =4y gy = »h X+xlyi+yt = C

3S. F = I(x3+y/x)dx = 1x'+ylnx+g(y); F, =Inx+g'(y) = Y +Inx= N

v’ 1¥+1y’+ylnx = C

W=

gy =5 gl =

36. F = j(1+ye”)dx

x+eV+g(y);, F, =xe"+g'(y) =2y+xe’=N
2

2 =2y, gly) =5 x+eV+y’ = C

37. F = I(cosx+lny)dx = sinx+xlny+g(y);, F, = x/y+g(y) = x/y+e’= N

gy)=¢e"; gy = e’ sinx+xlny+e’ = C
7 +
38. F = I(x+tan’1y)dx = ix’+xtan”' y+g(y); F, = d S+g'(y) = d );: N
I+y I+y
g = Hyy2; g(y) = 3@+ L +xtan y+din(+y’) = C

39. F

[y +yhdx = Xy +xyt+g(y);
F, =3y +40° +g'(y) = 3x'y* +y' +4x° = N

4

gy =y gy =1y Xy +xteiy =C
40. F = I(e’“siny+tany)dx = e'siny+xtan y+g(y);
F, = e‘cosy+xsec’ y+g'(y) = e'cosy+xsec’ y= N

y

gy) =0, g =0; e'siny+xtany = C
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41.

42,

43.

44.

45.

y X
2 2
x y o, x> 2y 1
Fy = ——2+—3+g( ) ——2+?+$:
, 1 x2 y2
g = Nk g(») = 2»; 7+?+2\/; = C

F = J(y—Z/S _%x—S/Zyjdx — xy—2/3 +x—3/2y+g(y);

Fy — _%xy—5/3+x—3/2+g/(y) — x—S/Z_%xy—SBZ N
gy =0 g =0 xy?P+x7y = C

The substitution y'=p, y"=p" in xy"=)" yields

xp’ = p, (separable)
ap = ax = Inp =Inx+InC,
p X

V' =p=0Cx

y(x) = 1Cx*+B = AX* +B.

The substitution y = p, y"=pp’= p(dp/dy) in yy"+(y')2 =0 yields

yp’+p> =0 = yp' = —p, (separable)

Jd_p = _Jd_y = Inp =-Iny+InC,
p Yy

p=Cly = xzjidyzjldy
p C

2

Yy 2
X = =—+B = Ay"+B.
) 5C y

The substitution y'=p, y"=pp’=p(dp/dy) in y"+4y=0 yields

pp’+4y =0, (separable)
[pdp = - [aydy = 1p’ =-2y"+C,
P = -4y +2C = 4(1C-y7),

Section 1.6 57



1 dy I .,y
x = |—dy = J— = —sin~ —+D,
JP 2{Jk* = y? 2 k
y(x) = ksin[2x—2D] = k(sin2xcos2D —cos2xsin2D),
y(x) = Acos2x+ Bsin2x.

46.  The substitution y'=p, y"=p" in xy”+ ) =4x yields

xp'+p = 4x, (linear in p)
D[x-pl=4x = x-p=2x"+4,

= 4 = 2x+é,
dx X
y(x) = x>+ Alnx+B.

47.  The substitution y'=p, y"=p"in »"=( y')2 yields

4 2

p =Dp, (separable)

Jd—lz = dex = _1 = x+B,
P P

d 1

dx x+B’
y(x) = A=In|x+ 4.

48.  The substitution y'=p, y"=p” in x*y"+3x) =2 yields
2.7 ’ 3 2 . .
xp'+3xp =2 = p+—p=—, (linearin p)
p x
Dx[x3-p] =2x = x-p=x+C,
@1,
dx x Xx
A
y(x) = Inx+—+B5.
x
49.  The substitution y'=p, y"=pp = p(dp/dy) in yy"+(y')2 = yy’ yields

wp+p' =y = yp+p=y (lnearin p),

D/[y-pl =y,
1, 1 Y +C
= — +_C = ’
w=Syts = p 2
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x = J— = JZyd)é = ln(y2+C)—lnB,

V' +C = Be* = yx) = i(AJrBe")l/z.

50.  Thesubstitution y'=p, y"=p in )" =(x+ y')2 gives p’=(x+ p)’, and then the
substitution v=x+p, p'=v'—1 yields

dv

V-l =1 = — =1+,
dx
fldvz = Idx = tan”'v = x+ 4,
+v

v=x+)y =tan(x+4) = Z—y = tan(x+ A)— x,
x

y(x) = In|sec(x + 4)|-1x* +B.

51.  The substitution y'=p, y"=pp = p(dp/dy) in y”:2y(y')3 yields
pp =2yp = f"—’i = IZydy = -1 ¥y +C,
p p
1 1
x=|—dy =-=-y -Cx+D,
p 3
YV’ +3x+A4Ay+B = 0
52.  The substitution y'=p, y"=pp’=p(dp/dy) in y’y" =1 yields
dy | 1 4
3 ’ — 1 = d — J_ = — 2 - _ +_’
Y'pp [pdp * 5P 72
. s 1, _ydy
p’ = = x = =
v JAa -1
x = i AP -1+C = Ax+B = JA4* -1,
Ay’ —(Ax+B)’ =
53.

The substitution y' = p, y"=pp’'= p(dp/dy) in y"=2yy’ yields

pr =2 = [dp=[oydy = p=)y+4,

X = Jldy = J za’y > = ltan"ll+C,
p y +4 A A
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54.

5S.

56.

57.

58.

59.

60

tan' L = A(x-C) = £ = tan(dx— A0),
A A
y(x) = Atan(Ax+ B).

The substitution y'=p, y"=pp’= p(dp/dy) in yy"=3(y") yields

, d 3d
wpp =3p" = J—p = J—y
p y
Inp = 3lny+InC = p =0,

xzjidyz d_y3:_ 12+B,
p Cy 2Cy

Ay*(B-x) = 1.

The substitution v=ax+by+c, y=(v—ax—c)/b in y’ = F(ax+by+c) yields the
separable differential equation (dv/dx—a)/b = F(v), thatis, dv/dx = a+bF(v).

If v =3 then y = V""" so )" = v"""Z/(1-n). Hence the given Bernoulli

equation transforms to

vn/(lfn) dv B )
g PPV = 00yt

Multiplication by (1—n)/v""™ then yields the linear differential equation
V+(1=n)Pv = (1-n)Qv.

If v=1Iny then y = ¢" so )" = e'v. Hence the given equation transforms to

eV +P(x)e” = Q(x)ve’. Cancellation of the factor e’ then yields the linear
differential equation v'—Q(x)v = P(x).

The substitution v=1Iny, y =e¢", y'=¢" V' yields the linear equation x v'+2v = 4x’
with integrating factor p = x°. Solution: y = exp(x® + C/x?)

The substitution x = u—1, y = v—2 yields the homogeneous equation

v u-v

du u+v

The substitution v = pu leads to
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_ (p+Dhdp 1
Inu = —Jm = —E[ln(p2+2p—1)—lnC}

We thus obtain the implicit solution

u2(p2+2p—1) =C
2

uz[v—2+2z—lj = v +2uwv—u’ = C
u u

(P+2) +2(x+D)(y+2)—-(x+1)* = C
Y +2xy—x"+2x+6y = C.

60. The substitution x = u—3, y = v—2 yields the homogeneous equation

ﬂ —u+2v

du 4y -3y’

The substitution v = pu leads to

MZJMZLJ(;_ 15 Jdp
Gp+D(p-1) 4 p—1 3p+1

- %[ln(p—1)—51n(3p+1)+lnC].

We thus obtain the implicit solution

S = C(p-1 _ Cv/u-1) _ Cu'(v—u)
Bp+1) GBv/u+1) Bv+u)’

GBv+u) = C(v—u)

(x+3y+3)’ = C(y—x-5).

61. The substitution v = x —y yields the separable equation v' = 1 —sin v. With the aid
of the identity

1 1+sinv )
= = sec”v+secvtanv

l—sinv  cos’v
we obtain the solution
x = tan(x — y) +sec(x — y)+ C.

62.  The substitution y =vx in the given homogeneous differential equation yields the
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separable equation x(2v3 - 1) vV o=— (v4 + v) that we solve as follows:

3
JZ\: ldvz— @
Vit X

J ( 2v—1 _l+ 1 _jdv = _f@ (partial fractions)
x

V—v+l v v+l
In(v’-=v+1)=Inv+In(v+1) = —Inx+InC
x(V —v+1D)(v+1) = Cv
(V' —xy+x*)(x+y) = Cxy
x’+y = Cxy

63.  Ifwesubstitute y = y, +1/v, ' = y/ —v'/v* (primes denoting differentiation with
respect to x) into the Riccati equation )’ = Ay”>+ By +C and use the fact that
y = Ay} + By, +C, then we immediately get the linear differential equation
V+(B+2A4y)v = —A4.

In Problems 64 and 65 we outline the application of the method of Problem 63 to the given

Riccati equation.

64.  The substitution y=x+1/v yields the linear equation v'—2xv = 1 with integrating
factor p = ¢ . In Problem 29 of Section 1.5 we saw that the general solution of this
linear equation is v(x) = e* [C + @erf (x)] in terms of the error function erf(x)
introduced there Hence the general solution of our Riccati equation is given by

y(x) = x+ e [C + @erf(x)}_l .

65. The substitution y =x+1/v yields the trivial linear equation v'= —1 with immediate
solution v(x)=C —x. Hence the general solution of our Riccati equation is given by
y(x) = x+1/(C—x).

66.  The substitution »' = C in the Clairaut equation immediately yields the general solution
y = Cx+g(O).

67.  Clearly the line y = Cx — C*/4 and the tangent line at (C/2, C*/4) to the parabola
y = x* both have slope C.

68. In(v+14v7) = —kInx+kina =In(x/a)"

v+ = (x/a)fk
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69.

70.

71.

[(x/a)_k —VT =1+’

(x/a)™ =2v(x/a)" +v* = 1+
o G RG]

With @ = 100 and £ = 1/10, Equation (19) in the text is
y = 50[(x/100)""° — (x/100)'""'%].
The equation y'(x) = 0 then yields
(x/100)""° = (9/11)"",
so it follows that
Ymax = S0[(9/11)"* = (9/11)'""*] =~ 3.68 mi.

With k=w/v,=10/500=1/10, Eq. (16) in the text gives
1n(v+\/1+v2) = —%lnerC

where v=y/x. Substitutionof x=200,y=150,v=3/4 yields C=1In(2-200""),

thence

2

2
in| 2+ 142 | = - Linx+in(2-200),
X x 10

which — after exponentiation and then multiplication of the resulting equation by x —

. . . 2 2 9 1/10 . .
simplifies as desired to y ++/x" +y* = 2(200x ) . If x=0 then this equation
yields y =0, thereby verifying that the airplane reaches the airport at the origin.

(a) With a=100and k=w/v,=2/4=1/2, the solution given by equation (19) in
the textbook is p(x) = 50[(x/100)"? — (x/100)**]. The fact that 1(0) = 0 means that
this trajectory goes through the origin where the tree is located.

(b) With k=4/4=1 the solution is y(x) = 50[1 — (x/ 100)*] and we see that the
swimmer hits the bank at a distance »(0) = 50 north of the tree.

(¢)  With k=6/4=1 the solution is y(x) = 50[(x/100)"* — (x/100)?]. This

trajectory is asymptotic to the positive x-axis, so we see that the swimmer never reaches
the west bank of the river.
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72.  The substitution y'=p, y"=p" in ry” = [1+()")*T"* yields

. rpdp
rp’ = (1+p?)? = ——— = |dx.
(1+p2)3/2 I
Now integral formula #52 in the back of our favorite calculus textbook gives

p
J1+p®

and we solve readily for

=x—-a = r2p2 = (l+p2)(x—a)2,

2 (x—a)’ dy xX—a
= — - - — = = ——_—
r’—(x-a) dx d P —(x—a)’

S|

whence

(x—a)dx > >
= _— = — — — b’
% T S N —(x—a) +

which finally gives (x—a)*+(y—b)> =+ as desired.

CHAPTER 1 Review Problems

The main objective of this set of review problems is practice in the identification of the different
types of first-order differential equations discussed in this chapter. In each of Problems 1-36 we
identify the type of the given equation and indicate an appropriate method of solution.

1. If we write the equation in the form 3" —(3/x)y = x° we see that it is linear with

integrating factor p =x—. The method of Section 1.5 then yields the general solution
y = x3(C+ In x).

2. We write this equation in the separable form )’/ y* = (x+3)/x*. Then separation of

variables and integration as in Section 1.4 yields the general solution
y=x/3- Cx—xlnx).

3. This equation is homogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the general solution y = x/(C —Inx).

4. We note that D, (2xy3 + ex) = D, (3x2y2 +sin y) =6xy°, so the given equation is

exact. The method of Example 9 in Section 1.6 yields the implicit general solution
P +e —cosy=C
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10.

11.

12.

13.

14.

15.

We write this equation in the separable form )’/ y* = (2x—3)/x*. Then separation

of variables and integration as in Section 1.4 yields the general solution
y = Cexp[(1 -x)/x].

We write this equation in the separable form 1’/ y* = (1—2x)/x*. Then separation

of variables and integration as in Section 1.4 yields the general solution
y =x/(+Cx+2xInx).

If we write the equation in the form y'+(2/x)y = 1/x’ we see that it is linear with

integrating factor p = x’. The method of Section 1.5 then yields the general solution
y = x_z(C+ In x).

This equation is homogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the general solution y = 3Cx/(C —x°).

If we write the equation in the form ' +(2/x)y = 6x\/; we see that it is a Bernoulli

equation with n = 1/2. The substitution v = 3> of Eq. (10) in Section 1.6 then
yields the general solution y = (x> + C/x)".

We write this equation in the separable form y’/ (1 + yz) = 1+x’. Then separation

of variables and integration as in Section 1.4 yields the general solution
y = tan(C + x + x'/3).

This equation is homogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the general solution y = x/(C -3 Inx).

We note that D, (6xy3 + 2y4) = D, (9x2y2 + 8xy3) = 18xy” +8)°, so the given

equation is exact. The method of Example 9 in Section 1.6 yields the implicit general
solution 3x%° +2x' = C.

We write this equation in the separable form y’/y*> = 5x* —4x. Then separation

of variables and integration as in Section 1.4 yields the general solution
y = 1/(C+2x*=x).

This equation is homogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the implicit general solution »* = x*/(C +2 Inx).

This is a linear differential equation with integrating factor p =e’*. The method of

Section 1.5 yields the general solution y = (x’ + C)e ™.
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17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

66

The substitution v=y—x, y=v+x, y'=v+1 gives the separable equation

V'+1 = (y—x)> = v* in the new dependent variable v. The resulting implicit general
solution of the original equationis y—x—1 = Ce*(y—x+1).

We note that D, (e” +ye”) =D, (ey +xe”) = e +xye’”’, sothe given equation is

exact. The method of Example 9 in Section 1.6 yields the implicit general solution
e+t +e’ = C.

This equation is homogeneous. The substitution y =vx of Equation (8) in Section 1.6
leads to the implicit general solution y* = Cx*(x* — 3*).

We write this equation in the separable form y’/y* = (2 -3x’ ) /x*. Then separation

of variables and integration as in Section 1.4 yields the general solution
y=x/x+C*+1).

If we write the equation in the form '+ (3/x)y = 3x7>* we see that it is linear with

integrating factor p =x’. The method of Section 1.5 then yields the general solution
y = 2+ Cx

If we write the equation in the form )"+ (1/(x+1))y = 1/(x* —1) we see that it is linear
with integrating factor p =x+1. The method of Section then 1.5 yields the general
solution y = [C+1In(x—1)]/(x+ 1).

If we write the equation in the form )" —(6/x)y = 12x’y*” we see that it is a Bernoulli

equation with n = 1/3. The substitution v = 3> of Eq. (10) in Section 1.6 then
yields the general solution y = (2x* + Cx%)’.

We note that D, (ey + ycosx) =D, (x e’ +sin x) = e’ +cosx, so the given equation
is exact. The method of Example 9 in Section 1.6 yields the implicit general solution
xé + ysinx = C

3/2

We write this equation in the separable form '/ y*> = (1 -9x? ) /x*"*. Then separation

of variables and integration as in Section 1.4 yields the general solution
y = x'?/ (6x* + Cx'"* +2).

If we write the equation in the form )"+ (2/(x+1))y = 3 we see that it is /inear with

integrating factor p =(x+ 1)2 . The method of Section 1.5 then yields the general
solution y = x+1+C (x+ 1)~

Wenotethat Dy(9x1/2y4/3_12x1/5 3/2) — Dx(8x3/2y1/3_15x6/5 1/2) —
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27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

12x"%y'"* —18x"°y""?,s0 the given equation is exact. The method of Example 9 in
Section 1.6 yields the implicit general solution 6x>?y"* — 10x*°)"* = C.

If we write the equation in the form '+ (1/x)y = —x’y*/3 we see that it is a Bernoulli

equation with n = 4. The substitution v = y~ of Eq. (10) in Section 1.6 then yields

the general solution y = x_l(C + In x)_m.

If we write the equation in the form )"+ (1/x)y = 2e>*/x we see that it is linear with
integrating factor p = x. The method of Section 1.5 then yields the general solution
y = x(C+e™.

If we write the equation in the form )"+ (1/(2x+1))y = 2x+ 1)'? we see that it is

linear with integrating factor p =(2x+ 1)1/2 . The method of Section 1.5 then yields
the general solution y = (x> +x + C)(2x + 1)’1/ 2,

The substitution v=x+y, y=v—x, y'=v'—1 gives the separable equation

V=1 = /v in the new dependent variable v. The resulting implicit general solution of
the original equation is x = 2(x + y)l/2 —21In[1+(x+ y)l/z] + C.

dy /(y+7) = 3x’dxis separable; )'+3x’y = 21x’is linear.
dy/(y* —=1) = xdxis separable; y'+xy = xy’is a Bernoulli equation with »n = 3.
(3x*+2y*)dx+4xydy = Ois exact; )" = —1(3x/y+2y/x)is homogeneous.

1+3y/x

(x+3y)dx+(3x—y)dy = Ois exact; )" =
y/x=3

is homogeneous.

dyl(y+1) = 2xdx/(x2+1)is separable; y’—(2x/(x2+1))y = 2x/(x* +1)is linear.

dy/(\/; — y) = cot xdx1is separable; "+ (cotx)y = (cot x)\/; is a Bernoulli equation
with n=1/2.

Review Problems 67



CHAPTER 2

MATHEMATICAL MODELS
AND NUMERICAL METHODS

SECTION 2.1
POPULATION MODELS

Section 2.1 introduces the first of the two major classes of mathematical models studied in the
textbook, and is a prerequisite to the discussion of equilibrium solutions and stability in Section 2.2.

In Problems 1-8 we outline the derivation of the desired particular solution, and then sketch some
typical solution curves.

1. Noting that x >1 because x(0)=2, we write

dx . l_ 1 _
Jx(l—x) - J-la’t, J(X x_ljdx J-la’t

Inx—In(x-1) = t+InC; —— = C¢

x(0)=2 implies C=2; x = 2(x-1e’

2e' 2

x(t) = = .
@) 2e' -1 2—¢'

Typical solution curves are shown in the figure on the left below.

3 T T T T 15

10

[
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Noting that x <10 because x(0)=1, we write

Jd—xz frar J(L ! jdx = [0a
x(10—x) x 10—x

X

Inx—In(10-x) = 10¢+InC; = Ce"
10—x
X(0)=1 implics C:é? 9x = (10— x)e™
10e" 10

x(t) =

9+e' 14971

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Noting that x >1 because x(0)=3, we write

dx _ : RSN S R
J(l+x)(1—x) = Jar ﬂx—l x+1jdx Jeva

In(x-1)—In(x+1) = —2t+InC; T =Ce™

x(0)=3 implies c:%; 2(x=1) = (x+De™

24 2eM+1

x(t) = = .
(*) 2—e™* 2% —1

Typical solution curves are shown in the figure on the left below.
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Noting that |x| <3 because x(0)=0, we write

J dx = [var; J( L ]dxzj6dt
(3+2x)(3—-2x) 3+2x 3-2x

lln(3+2x)—lln(3—2x) = 6t+llnC;
2 2 2

x(0)=0 implies C=1; 3+2x = (3-2x)e™

36121—3 ~ 3(812t_1)
2¢ 42 2(e" +1)

x(1) =

Typical solution curves are shown in the figure on the right at the bottom of the

preceding page.

Noting that x >5 because x(0)=38, we write

x ) 1 1
Jx(x—S) - '[( 3)d; J(x x-5

X

Inx—-In(x—-5) = 15¢t+InC;
x=5

jdx = j15dt

15
= Ce"”'

x(0)=8 implies C=8/3; 3x = 8(x—5)e"

X(0) = —40e™ 40
3-8 8-3e™"

Typical solution curves are shown in the figure on the left below.

N
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6. Noting that x <5 because x(0)=2, we write

dx [ ) l 1 _ [
Jx(s_x) = [(-3)ax ﬂx+5_xjdx = [(-15)dr

X
5—x

x(0)=2 implies C=2/3; 3x = 2(5-x)e™

-15
= Ce™

Inx—-In(5—x) = —15¢+1InC;

10e™ " 10
x(t) = —15 = 15¢ °
3427 2+3e”

Typical solution curves are shown in the figure on the right at the bottom of the

preceding page.
7. Noting that x >7 because x(0)=11, we write
J & I(—4)dt; J(l— ! ja’x = I28dt
x(x—17) x x-=7
Inx—In(x—7) = 28¢+InC; Yoo ce™
x=7
x(0)=11 implies C=11/4; 4x = 11(x=17)e*™

—77* 77
X(Z) = 28 = —28¢ °
4-11e® 11-4¢¢

Typical solution curves are shown in the figure on the left below.

15 , 30

? L

—

- L L
0 0.1 0 0.01 0.02
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11.

12.

72

Noting that x > 13 because x(0)=17, we write

JL = I7dt; J(l_ 1 jdx = J(—91)dt
x(x—13) x x-—13
X
x—13
x(0)=17 implies C=17/4; 4x = 17(x—13)e™"

Inx—In(x—-13) = -91¢+1InC; = Ce™"

(1) = 221" 221
4-17e7"  17-4"

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Substitution of P(0)=100 and P’(0)=20 into P’ = kP yields k=2, so the
differential equationis P’ = 2J/P. Separation of variables and integration,
J-dP/2\/F = Idt, gives JP = t+C. Then P(0)=100 implies C =10, so
P(#) = (¢t+10)*. Hence the number of rabbits after one year is P(12) = 484.

Given P'=-6P=—(k/ JP )P=— kP , separation of variables and integration as in
Problem 9 yields 2JP = —kt+C. The initial condition P(0) = 900 gives C =060, and

then the condition P(6) = 441 implies that k= 3. Therefore 2P = —3t+60, so
P = 0 after t = 20 weeks.

(a) Starting with dP/dt = k\/F, dPldt = k~JP, we separate the variables and
integrate to get P(f) = (kt/2+ C). Clearly P(0) = P, implies C = \/FO .

(b) If P(t) = (kt/2 +10)*, then P(6) = 169 implies that £ = 1. Hence
P(f) = (t/2+ 10), so there are 256 fish after 12 months.

Solution of the equation P’ = k P* by separation of variables and integration,

ar - _ [keat; L ou-c

P’ P

gives P(f) = 1/(C—kt). Now P(0)=12 implies that C=1/12, sonow P(t) =

12/(1 — 12kt). Then P(10) =24 implies that k= 1/240, so finally P(¢) = 240/(20 — ).
Hence P =48 when ¢ =15, that is, in the year 2003. And obviously P — e as ¢t — 20.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

(a) If the birth and death rates both are proportional to P* and > &, then Eq. (1) in
this section gives P’=kP> with k positive. Separating variables and integrating as in
Problem 12, we find that P(#) = 1/(C —kt). The initial condition P(0) = F, then gives
C=1/PF,so P(t) = 1/(1/E—kt) = B, /(1-kPRy).

(b) If P,=6 then P(t) = 6/(1-6kt). Now the fact that P(10) =9 implies that
k=180, so P(¢t) = 6/(1—¢/30) = 180/(30—1¢). Hence it is clear that
P — o as t — 30 (doomsday).

Now dP/dt = —kP* with k> 0, and separation of variables yields P(f) = 1/(kt + C).
Clearly C = 1/Py asin Problem 13,s0 P(f) = Py/(1 + kPyt) . Therefore it is clear
that P(t1) — 0 as t — o, so the population dies out in the long run.

If we write P* = bP(a/b—P) we see that M = a/b. Hence

B/ _ (aP)R _ a
= > = — = M
D, bP, b

Note also (for Problems 16 and 17) that a=B,/P, and b=D,/P} = k.

The relations in Problem 15 give k= 1/2400 and M = 160. The solution is
P(t) = 19200/(120+40¢e™"'"®). We find that P=0.95M after about 27.69 months.

The relations in Problem 15 give k= 1/2400 and M = 180. The solution is
P(t) = 43200/(240—60¢7"*"). We find that P=1.05M after about 44.22 months.

If we write P* = aP(P—b/a) we see that M = b/a. Hence

Dy _ (BR)R _ b
= > = — = M
B, aFb, a

Note also (for Problems 19 and 20) that 5= D,/P, and a=B,/P} = k.

The relations in Problem 18 give k= 1/1000 and M = 90. The solution is
P(t) = 9000/(100—10¢°"'""). We find that P=10M after about 24.41 months.

The relations in Problem 18 give k= 1/1100 and M = 120. The solution is
P(t) = 13200/(110+10e°">). We find that P=0.1M after about 42.12 months.

Starting with the differential equation dP/dt = kP(200— P), we separate variables and
integrate, noting that P <200 because F, =100:
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22,

23.

24,

74

d—P:Jkdz = J(l+ ! dezPOOkdt;
P(200—P) P 200-P

F__ 200kt+InC = L Ce™™",

In =
200-P 200-P

Now P(0)=100 gives C=1, and P’(0)=1 implies that 1=k -100(200—100), so
we find that &£ =1/10000. Substitution of these numerical values gives

P = Q200010000 _ /50

200—P B

b

and we solve readily for P(r)=200/(1+¢*). Finally, P(60)=200/(1+¢")=~153.7

million.

We work in thousands of persons, so M = 100 for the total fixed population. We
substitute M = 100, P’(0) = 1, and Py, = 50 in the logistic equation, and thereby obtain

1 = k(50)(100 — 50), so k= 0.0004.

If ¢ denotes the number of days until 80 thousand people have heard the rumor, then Eq. (7)
in the text gives
50x100

504 (100— 50)e "%’

and we solve this equation for ¢=34.66. Thus the rumor will have spread to 80% of the
population in a little less than 35 days.

(a) ¥ = 0.8x—0.004x* = 0.004x(200 — x), so the maximum amount that will dissolve
is M = 200 g.

(b) With M = 200, Py = 50, and k£ = 0.004, Equation (4) in the text yields the
solution
(1) = 10000
50+150%"

Substituting x = 100 on the left, we solve for t = 1.25In3 = 1.37 sec.
The differential equation for N(¢) is N'(¢) = kN (15— N). When we substitute N(0) = 5

(thousands) and N'(0) = 0.5 (thousands/day) we find that £ = 0.01. With N in place of
P, this is the logistic equation in Eq. (3) of the text, so its solution is given by Equation (7):
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25.

26.

27.

_ 15%5 _ 15
5+10exp[—(0.01)(15)r]  1+2e""

N(?)

Upon substituting N = 10 on the left, we solve for ¢ = (In4)/(0.15) = 9.24 days.
Proceeding as in Example 3 in the text, we solve the equations

25.00k(M —25.00) = 3/8,  47.54k(M —47.54) = 1/2
for M = 100 and k£ = 0.0002. Then Equation (4) gives the population function

B 2500
25+ 7570

P(1)
We findthat P = 75 when ¢t = 50In9 = 110, thatis, in 2035 A. D.
The differential equation for P(z) is

P'(f) = 0.001P*—SP.
When we substitute P(0) = 100 and P’(0) = 8 we find that 6 = 0.02, so

dap = 0.001P* —0.02P = 0.001P(P -20).

dt

We separate variables and integrate, noting that P > 20 because F, =100:

Jd—P:jo.omdt - J( ! —ijdpzjo.ozdt;
P(P—20) P-20 P

mf=2 - Lime o 220 o,
P 50 P

Now P(0)=100 gives C =4/5, hence

100

5(P-20) = 4P = P@) = FRREE

It follows readily that P = 200 when ¢ = 50 In(9/8) = 5.89 months.

We are given that
P = kP>~ 001P,

When we substitute P(0) = 200 and P’(0) = 2 we find that £ = 0.0001, so
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ar = 0.0001P* —0.01P = 0.0001P(P—100).

dt

We separate variables and integrate, noting that P >100 because P, =200:

d—P:jo_oomdz . J( ! —ljdpzjo.mdr;
P(P—100) P—100 P

=10 oL e o B0 e
P 100 P
Now P(0)=100 gives C =1/2, hence
2(P-100) = P = P(t) = 22%.
—e

(a) P = 1000 when ¢ = 100 In(9/5) = 58.78.

b)) P—oow as t—100In2 =69.31.

Our alligator population satisfies the equation

dap = 0.0001x* —0.01x = 0.0001x(x—100).

dt

With x in place of P, this is the same differential equation as in Problem 27, but now we
use absolute values to allow both possibilities x <100 and x>100:

JL:IO'OOOMI = J( L —lde:I0.0ldt;
x(x—100) x—=100 x

~100
=100 E= - e, (*)
X 100 X

(a) If x(0)=25 then x<100 and |x—100]=100—x, so (*) gives C =3 and hence

100

100—x = 3xe”100 = X(t) = m

We therefore see that x(¢) > 0 as ¢ — co.
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30.

31.

(b)  Butif x(0)=150 then x>100 and |x—100|=x-100, so (*) gives C=1/3

and hence

3(x=100) = x"'" = x(t) = %.

Now x(¢) > 4 as t— (100In3)", so doomsday occurs after about 109.86 months.

Here we have the logistic equation

dap = 0.03135P—0.0001489 P*> = 0.0001489 P(210.544 — P)

dt
where k£ =0.0001489 and P =210.544. With F, =3.9 also, Eq. (7) in the text gives

_ (210.544)(3.9) . 81
(39) + (210544 _ 39) 67(0.0001489)(210.544” 39 + 206‘6446—0.0313& :

P(t)

(a) This solution gives P(140) =127.008, fairly close to the actual 1930 U.S. census
population of 123.2 million.

(b) The limiting population as ¢ — oo is 821.122/3.9 = 210.544 million.

(©) Since the actual U.S. population in 200 was about 281 million — already exceeding
the maximum population predicted by the logistic equation — we see that that this model
did not continue to hold throughout the 20th century.

The equation is separable, so we have
Jd—P = J,Boe"”dt, so InP = —&e*"” +C.
P o

The initial condition P(0)=F, gives C=InP,+ 3,/ , so

P(t) = F, exp{%(l - e_“’)}.

If we substitute P(0) = 10° and P’(0) = 3x10° into the differential equation
P(t) = Be P,
we find that ) = 0.3. Hence the solution given in Problem 30 is

P(t) = Pexp[(0.3/a)(1—e)].
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The fact that P(6) = 2P, now yields the equation
f() = (03)(1-e**—aln2 =0
for o. We apply Newton'’s iterative formula

_ ., _J@)

a, +1 n ’
’ fe,)

with /() =1.8¢™ —In2 and initial guess o = 1, and find that o = 0.3915 .
Therefore the limiting cell population as ¢ — oo is

Pexp(f,/a) = 10°exp(0.3/0.3915) = 2.15x10°.

Thus the tumor does not grow much further after 6 months.

We separate the variables in the logistic equation and use absolute values to allow for both
possibilities B, <M and F,> M :

Jd—P = J-kdt = J(l—i- ! de = J-kM dt;
P(M - P) P M-P

m—L = kMi+inC = —L = e, (*)
|M - P| |M - P|

If B,<M then P<M and |M—P|:M—P, so substitution of =0, P=F, in (*)
gives C=F,/(M —F,)). It follows that

P __ K
M-P M-P

Butif £, >M then P>M and |M—P|=P—M, so substitution of =0, P=F, in
(*) gives C=F,/(F,— M), and it follows that

P __ K
P-M P-M

We see that the preceding two equations are equivalent, and either yields

3 M])OekMt
(M =B+ B’

(M -P)P = (M-P)P"" = P()

which gives the desired result upon division of numerator and denominator by ™.
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34.

(a) We separate the variables in the extinction-explosion equation and use absolute
values to allow for both possibilities £, <M and F,>M :

Jd_P:jkdt - J( 1 _ide:IkMdt;
P(P-M) P-M P

[P M|

[P M|

In = kMt+InC = = Ce™. *)

If F<M then P<M and |P—M|=M—P, so substitution of #=0, P=F, in (*)
gives C=(M —F))/F,. It follows that

M-P _ M—PoekMt
P P, ’

Butif £, >M then P>M and |P—M|:P—M, so substitution of =0, P=F, in
(*) gives C=(P,—M)/P,, and it follows that

P_M _ P()_MekMt
P P, '

We see that the preceding two equations are equivalent, and either yields

MP,

P—M)P. = (P.—M)P™' = P@) = .

(b) If P, <M then the coefficient M — P, is positive and the denominator increases
without bound, so P(¢) = 0 as ¢ — . Butif B, > M, then the denominator

P, —(P,— M)e™" approaches zero — so P(t) — +eo — as t approaches the value
(1/kM)In([F, /(P,— M)]> 0 from the left.

Differentiation of both sides of the logistic equation P’ =kP-(M — P) yields

_ P ap

CdP di

= [k-(M - P)+kP-(~1)]-kP(M — P)

k[M —2P)-kP(M — P) = 2k’P(M —1P)(M - P)

P/I

as desired. The conclusions that P">0 if 0<P<iM, that P’=0 if P=1M, and
that P"<0 if LM <P <M are then immediate. Thus it follows that each of the
curves for which F, <M has an inflection point where it crosses the horizontal line
P=5M.
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35.  Any way you look at it, you should see that, the larger the parameter k> 0 is, the faster the
logistic population P(f) approaches its limiting population M.

36. With x=¢7" P,=5.308, P, =23.192, and P, =76.212, Egs. (7) in the text take the
form

RM p B M _
R+M-R)x " RB+(M-PR)x’

2

from which we get

P+(M-P)x = BM/P, PB+(M-P)x’ = BM/P,

_RM-F) . _ R(M-P) 0
P(M -P) P(M - P)

P(M—P)* _ B(M-P)

P(M-PB)  B(M-P)

RP(M-PR) = B(M-R)M-P,)

RPM*=2RRPM + RR'P, = R'M’ =P (F,+ P)M + RR’P,
We cancel the final terms on the two sides of this last equation and solve for

_ BQARPE -RR-FP)

M i
RP,—F’ W

Substitution of the given values P, =5.308, F, =23.192, and P, =76.212 now gives
M = 188.121. The first equation in (i) and x = exp(—kM¢,) yield

I AM=R)

Mt R(M-R) )

k= -

Now substitution of #; =50 and our numerical values of M, F,, F,, P, gives

k = 0.000167716. Finally, substitution of these values of £ and M (and Pp) in the
logistic solution (4) gives the logistic model of Eq. (8) in the text.

In Problems 37 and 38 we give just the values of £ and M calculated using Egs. (i) and (iii) in
Problem 36 above, the resulting logistic solution, and the predicted year 2000 population.

25761.7
76.212+261.815 002260451

37. k = 0.0000668717 and M =338.027, so P(t) =

predicting P = 192.525 in the year 2000.
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4829.73
23.192 + 185.058 ¢ 03054581

38. k = 0.000146679 and M =208.250, so P(t) =

predicting P = 248.856 in the year 2000.

P
120

39. We readily separate the variables and integrate:
ar _ [(k+bcos2ztydt = P = ke +-Lsin2mt+nC.
P 2r
Clearly C=F,, so we find that P(¢) = F, exp(kt + Zisin 27nj. The colored curve in
/4

the figure above shows the graph that results with the typical numerical values
P, =100, £=0.03, and b=0.06. It oscillates about the black curve which represents

natural growth with F, and k& =0.03. We see that the two agree at the end of each full
year.

SECTION 2.2
EQUILIBRIUM SOLUTIONS AND STABILITY

In Problems 1-12 we identify the stable and unstable critical points as well as the funnels and spouts
along the equilibrium solutions. In each problem the indicated solution satisfying x(0) = xy is
derived fairly routinely by separation of variables. In some cases, various signs in the solution
depend on the initial value, and we give a typical solution. For each problem we show typical
solution curves corresponding to different values of x,.
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1. Unstable critical point: x =4
Spout: Along the equilibrium solution x(¢) = 4

Solution: If x,>4 then

f dx4 = [dr; In(x-4) = t+C; C = In(x,—4)

x_
x—4 = (x,—4)e'; x(t) = 4+(x,—4e".

Typical solution curves are shown in the figure on the left below.

8 : : : 6

2. Stable critical point: x =3
Funnel: Along the equilibrium solution x(f) = 3

Solution: If x,> 3 then

dX3 = [(-Ddr, In(x-3) = ~1+C; C = In(x,-3)

X —

x=3 = (x,=-3)e";  x(¢) = 3+(x,-3)e”.
Typical solution curves are shown in the figure on the right above.

3. Stable critical point: x =10
Unstable critical point: x =4
Funnel: Along the equilibrium solution x(¢) = 0
Spout: Along the equilibrium solution x(r) = 4

Solution: If x,>4 then
J4dt=J 4dx :J(l —ljdx
x(x—4) x—4 x
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M+C = m* =2 = pR?
X X,
4f = In xo(x—4); e4t — xo(x_4)
x(x,—4) x(x,—4)
(1) = 4x,

x, +(4-x,)e*

Typical solution curves are shown in the figure on the left below.

)

0

5

eas

Stable critical point: x =3
Unstable critical point: x =0

Funnel: Along the equilibrium solution x(¢)

ALY

NN

3

Spout: Along the equilibrium solution x(f) = 0

Solution: If x,>3 then
J-(—3)dt _ 3dx  _ J( 1 __de
x(x—3) x-3 x
—3t+C=lnx_3; C:Inxo_3
X X,

3t = In xo(x—3); o = x,(x—=3)

x(x,—3) x(x,—3)
x(t) = S N

x,+(3—-x,)e

Typical solution curves are shown in the figure on the right above.
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5. Stable critical point: x =-2
Unstable critical point: x =2

Funnel: Along the equilibrium solution x(¢) = -2
Spout: Along the equilibrium solution x(¢) = 2

Solution: If x,>2 then

o= [ 225 (e
x =4 x—=2 x+2

x=2
; n
x+2 X, +2

4¢t+C = In

4t = In (x— 2)(x0 +2) LM = (x— 2)(x0 +2)

(x+2)(x,-2) (x+2)(x, —2)

2] (%, +2)+ (x, = 2)e* ]

o) = (g +2)— (x, —2)e"

Typical solution curves are shown in the figure below.

)

0

0.5 1 15 ‘Z 2;5 é 3‘.5 1‘1 4.‘5
6. Stable critical point: x =3

Unstable critical point: x =-3
Funnel: Along the equilibrium solution x(f) = 3
Spout: Along the equilibrium solution x(#) = -3

Solution: If x,>3 then
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j6dz:f bdx. :ﬂ - jdx
9—x 34x 3—x

6t+C = lnx+3; C = lnx‘)+3

x=3 X, —

o - mEFIE=Y) o (3 -3)

(x,+3)(x—3)° (x, +3)(x—3)

3[ (x, = 3)+(x, +3)e” |
(3—x,) +(x, +3)e”

x(t) =

Typical solution curves are shown in the figure below.
1 2 t 3 4‘1

This single critical point is semi-stable, meaning that solutions with xy>2 go to infinity
as t increases, while solutions with xy <2 approach 2.

0

7. Critical point: x = 2

Solution: If x,>2 then

—dx _ = J(—l)dt; e o=
(x=2) x—-2 X, —2
1 _ i I 1-1x=-2)

x=2 X, —2 Xy —2
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X0 = 2+ X, —2 _ x0(2t—l)—4t.
1-t(x,—2) tx,—2t-1

Typical solution curves are shown in the figure on the left below.

8. Critical point: x = 3

This single critical point is semi-stable, meaning that solutions with xy <3 go to minus
infinity as ¢ increases, while solutions with xy> 3 approach 3.

Solution: If x,>3 then

—dx =fdt; ! =t+C;, C = !

(x=3) x-3 x,—3
1 _ - 1 1+1(x,—3)

x=3 X, —3 X, —3

X0 = 3+ xX,-3 x0(3t+1)—9t.

1+8(x,—3)  tx,—3t+1
Typical solution curves are shown in the figure on the right above.

9. Stable critical point: x =1
Unstable critical point: x =4
Funnel: Along the equilibrium solution x(f) = 1
Spout: Along the equilibrium solution x(¢) = 4

Solution: If x,>4 then
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j3dt :JL - ﬂ ! —Ljdx
(x—4)(x—1) x—4 x—1

3t+C = lnx_4; C = lnx°_4
x—1 x,—1
o ED=D ==
(x=D(x,—4) (x=1)(x, —4)

B 4(1—x0)+(x0—4)e3’
C(I=xp) +(x, =4

x(1)

Typical solution curves are shown in the figure on the left below.

S

10. Stable critical point: x =5
Unstable critical point: x =2
Funnel: Along the equilibrium solution x(f) = 5
Spout: Along the equilibrium solution x(¢) = 2

Solution: If x,>5 then

[3ar = ﬂ:ﬂ L1 jdx
(x=5(x-2) x—-2 x-5

3t+C = lnx_z; C = lnxo_2
x=5 Xo—3
o D=9 | (=2 =9)
(x=5)(x,—-2) (x=5)(x,—2)
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(1) = 2(5—x0)+5(x0—2)i3f -
(5—=xp)+(x,—2)e

Typical solution curves are shown in the figure on the left below.
1 e s s

0 1 2 3 4 5 0

t

Unstable critical point: x =1
Spout: Along the equilibrium solution x(¢) = 1

Solution: J _de3 = I(—2)dt; 1 - = —2i+ ! -
(x—1) (x—1) (%, =1)

Typical solution curves are shown in the figure on the right above.
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12. Stable critical point: x =2

Funnel: Along the equilibrium solution x(¢) = 2

Solution: JLXS = _[2a’t; — = 2tt—.
(2-x) (2-x) (2-x,)

Typical solution curves are shown in the figure at the bottom of the preceding page.

In each of Problems 13 through 18 we present the figure showing slope field and typical solution
curves, and then record the visually apparent classification of critical points for the given differential
equation.

13. The critical points x =2 and x =-2 are both unstable. A slope field and typical solution
curves of the differential equation are shown below.

X'=(x+2) (x-2)°

T T

|

4 [

I

/

2 ﬂﬂﬂﬂﬂﬂﬂﬂﬂ
/X=/2/ Vv Vv vz S O S S
VAR SRV VRV VAV AV
ot iy
N A T I
A VA A AN R
R N A RN /R
S Vi
R Y D W R
IR (R O | N R
I (R NN ] SR B
R (RN FE ] AR RN
NN I I
| I I I | N N 1 S A N (I N NN N IR B |
0 1 2 3 4
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0 is stable. A

slope field and typical solution curves of the differential equation are shown below.

12 are both unstable, while the critical point x

The critical points x

14.

e
Ve
e
z
e
Ve
e
-
e
Ve

e
e
e
e
e
e
4
e
e
e

VA (VAN AN VaVas

VAV VAV AV

2 and x =-2 are both unstable. A slope field and typical solution

curves of the differential equation are shown below.

The critical points x

15.

x'= (¢ -4y

A AN (A
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slope

= (¢ -4)°

M

b—_ -

b

b—_ -

b—_ -

N — = — — —

b -

NONNN N N NN NN

_ — — —

—_ — — -

e —

_ — — — 4

_ — — — 4

_ — — —

_ — — — 4

—_ — — — 4

—_ — — —
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2 is unstable, while the critical point x =-2 is stable. A

field and typical solution curves of the differential equation are shown below.

The critical point x

16.

0 are unstable, while the critical point x =—2 is stable.

—_ — — —

b

L

2 and x
A slope field and typical solution curves of the differential equation are shown below.

b

The critical points x

17.
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18. The critical points x =2 and x =—2 are unstable, while the critical point x =0 is stable.
A slope field and typical solution curves of the differential equation are shown below.

VAV v,

19.  The critical points of the given differential equation are the roots of the quadratic equation
+x(10-x)—h = 0, thatis, x’—10x+104 = 0.

Thus a critical point ¢ is given in terms of 4 by

+J100 —
c = 10+ V100- 407 = 5++25-10h.

2

It follows that there is no critical point if /> 21, only the single critical point ¢ =0 if
h=2%, and two distinct critical points if 47 <21 (so 10—25k > 0). Hence the bifurcation

diagram in the Ac-plane is the parabola with the (¢ —5)* =25—104 that is obtained upon
squaring to eliminate the square root above.

20.  The critical points of the given differential equation are the roots of the quadratic equation
d=x(x=5)+s = 0, thatis, x’—5x+100s = 0.

Thus a critical point ¢ is given in terms of s by
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21.

22.

+ /o5 _
C=5_ 25-400s 5 Sm.

= 4=
2 2 2

It follows that there is no critical point if s >+, only the single critical point ¢ =0 if

s ==, and two distinct critical points if s < (so 1-16s>0). Hence the bifurcation

diagram in the sc-plane is the parabola (2c¢ —5)° =25(1—16s) that is obtained upon
elimination of the radical above.

(@ If k= -a> where @ >0, then kx—x’ = —a’x—x> = —x(a’+x>) is 0 onlyif
x =0, so the only critical pointis ¢=0. If a >0 then we can solve the differential
equation by writing

2
|t (s i = - e
x(a”+x7) X a +x

lnx—lln(a2 +x°) = —a2t+llnC,
2 2

2 2~ -2d°

X 24 2 a Ce "'
3 7T = Ce = X = o

a +x 1—Ce*!

It follows that x — 0 as ¢ — 0, so the critical point ¢ =0 is stable.

(b) If k=+a* where a>0 then kx—x’ = +a’x—x’ = —x(x+a)(x—a) is

Oifeither x=0 or x=2a= i\/z . Thus we have the three critical points ¢ =0, + \/E s

and this observation together with part (a) yields the pitchfork bifurcation diagram shown in
Fig. 2.2.13 of the textbook. If x # 0 then we can solve the differential equation by writing

2
2a’dx - J(—EJF L 1 )a’x = —IZazdt,
x(x—a)(x+a) X x—a x+a

—2Inx+In(x—a)+In(x—a) = —2a’t+InC,
X -a Ce? = x= e = X = —i\/z
x’ 1-Ce 2" m.

It follows that if x(0)#0 then x — Jkif x> 0, x > —Jk if x<0. This implies that

the critical point ¢ =0 is unstable, while the critical points ¢ =t~k are stable.

If k=0 then the only critical point ¢ =0 of the equation x’= x is unstable, because the
solutions x(¢) = x,e’ diverge to infinity if x,#0. If k=+a’ >0, then

x+a’x’ =x(1+a’x*)=0 onlyif x=0, soagain ¢=0 is the only critical point. If
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k=-a’<0, then x —a’x’ = x(1-a’x*) = x(1—ax)(1+ax) =0 ifeither x =0 or
x==x1/a = £+/-1/k. Hence the bifurcation diagram of the differential equation

x" = x+kx’ looks as pictured below:

23.  (a) If h<kM then the differential equationis x" = kx((M —h/k)—x), whichisa
logistic equation with the reduced limiting population M - h/ k.

(b) If A > kM then the differential equation can be rewritten in the form

’

x' = —ax—bx’ with ¢ and b both positive. The solution of this equation is

ax,

x(t) =

"~ (a+bx,)e" —bx,

so it is obvious that x(¢) =0 as t— oo

24. If x,> N then

[~k —Hydr = (N = H)dx —H L jdx

(x—N)x—H) J\x-N x-H
k(N=H)i+C = = oo R
x—H x,—H
~k(N-H)t = In (X—N)(XO—H); o V- (x=N)(x,—H)
(x = H)(x, = M) (x—H)(x,~ M)
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25.

26.

27.

28.

29.

N(x,—H)—H(x,— N)e """

O = TH) = (x, - N)e O

(>i) In the first alternative form that is given, all of the coefficients within parentheses are
positive if H <xp<N. Hence it is obvious that x(¢) > N as t — oo,

(ii) In the second alternative form that is given, all of the coefficients within parentheses
are positive if xo < H. Hence the denominator is initially equal to N - H> 0, but decreases
as ¢ increases, and reaches the value 0 when

p= L N % o)
N-H H-x,

If 4h=kM® then Egs. (13) and (14)in the text show that the differential equation takes
the form x" = —k(M /2—x)> with the single critical point x = M /2. This equation is

readily solved by separation of variables, but clearly x' is negative whether x is less than
or greater than M/ 2.

Separation of variables in the differential equation x" = —k ( (x—a)’ + bz) yields
x(t) = a- btan(ka tan™! %} _

It therefore follows that x(#) goes to minus infinity in a finite period of time.

Aside from a change in sign, this calculation is the same as that indicated in Egs. (13) and
(14) in the text.

This is simply a matter of analyzing the signs of x' in the cases x<a, a<x<b, b<x<c,
and ¢ > x. Alternatively, plot slope fields and typical solution curves for the two differential
equations using typical numerical values suchas a=-1,b=1,c=2.

SECTION 2.3

ACCELERATION-VELOCITY MODELS

This section consists of three essentially independent subsections that can be studied separately:
resistance proportional to velocity, resistance proportional to velocity-squared, and inverse-square
gravitational acceleration.
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Equation:

Solution;

Answer:

Equation:

Solution;

Answer:

Equation:

Solution;

Answer:

Equation:

Solution:;

Equation:

Solution:

Answer:

V' = k250 -v), w0) =0, »(10) = 100

- — [kdt;  n(250-v) = —kt+InC,
250—-v

v(0)=0 implies C = 250; w(¢) = 250(1—e™)
v(10) =100 implies k= 1n(250/150) = 0.0511;

v=200 when t=—-(In50/250)/k =31.5sec
V=—kv, v(0) =v,; x" =v, x(0) = x,

xX'(t) = v(t) = ve ;s x(t) = —(v,/k)e +C
C = x,+( k)™ x(t) = x,+ (v, /k)(1—€™)

lim x(r) = }Lri;[xo+(v0/k)(1—e-“)} = x,+(v,/k)

VvVi=—kv, v(0) = 40; v(10)=20 x" =v, x(0) =0
W) = 40 ¢*' with k = (1/10)ln2

x(1) = (40/k)(1 — ™"

x(eo) = lm(40/k)(1-e™*') = 40/k = 400/In2 = 577 ft

Vi=—k?, v0) =v,; x = x(0)=x,

—Jd—f:jkdz; L give =1L
v v

Vo

Vo

1+ vkt

X(t) = v(t) = ;o x() = %ln(l +v,kt ) + x,
x(t) > o0 as x(t) > oo

VvVi=—kv, v(0) = 40; v(10)=20 x" =v, x(0) =0

v = 40 (as in Problem 3)
1+ 40kt
v(10) =20 implies 40k =1/10, so v(¢) = 400
10+1¢

x(f) = 400 In[(10 +£)/10]
x(60) = 4001In7 =~ 778 ft
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6. Equation:
Solution:

7. Equation:
(@
(b)

8. Equation:
(@
(b)

9.

1S

V=—kv'? v0) = vy; X =v, x(0) = x,

[ fEa L ke oo L
20" 27 o2 7 NS

Xt = v(t) = — () = —Lw
(2+kt vo) k(2+kt Vo)
C = xo+@; x(t) = x0+2\l/cg[l— 5 2 J
+ Vo

x(o0) = x,+24v, 'k
v =10-0.1v, x(0) = v(0) = 0

—0.1dv
Oy o dr In(10-0.1v) = —¢/10+InC
JIO—O.IV Jon o V) 1

v(0)=0 implies C=10; In[(10-0.1v)/10] = —¢/10

V(1) = 100(1-e""");  y(e0) = 100 fi/sec (limiting velocity)

x(¢) = 100£—1000(1—e"""%)

v = 90 ft/sec when ¢ = 23.0259 sec and x = 1402.59 ft

v =10-0.001v%,  x(0) = v(0) = 0

J 0.01dv dt Y t
————— = |- tanhn — = —
1-0.0001v 10 100 10
v(0) = 0 implies C=0 so v(¢) = 100tanh(z/10)

t/10 —t/10
e —e

v(eo) = lim100tanh(¢/10) = 100 lim ————— = 100 ft/sec
t—o0

1/10 ~1/10
== e +e

x(t) = 1000 In(cosh?/10)
v = 90 ft/sec when ¢ = 14.7222 sec and x = 830.366 ft

The solution of the initial value problem

1000 v" = 5000 — 100 v, v(0) =0
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10.

11.

12.

98

w(t) = 50(1 —e ).
Hence, as ¢ — oo, we see that w(f) approaches vy, = 50 ft/sec = 34 mph.
Before opening parachute:

vV = =32-0.15v, v(0)=0, y(0)=10000
v(t) = 213.333(e*P =1),  v(20) = —202.712 ft/sec
y(f) = 11422.2-1422.22e7*1" =213.333¢, »(20) = 7084.75 ft

After opening parachute:

Vo= —32-15v, v(0)=-202.712, y(0)=7084.75
v(f) = —21.3333-181.379¢"

1(f) = 6964.83+120.919¢7% —21.33331,

y = 0 when f=2326.476

=)

Thus she opens her parachute after 20 sec at a height of 7085 feet, and the total
time of descent is 20 + 326.476 = 346.476 sec, about 5 minutes and 46.5 seconds. Her
impact speed is 21.33 ft/sec, about 15 mph.

If the paratrooper’s terminal velocity was 100 mph = 440/3 ft/sec, then Equation (7) in

the text yields p = 12/55. Then we find by solving Equation (9) numerically with

yo = 1200 and vy = 0 that y = 0 when ¢ = 12.5 sec. Thus the newspaper account is
inaccurate.

With m = 640/32 = 20slugs, W = 6401b, B = (8)(62.5) = 5001b,and Fz = —v Ib
(Fr is upward when v <0), the differential equation is

20 V() = 640+ 500 —v = —140— .

Its solution with w(0) = 0 is
v(t) = 140(e™ —1),
and integration with »(0) =0 yields
y(1) = 2800(e" 1) —140¢

Using these equations we find that ¢+ = 20 In(28/13) = 15.35 sec when v = —75 ft/sec,
and that y(15.35) = —648.31 ft. Thus the maximum safe depth is just under 650 ft.
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Given the hints and integrals provided in the text, Problems 13—16 are fairly straightforward (and
fairly tedious) integration problems.

17. To solve the initial value problem v = —9.8—0.0011v*, v(0)=49 we write

J# = — [as; J 0.010593dv _—_ [0.103827dr
9.8+0.0011v 1+(0.010595v)

tan™'(0.010595v) = —0.103827¢+C; v(0)=49 implies C =0.478854
v(t) = 94.3841 tan(0.478854 —0.103827¢)

Integration with y(0) =0 gives
y(t) = 108.468+909.052 In(cos(0.478854—0.103827¢)) .

We solve v(0) =0 for t=4.612, and then calculate )(4.612) =108.468.

18.  We solve the initial value problem v' = —9.8+0.0011v*, v(0)=0 much as in

Problem 17, except using hyperbolic rather than ordinary trigonometric functions. We first
get

v(t) = —94.3841 tanh(0.1038271¢),
and then integration with y(0) = 108.47 gives

y(f) = 108.47—-909.052 In(cosh(0.1038271)).

We solve (0)=0 for ¢ = cosh™'(exp(108.47/909.052))/0.103.827 =4.7992, and then
calculate 1(4.7992) =—43.489.

19.  Equation: Vv = 4-(1/400)*, v(0) = 0

Solution: J# = J dr; (1/4—0MIV2 _ J 1 dt
4—-(1/400)v 1—-(v/40) 10

tanh™' (v/40) = ¢t/10+C; C=0; v(¢) = 40tanh(¢/10)
Answer: v(10) =30.46 ft/sec, V(o) = 40 ft/sec

20. Equation: Vv = —32—(1/800)v*, w(0) = 160, y(0) = 0

Solution: J dv > == Idt; M = —Jldt;
32+(1/800)v 1+(v/160) 5
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tan”' (v/160) = —¢/5+C; v(0)=160 implies C=7x/4

Tt

v(t) = 160tan (Z - gj

(1) = 800 1n[cos(%—§jj+4oom2
We solve v(f) = 0 for t=3.92699 and then calculate 1(3.92699) = 277.26 ft.

21. Equation: Vi=—g-pv, v0)=v, p0)=0

gdv .
g+pv - J(— \/p/gV)2 -~ Heods
tan” (Jp/gv) = —Jep t+C;  w(0)=v, implies C=tan™'(\/p/gv,)

W) = —\E tan(t ep —tan” [VO\EJJ

We solve v(t) = 0 for ¢ = \/l_tan1 [vo Bj and substitute in Eq. (17) for y(?):
gp g

Solution: J

1, ‘cos(tan*IVOW tan"'v,\[p/ g ‘
Vo = ; n‘ cos(tan‘ VOW) ‘

= %ln(sec(tan‘1 vm/p/g)) = %ln }1+p(;°

2
Viax = Lln {1+&j
2p g

22. By an integration similar to the one in Problem 19, the solution of the initial value problem
Vv = =32+0.075v*, v(0)=0 is

W) = —20.666tanh(1.549197)

so the terminal speed is 20.666 ft/sec. Then a further integration with »(0) =0 gives

y(t) = 10000-13.333 In(cosh(1.54919¢)) .

We solve »(0)=0 for t=484.57. Thus the descent takes about 8 min 5 sec.
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23.

24.

25.

26.

Before opening parachute:

V = —32+0.00075v>, v(0)=0, y(0)=10000
w(f) = —206.559tanh(0.154919¢)  v(30) = —206.521 fi/sec
y(¢) = 10000 —1333.33 In(cosh(0.154919¢)), »(30) = 4727.30 ft

After opening parachute:

Vo= —32+40.075v%, v(0)=-206.521, »(0)=4727.30
w(t) = —20.6559 tanh(1.54919¢ +0.00519595)

(1) = 4727.30—13.3333In(cosh(1.54919 ¢ +0.00519595))
y = 0 when ¢=229.304

Thus she opens her parachute after 30 sec at a height of 4727 feet, and the total
time of descent is 30 +229.304 = 259.304 sec, about 4 minutes and 19.3 seconds.

Let M denote the mass of the Earth. Then

(a) 2GM /R = ¢ implies R = 0.884x10™° meters, about 0.88 cm;

(b) \/2G(329320M)/R = cimplies R = 2.91x10° meters, about 2.91 kilometers.

(a) The rocket's apex occurs when v =0. We get the desired formula when we set
v=0 in Eq. (23),

Vo= v§+2GM(1—lj,
R

r
and solve for r.

(b)  Wesubstitute v=0, »=R+10° (100 km = 10’ m) and the mks values
G=6.6726x10", M = 5.975x10*, R = 6.378x10° in Eq. (23) and solve for

v, =1389.21 m/s =1.389 kmy/s.

(c) When we substitute v, =(9/10)v2GM /R in the formula derived in part (a), we
find that »_ =100R/19.

By an elementary computation (as in Section 1.2) we find that an initial velocity of v, =16
ft/sec is required to jump vertically 4 feet high on earth. We must determine whether this
initial velocity is adequate for escape from the asteroid. Let » denote the ratio of the radius
of the asteroid to the radius R = 3960 miles of the earth, so that

1.5 1

"7 3960  2640°

Section 2.3 101



27.

28.

102

Then the mass and radius of the asteroid are given by

M,=rM ad R, =R

a

in terms of the mass M and radius R of the earth. Hence the escape velocity from the
asteroid's surface is given by

2GM 2G-r'M 2GM
v, = = =r =rv,
R, IR, R

in terms of the escape velocity v, from the earth's surface. Hence v, =36680/2640

=~13.9 ft/sec. Since the escape velocity from this asteroid is thus less than the initial
velocity of 16 ft/sec that your legs can provide, you can indeed jump right off this asteroid
into space.

(@)  Substitution of v; =2GM /R=k/R in Eq. (23) of the textbook gives

ﬂ—v— /2GM_L
dt r \/;

We separate variables and proceed to integrate:

Jrdr = [kdt = gr” = kt+gR3/2
]
3 3

(using the fact that =R when t=0). We solve for r(¢)= (%kt +R"? )2/3 and note that

r(t) > oo as t — oo,

(b) If vy>2GM /R then Eq. (23) gives

dr \/2GM ( , 2GM) K’ k
— =y = —|—V0—T = — =+ > —F—.

dt 7 r \/;

Therefore, at every instant in its ascent, the upward velocity of the projectile in this part is
greater than the velocity at the same instant of the projectile of part (a). It's as though the
projectile of part (a) is the fox, and the projectile of this part is a rabbit that runs faster.
Since the fox goes to infinity, so does the faster rabbit.

(a) Integration of gives

and we solve for

ar_ - 2GM(l—lj

rn
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29.

30.

taking the negative square root because v <0 in descent. Hence

t = —\/ % " ar (r =1, cos’ 0)
2GM Ty—r

1 12GM [27,c05’ 6 d6

3/2
To

N2GM

T r
t = O | Jrr—r* +rcos’ |—
VZGM[ ° ’ ;»0]

(@ +sinf cosB)

(b)  Substitution of G=6.6726x10"", M = 5975x10*kg, r=R = 6.378x10° m,

and 7, =R+10° yields 7= 510.504, that is, about 81 minutes for the descent to the

surface of the earth. (Recall that we are ignoring air resistance.)

(¢ Substitution of the same numeral values along with v, =0 in the original

differential equation of part (a) yields v=-4116.42 m/s =—-4.116 km/s for the velocity at

impact with the earth's surface where = R.

Integration of vﬂ = —ﬂz, »(0)=0, v(0)=v, gives
dy (y+R)
1, GM GM 1 ,
—v° = -+,
2 y+R R 2

which simplifies to the desired formula for v*. Then substitution of
G=6.6726x10"", M = 5.975x10**kg, R = 6.378%x10°m v=0,and vo=1
yields an equation that we easily solve for y = 51427.3, that is, about 51.427 km.

When we integrate
A GV M )= R, (0=,
dr r (S—r)

in the usual way and solve for v, we get

\/ZGMe 2GM, 2GM, 2GM,
- - + +v; .
r R r—=S R-S

The earth and moon attractions balance at the point where the right-hand side in the
acceleration equation vanishes, which is when

Section 2.3
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L AM. s
M, - M,

If we substitute this value of 7, M, =7.35x10” kg, S =384.4x10°, and the usual values

of the other constants involved, then set v =0 (to just reach the balancing point), we can
solve the resulting equation for vy = 11,109 m/s. Note that this is only 71 m/s less
than the earth escape velocity of 11,180 m/s, so the moon really doesn't help much.

SECTION 2.4

NUMERICAL APPROXIMATION: EULER'S METHOD

In each of Problems 1-10 we also give first the explicit form of Euler's iterative formula for the
given differential equation y"= f(x,y). As we illustrate in Problem 1, the desired iterations are
readily implemented, either manually or with a computer system or graphing calculator. Then we
list the indicated values of y(4) rounded off accurate to 3 decimal places.

1.

104

For the differential equation "= f(x,y) with f(x,y)=—y, the iterative formula of

Euler's method is y,+1 = y, + A(-y,). The TI-83 screen on the left shows a graphing
calculator implementation of this iterative formula.

3. TH: B 2y
HHHH T Y HH T -

e e e
LT =C
CNEaE
ooEE
== =2

e T ] ]l
() I Y T = T
ot S W Tl 1| T
oy Bt e T [ [t |
[t O e o e [ [t |

After the variables are initialized (in the first line), and the formula is entered, each press of
the enter key carries out an additional step. The screen on the right shows the results of 5
steps from x =0 to x=0.5 with step size #=0.1 — winding up with y(0.5) = 1.181.
Approximate values 1.125 and 1.181; true value y(3)=1.213

The following Mathematica instructions produce precisely this line of data.

filx ,y 1 = -y;
glx 1 = 2 Expl-x];
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h = 0.25; x = 0; vyl = y0;

Dol[ k = flIx,yl]; (* the left-hand slope
vl = yl + h*k; (* Euler step to update y
X =X + h, (* update x
{i,1,2} 1

h =0.1; x = 0; y2 = yO0;

Dol k = fl[x,y2]; (* the left-hand slope
y2 = y2 + h*k; (* Euler step to update y
X =X + h, (* update x
{i,1,5} 1

Print[x,“ ",Yl," ll’Yz’“ ||’g-[0.5]]

0.5 1.125 1.18098 1.21306

Iterative formula: Y1 = Yu + h(2yp)

Approximate values 1.125 and 1.244; true value y(3)=1.359

Iterative formula: V1= Ynth(y, + 1)

Approximate values 2.125 and 2.221; true value y(3)=2.297

Iterative formula: V1 =Y+ h(xy, — yn)

Approximate values 0.625 and 0.681; true value y(3)=0.713

Iterative formula: Vi1 = Yot h(y—x,— 1)

Approximate values 0.938 and 0.889; true value y(3)=0.851

Iterative formula: V1 = Y+ B(=2%,)

Approximate values 1.750 and 1.627; true value y(3)=1.558

Iterative formula: Vur1 = Yo T h(—3x,fy,,)

Approximate values 2.859 and 2.737; true value y(3)=2.647

Iterative formula: Vel = Y+ hexp(—yy)

Approximate values 0.445 and 0.420; true value y(3)=0.405

Vurl = Ya T h(1+y3)/4
Approximate values 1.267 and 1.278; true value y(3)=1.287

Iterative formula:

Section 2.4
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10. Iterative formula: Vut1 = Yo T h(2x,,y3 )
Approximate values 1.125 and 1.231; true value y(3)=1.333

The tables of approximate and actual values called for in Problems 11-16 were produced using the
following MATLAB script (appropriately altered for each problem).

Section 2.4, Problems 11-16
=0; Y0=1;
first run:

0.01;

x0; vy =vy0; vyl
= 1:100

Yy =y + h*(y-2);
vyl = [yl,yl;

X = X + h;

end

% second run:
h = 0.005;
X
f

o

y0;

Fh M B o X o°

(o]
R
ns

= x0; y =y0; vy2 y0;
or n = 1:200
Yy =y + h*(y-2);
y2 = [y2,y];
X = X + h;
end
% exact values
x =x0 : 0.2 : x0+1;
ve = 2 - exp(x);
% display table
va = y2(1:40:201) ;
err = 100* (ye-ya)./ye;
[x; vy1(1:20:101); va; ye; err]

11. The iterative formula of Euler's method is  y,+1 = v, + A(y, — 2), and the exact solution is
y(x) = 2—¢". The resulting table of approximate and actual values is

X 0.0 0.2 0.4 0.6 0.8 1.0
y (h=0.01) 1.0000 0.7798 0.5111 0.1833 | —0.2167 | —0.7048
y (h=0.005) 1.0000 0.7792 0.5097 0.1806 | —-0.2211 | -0.7115
y actual 1.0000 0.7786 0.5082 0.1779 | -0.2255 | —0.7183
error 0% —0.08% | —0.29% | -1.53% 1.97% 0.94%

12. Iterative formula: Vel = Yo T h(n — 1)2/ 2
Exact solution: yx) = 1+2/2-x)
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13.

14.

15.

16.

X 0.0 0.2 04 0.6 0.8 1.0
v (h=0.01) 2.0000 2.1105 2.2483 2.4250 2.6597 2.9864
vy (h=0.005) 2.0000 2.1108 2.2491 2.4268 2.6597 2.9931
y actual 2.0000 2.1111 2.2500 2.4286 2.6597 3.0000
error 0% 0.02% 0.04% 0.07% 0.13% 0.23%
Iterative formula: Yl = Yn T 2hx3 /Vn
Exact solution: yx) = (8+ x4)1/ 2
X 1.0 1.2 1.4 1.6 1.8 2.0
v (h=0.01) 3.0000 3.1718 3.4368 3.8084 4.2924 4.8890
vy (h=0.005) 3.0000 3.1729 3.4390 3.8117 42967 4.8940
y actual 3.0000 3.1739 3.4412 3.8149 4.3009 4.8990
error 0% 0.03% 0.06% 0.09% 0.10% 0.10%
Iterative formula: Vurl = Yn T hy,f [Xn
Exact solution: yx) = 1/(1 —Inx)
X 1.0 1.2 1.4 1.6 1.8 2.0
v (h=0.01) 1.0000 1.2215 1.5026 1.8761 2.4020 3.2031
y (h=0.005) 1.0000 1.2222 1.5048 1.8814 2.4138 3.2304
y actual 1.0000 1.2230 1.5071 1.8868 2.4259 3.2589
error 0% 0.06% 0.15% 0.29% 0.50% 0.87%
Iterative formula: Vur1 = Yo+ h(3 = 2y,/x,)
Exact solution: y(x) = x+4/x°
X 2.0 2.2 24 2.6 2.8 3.0
v (h=0.01) 3.0000 3.0253 3.0927 3.1897 3.3080 3.4422
y (h=0.005) 3.0000 3.0259 3.0936 3.1907 3.3091 3.4433
y actual 3.0000 3.0264 3.0944 3.1917 3.3102 3.4444
error 0% 0.019% 0.028% 0.032% 0.033% 0.032%
Iterative formula: Vurl = Yn T 2hx,f / y,%
Exact solution: yx) = «*-37)"?
X 2.0 2.2 2.4 2.6 2.8 3.0
v (h=0.01) 3.0000 4.2476 5.3650 6.4805 7.6343 8.8440
vy (h=0.005) 3.0000 4.2452 5.3631 6.4795 7.6341 8.8445
y actual 3.0000 4.2429 5.3613 6.4786 7.6340 8.8451
error 0% -0.056% | —0.034% | —0.015% | 0.002% 0.006%
Section 2.4
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The tables of approximate values called for in Problems 17-24 were produced using a MATLAB
script similar to the one listed preceding the Problem 11 solution above.

17.

X 0.0 0.2 0.4 0.6 0.8 1.0
y (h=0.1) 0.0000 0.0010 0.0140 0.0551 0.1413 0.2925
y (h=0.02) 0.0000 0.0023 0.0198 0.0688 0.1672 0.3379
vy (h=0.004) 0.0000 0.0026 0.0210 0.0717 0.1727 0.3477
y (h=0.0008) | 0.0000 0.0027 0.0213 0.0723 0.1738 0.3497

These data indicate that y(1) = 0.35, in contrast with Example 5 in the text, where the
initial condition is »(0) = 1.

In Problems 18—24 we give only the final approximate values of y obtained using Euler's method
with step sizes 4 = 0.1, & = 0.02, 7 = 0.004, and ~ = 0.0008.

18.  With xp = 0 and yy, = 1, the approximate values of )(2) obtained are:

h 0.1 0.02 0.004 0.0008
y 1.6680 1.6771 1.6790 1.6794

19. With xo = 0 and yy = 1, the approximate values of )(2) obtained are:

h 0.1 0.02 0.004 0.0008
y 6.1831 6.3653 6.4022 6.4096

20.  With xp = 0 and yy = —1, the approximate values of y(2) obtained are:

h 0.1 0.02 0.004 0.0008
y —-1.3792 —1.2843 —-1.2649 -1.2610

21.  With xo = 1 and yy = 2, the approximate values of y(2) obtained are:

h 0.1 0.02 0.004 0.0008
y 2.8508 2.8681 2.8716 2.8723

22. With xo = 0 and yy = 1, the approximate values of )(2) obtained are:

h 0.1 0.02 0.004 0.0008
y 6.9879 7.2601 7.3154 7.3264

23. With xo = 0 and yy = 0, the approximate values of y(1) obtained are:

h 0.1 0.02 0.004 0.0008
y 1.2262 1.2300 1.2306 1.2307
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24.

25.

26.

27.

28.

With xp = —1 and yy = 1, the approximate values of )(1) obtained are:

h 0.1 0.02 0.004
y 0.9585 0.9918 0.9984

0.0008
0.9997

Here f(t,v)=32-1.6v and ¢,=0, v,=0.

With /4 =0.01, 100 iterations of v, =v, +h f(¢,,v,) yield v(1) =16.014, and 200
iterations with 4 =0.005 yield v(1) =15.998. Thus we observe an approximate velocity of
16.0 ft/sec after 1 second — 80% of the limiting velocity of 20 ft/sec.

With 4 =0.01, 200 iterations yield v(2)=19.2056, and 400 iterations with 4 = 0.005
yield v(2)=19.1952. Thus we observe an approximate velocity of 19.2 ft/sec after 2
seconds — 96% of the limiting velocity of 20 ft/sec.

n+l

Here f(t,P)=0.0225P—0.003P> and 1,=0, P, =25.

With /=1, 60 iterations of P, P) yield P(60)=~49.3888, and 120

iterations with 2 =0.5 yield P(60)=49.3903. Thus we observe a population of 49 deer
after 5 years — 65% of the limiting population of 75 deer.

With 4 =1, 120 iterations yield P(120) = 66.1803, and 240 iterations with 42 =0.5 yield
P(60) = 66.1469. Thus we observe a population of 66 deer after 10 years — 88% of the
limiting population of 75 deer.

=P +hf(t

n?

Here f(x,y)=x"+y>—-1 and x,=0, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers 7n of steps.
It appears likely that »(2) =1.00 rounded off accurate to 2 decimal places.

h 0.1 0.01 0.001 0.0001 0.00001
n 20 200 2000 20000 200000
y(2) 0.7772 0.9777 1.0017 1.0042 1.0044

Here f(x,y)=x+1y* and x,=-2, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers 7 of steps.
It appears likely that y(2) =1.46 rounded off accurate to 2 decimal places.

h 0.1 0.01 0.001 0.0001 0.00001
n 40 400 4000 40000 400000
y(2) 1.2900 1.4435 1.4613 1.4631 1.4633
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29.

30.

31.

110

With step sizes & = 0.15, 7 = 0.03, and 4 = 0.006 we get the following results:

X

-1.0
—0.7
-0.4
-0.1

+0.2

+0.5

y with
h=0.15

1.0000
1.0472
1.1213
1.2826
0.8900
0.7460

y with v with
h=0.03 h=0.006
1.0000 1.0000
1.0512 1.0521
1.1358 1.1390
1.3612 1.3835
1.4711 0.8210
1.2808 0.7192

While the values for 2 = 0.15 alone are not conclusive, a comparison of the values of y
for all three step sizes with x >0 suggests some anomaly in the transition from negative to

positive values of x.

With step sizes # = 0.1 and & = 0.01 we get the following results:

0.0
0.1
0.2
0.3

1.8
1.9
2.0

vy with
h=0.1

0.0000
0.0000
0.0010
0.0050

2.8200
3.9393
5.8521

vy with
h=0.01

0.0000
0.0003
0.0025
0.0086

4.3308
7.9425
28.3926

Clearly there is some difficulty near x = 2.

With step sizes # = 0.1 and # = 0.01 we get the following results:

0.0
0.1
0.2

0.7

vy with
h=0.1

1.0000

1.2000
1.4428

4.3460

vy with
h=0.01

1.0000
1.2200
1.4967

6.4643
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11.8425
39.5010

0.8 5.8670
0.9 8.3349

Clearly there is some difficulty near x = 0.9.

SECTION 2.5
A CLOSER LOOK AT THE EULER METHOD

In each of Problems 1-10 we give first the predictor formula for u,:; and then the improved Euler
corrector for y,.;. These predictor-corrector iterations are readily implemented, either manually or
with a computer system or graphing calculator (as we illustrate in Problem 1). We give in each
problem a table showing the approximate values obtained, as well as the corresponding values of
the exact solution.

E.1+H=E+H=%+

Y—Hett Y+ E
{ L1330

—H
-

LS W O
LN =L

1.51HH

e e e
e e e o
kil LT
ot =00 [
Sr=Fa00
kT -

1. Upr1 = Y+ h(=vy)
Yurt = Yo+ (W2)[=yn — thp11]

The TI-83 screen on the left above shows a graphing calculator implementation of this
iteration. After the variables are initialized (in the first line), and the formulas are entered,
each press of the enter key carries out an additional step. The screen on the right shows the
results of 5 steps from x=0 to x=0.5 with step size 4= 0.1 — winding up with

v(0.5) = 1.2142 — and we see the approximate values shown in the second row of the

table below.
X 0.0 0.1 0.2 0.3 0.4 0.5
y with £=0.1 2.0000 1.8100 1.6381 1.4824 1.3416 1.2142
y actual 2.0000 1.8097 1.6375 1.4816 1.3406 1.2131
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2. U+l = Vn + Zhyn
V1 = Yo+ (W2)[ 2y, + 2u,11]
X 0.0 0.1 0.2 0.3 04 0.5
y with 4=0.1 0.5000 0.6100 0.7422 0.9079 1.1077 1.3514
y actual 0.5000 0.6107 0.7459 09111 1.1128 1.3591
3. U1 = Yu+th(y,+ 1)
Yurt = Yu T (W20 + 1) + (upry + 1)]
X 0.0 0.1 0.2 0.3 04 0.5
y with 4=0.1 1.0000 1.2100 1.4421 1.6985 1.9818 2.2949
y actual 1.0000 1.2103 1.4428 1.6997 1.9837 2.2974
4. Upr1 = Y+ h(x,— V)
Yurt = Yo T (W20 = yu) + (n + 1 — ty1)]
X 0.0 0.1 0.2 0.3 04 0.5
y with h=0.1 1.0000 0.9100 0.8381 0.7824 0.7416 0.7142
y actual 1.0000 0.9097 0.8375 0.7816 0.7406 0.7131
5. Up+1 = yn+h(yn_xn_ 1)
Yntl = Vn + (h/z)[(yn —Xn— 1) + (un+1 —Xn— h - 1)]
X 0.0 0.1 0.2 0.3 04 0.5
y with 4=0.1 1.0000 0.9950 0.9790 0.9508 0.9091 0.8526
y actual 1.0000 0.9948 0.9786 0.9501 0.9082 0.8513
6- Upt1l = Yn— 2xnynh
Ynt1 = Yn— (W2)[2x0p0 + 2000 + I)tty1]
X 0.0 0.1 0.2 0.3 04 0.5
y with 4=0.1 2.0000 1.9800 1.9214 1.8276 1.7041 1.5575
y actual 2.0000 1.9801 1.9216 1.8279 1.7043 1.5576
T Ut = Yu— 3%k

Vet = Y= (B2)[3%pvn + 360 + h) thys1]
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10.

X 0.0 0.1 0.2 0.3 0.4 0.5
y with 4=0.1 3.0000 2.9955 2.9731 2.9156 2.8082 2.6405
y actual 3.0000 2.9970 2.9761 2.9201 2.8140 2.6475
Upt1 = Yu T hexp(=yn)
Yur1 = Yo+ (B2)[exp(—yn) + exXp(—itp+1)]
X 0.0 0.1 0.2 0.3 04 0.5
y with h=0.1 0.0000 0.0952 0.1822 0.2622 0.3363 0.4053
y actual 0.0000 0.0953 0.1823 0.2624 0.3365 0.4055
nit = yut (1 +y3)/4
Vel = Va B[ +yr+ 1+ (p1)']/8
X 0.0 0.1 0.2 0.3 0.4 0.5
y with 4=0.1 1.0000 1.0513 1.1053 1.1625 1.2230 1.2873
y actual 1.0000 1.0513 1.1054 1.1625 1.2231 1.2874
Uil = Yo+ 2X00h
Va1 = Y+ B[xyn + (60 + B)tt1)’]
X 0.0 0.1 0.2 0.3 0.4 0.5
y with 4=0.1 1.0000 1.0100 1.0414 1.0984 1.1895 1.3309
y actual 1.0000 1.0101 1.0417 1.0989 1.1905 1.3333

The results given below for Problems 11-16 were computed using the following MATLAB script.

% Section 2.5, Problems 11-16
x0 = 0; yO0 =1;

% first run:

h = 0.01;

x =x0; y=1y0; vyl = y0;

for n = 1:100
u =y + h*f(x,y); %$predictor
v =y + (h/2)*(£(x,y)+£(x+h,u)); %corrector
vyl = [yl,v]l;
X =x + h;
end

% second run:

h = 0.005;

x =x0; y=y0; y2=y0;
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for n 1:200

u y + h*f(x,vy); %$predictor
y =y + (h/2)*(£(x,y)+£(x+h,u)); %corrector
y2 = [y2,yl;
X = X + h;

end

% exact values
x =x0 : 0.2 : x0+1;
ye = g(x);

% display table
vya = y2(1:40:201) ;

err = 100* (ye-ya)./yve;

X = sprintf('%10.5f',x), sprintf('\n');

vyl = sprintf('%$10.5f',y1(1:20:101)), sprintf('\n');
va = sprintf('%10.5f',ya), sprintf('\n');

yve = sprintf('%10.5f',ye), sprintf('\n');

err = sprintf('%10.5f',err), sprintf('\n');

table = [x; yl; va; ye; err]

For each problem the differential equation "= f(x,y) and the known exact solution y = g(x)
are stored in the files £.m and g.m— for instance, the files

function yp =
Yp = y-2;

f(x,y)

function ye = g(x,y)
ye = 2-exp(x);

for Problem 11. (The exact solutions for Problems 11-16 here are given in the solutions for
Problems 11-16 in Section 2.4.)

11.

12.

114

X 0.0 0.2 0.4 0.6 0.8 1.0
vy (h=0.01) 1.00000 | 0.77860 | 0.50819 | 0.17790 | —0.22551 | —0.71824
y (h=0.005) | 1.00000 | 0.77860 | 0.50818 | 0.17789 | —0.22553 | —0.71827
y actual 1.00000 | 0.77860 | 0.50818 | 0.17788 | —0.22554 | —0.71828
error 0.000% | —0.000% | —0.001% | —0.003% | 0.003% 0.002%

X 0.0 0.2 0.4 0.6 0.8 1.0
vy (h=0.01) 2.00000 | 2.11111 | 2.25000 | 2.42856 | 2.66664 | 2.99995
y (h=0.005) | 2.00000 | 2.11111 2.25000 | 2.42857 | 2.66666 | 2.99999
y actual 2.00000 | 2.11111 2.25000 | 2.42857 | 2.66667 | 3.00000
error 0.0000% | 0.0000% | 0.0001% | 0.0001% | 0.0002% | 0.0004%
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13.

14.

15.

16.

17.

x 1.0 1.2 1.4 1.6 1.8 2.0
v (h=0.01) 3.00000 3.17390 3.44118 3.81494 | 4.30091 4.89901
vy (h=0.005) 3.00000 3.17390 3.44117 3.81492 | 4.30089 | 4.89899
y actual 3.00000 3.17389 3.44116 3.81492 | 4.30088 4.89898
error 0.0000% | —0.0001% | —0.0001% | 0.0001% | —0.0002% | —0.0002%
x 1.0 1.2 1.4 1.6 1.8 2.0
v (h=0.01) 1.00000 1.22296 1.50707 1.88673 2.42576 3.25847
vy (h=0.005) 1.00000 1.22297 1.50709 1.88679 | 2.42589 3.25878
y actual 1.00000 1.22297 1.50710 1.88681 2.42593 3.25889
error 0.0000% | 0.0002% | 0.0005% | 0.0010% | 0.0018% | 0.0033%
x 2.0 2.2 2.4 2.6 2.8 3.0
y ( h:O,()]) 3.000000 3.026448 3.094447 3.191719 3.310207 3.444448
y (h:().()()S) 3.000000 3.026447 3.094445 3.191717 3.310205 3.444445
y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444
error 0.00000% —0.00002% | —0.00002% | —0.00002% | —0.00002% | —0.00002%
x 2.0 2.2 2.4 2.6 2.8 3.0
y ( h:O,()]) 3.000000 4.242859 5.361304 6.478567 7.633999 8.845112
y (h:().()()S) 3.000000 4.242867 5.361303 6.478558 7.633984 8.845092
y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085
error 0.00000% 0.00006% —0.00001% | —0.00005% | —0.00007% | —0.00007%
With 4 = 0.1: (1) = 0.35183
With 4 = 0.02: (1) = 0.35030
With 42 = 0.004: (1) = 0.35023
With 2 = 0.0008:  y(1) = 0.35023
The table of numerical results is
y with y with y with y with
X h=0.1 h=0.02 h=0.004 h=0.0008
0.0 0.00000 0.00000 0.00000 0.00000
0.2 0.00300 0.00268 0.00267 0.00267
0.4 0.02202 0.02139 0.02136 0.02136
0.6 0.07344 0.07249 0.07245 0.07245
0.8 0.17540 0.17413 0.17408 0.17408
1.0 0.35183 0.35030 0.35023 0.35023
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In Problems 18-24 we give only the final approximate values of y obtained using the improved
Euler method with step sizes 2 = 0.1, A~ = 0.02, 2 = 0.004, and ~# = 0.0008.

18. With 2 = 0.1: ¥(2) = 1.68043

With £ = 0.02:  3(2) = 1.67949
With & = 0.004:  3(2) = 1.67946
With /# = 0.0008:  1(2) = 1.67946

19. Withh= 01:  »2) = 640834
With 4 = 0.02:  1(2) = 6.41134
With 4 = 0.004:  1(2) = 6.41147
With 4 = 0.0008:  1(2) = 6.41147

20 With h= 0.1:  »Q2) = —1.26092
With & = 0.02:  3(2) = —1.26003
With & = 0.004:  1(2) =~ —1.25999
With 4 = 0.0008:  1(2) ~ —1.25999

2. With h= 0.1:  »2) = 2.87204
0.02:  »(2) = 2.87245

With h =

With & = 0.004:  3(2) = 2.87247

With 4 = 0.0008:  1(2) =~ 2.87247
22, With A= 0.1:  3Q2) = 7.31578

With # = 0.02:  3(2) = 7.32841

With £ = 0.004:  3(2) = 7.32916

With & = 0.0008:  y(2) = 7.32920

23, With h= 0.1: (1) = 1.22967
With 4 = 0.02: (1) = 1.23069
With £ = 0.004: (1) = 1.23073
With /# = 0.0008: (1) = 1.23073

24, With A= 0.1: (1) = 1.00006
With & = 0.02: (1) = 1.00000
With # = 0.004: (1) = 1.00000
With /# = 0.0008: (1) = 1.00000

25.  Here f(t,v)=32-1.6v and ¢t,=0, v,=0.
With /2 =0.01, 100 iterations of

k=f(tv,), k,=f(+hyv +hk), v

n+l

= vn +§(kl +k2)
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26.

27.

28.

yield v(1) =15.9618, and 200 iterations with 4 =0.005 yield v(1) =15.9620. Thus we
observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting
velocity of 20 ft/sec.

With 4 =0.01, 200 iterations yield v(2)=19.1846, and 400 iterations with 4 = 0.005
yield v(2)=19.1847. Thus we observe an approximate velocity of 19.185 ft/sec after 2
seconds — 96% of the limiting velocity of 20 ft/sec.

Here f(¢,P)=0.0225P—-0.003P* and ¢,=0, P,=25.
With & =1, 60 iterations of

k=f&P), k,=f({t+hP +hk), P

n+l

= P, +§(k1 +k2)

yield P(60)=49.3909, and 120 iterations with 2 =0.5 yield P(60)=49.3913. Thus we
observe an approximate population of 49.391 deer after 5 years — 65% of the limiting
population of 75 deer.

With /4 =1, 120 iterations yield P(120) = 66.1129, and 240 iterations with £ =0.5 yield
P(60) = 66.1134. Thus we observe an approximate population of 66.113 deer after 10
years — 88% of the  limiting population of 75 deer.

Here f(x,y)=x"+y>—-1 and x,=0, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers 7 of steps.
It appears likely that y(2)=1.0045 rounded off accurate to 4 decimal places.

h 0.1 0.01 0.001 0.0001
n 20 200 2000 20000
y(2) 1.01087 ]1.00452 [1.00445 [1.00445

Here f(x,y)=x+1y* and x,=-2, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers n of steps.
It appears likely that y(2) =1.4633 rounded off accurate to 4 decimal places.

h 0.1 0.01 0.001 0.0001
n 40 400 4000 40000
y(2) 1.46620 |1.46335 1.46332 [1.46331

In the solutions for Problems 29 and 30 we illustrate the following general MATLAB ode solver.

function [t,y] = ode(method, yp, t0,b, y0, n)
% [t,y] = ode(method, yp, t0,b, y0, n)
% calls the method described by 'method' for the
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ODE 'yp' with function header

y' = yp(t,y)

on the interval [t0,b] with initial (column)

vector y0. Choices for method are 'euler',
'impeuler', 'rk' (Runge-Kutta), 'ode23', 'ode45'.
Results are saved at the endPoints of n subintervals,
that is, in steps of length h = (b - t0)/n. The
result t is an (n+l)-column vector from b to tl1,
while y is a matrix with n+l rows (one for each
t-value) and one column for each dependent variable.

0% o ° 0% o o° O o o° J° o° o°

h = (b - t0)/n; % step size
t=t0 : h : b;
t=1t'; % col. vector of t-values
y = y0'; % lst row of result matrix
for i =2 : n+l % for i=2 to i=n+l

t0 = t(i-1); % old t

tl = t(1); % new t

y0 = y(i-1,:)"'; % old y-row-vector

[T,Y] = feval (method, yp, tO0,tl, yO0);

v = [y;Y']; % adjoin new y-row-vector
end

To use the improved Euler method, we call as 'method' the following function.
function [t,y] = impeuler(yp, tO,tl, yO0)

[t,y] = impeuler(yp, tO0,tl, yO0)
Takes one improved Euler step for

y' = yprime( t,y ),

from t0 to tl with initial value the
column vector yoO.

0% o° 0° o o o° o° o°

h = tl - t0;

k1l = feval( yp, tO0, yO ) ;
k2 = feval( yp, tl, y0 + h#*kl );
k = (k1 + k2)/2;

t = tl;

y = y0 + h¥*k;
29.  Here our differential equation is described by the MATLAB function

function vp = vpboltl(t,v)
vp = -0.04*v - 9.8;

Then the commands
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n = 50;
[t1l,v1]
n = 100;
[t2,v2] =
t = (0:10)

ode ('impeuler', 'vpboltl',0,10,49,n);

ode ('impeuler', 'vpboltl',0,10,49,n);

.
I

ve = 294*exp(-t/25)-245;

[t, v1(1:5:51),

generate the table

o

P O oo J0 U whR

with n =50

49.
37.
26.
15.

5.
-4.

-13.
-22.
-31.
-39.
-47.

0000
4722
3964
7549
5307
2926
7308
7989
5115
8824
9251

v2(1:10:101),

vel

withn =100 actual v

49.0000 49.0000

37.4721 37.4721

26.3963 26.3962

15.7547 15.7546

5.5304 5.5303

-4.2930 -4 .2932

-13.7313 -13.7314
-22.7994 -22.7996
-31.5120 -31.5122
-39.8830 -39.8832
-47.9257 -47.9259

We notice first that the final two columns agree to 3 decimal places (each difference being
than 0.0005). Scanning the n =100 column for sign changes, we suspect that v=10 (at the
bolt's apex) occurs just after #=4.5 sec. Then interpolation between ¢t=4.5 and t=4.6

in the table

[t2(40:51),v2(40:51)]

.9000
.0000
.1000
.2000
.3000
.4000
.5000
.6000
.7000
.8000
.9000
.0000

(6 2 I A N S SR VY]

indicates that #=4.56 at the bolt's apex. Finally, interpolation in

[t2(95:96) ,v2(95:96)1]

9.4000
9.5000

6
5
4.5303
3
2
1

.5345
.5304

.5341
.5420
.5538

0.5696

-0.4108
-1.3872
-2.3597
-3.3283
-4.2930

-43.1387
-43.9445
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gives the impact velocity v(9.41) = -43.22 m/s.

30. Now our differential equation is described by the MATLAB function

function vp = vpbolt2(t,v)
vp = -0.0011l*v.*abs(v) - 9.8;

Then the commands

n = 100;
[tl,vl] = ode('impeuler', 'vpbolt2',0,10,49,n);
n = 200;

[t2,v2] = ode('impeuler', 'vpbolt2',0,10,49,n);
t = (0:10)';
[t, v1(1:10:101), v2(1:20:201)]

generate the table

t with n =100 with n =200
0 49.0000 49.0000
1 37.1547 37.1547
2 26.2428 26.2429
3. 15.9453 15.9455
4 6.0041 6.0044
5 -3.8020 -3.8016
6 -13.5105 -13.5102
7 -22.9356 -22.9355
8 -31.8984 -31.8985
9 -40.2557 -40.2559
10 -47.9066 -47.9070

We notice first that the final two columns agree to 2 decimal places (each difference being
less than 0.005). Scanning the n =200 column for sign changes, we suspect that v=0 (at
the bolt's apex) occurs just after = 4.6 sec. Then interpolation between ¢=4.60 and

t =4.65 in the table

[£2(91:101),v2(91:101)]

4.5000 1.0964
4.5500 0.6063
4.6000 0.1163
4.6500 -0.3737
4.7000 -0.8636
4.7500 -1.3536
4.8000 -1.8434
4.8500 -2.3332
4.9000 -2.8228
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indicates that #=4.61 at the bolt's apex. Finally, interpolation in

[£2(189:190),v2(189:190)]

4.9500
5.0000

9.4000
9.4500

-3.3123
-3.8016

-43.4052
-43.7907

gives the impact velocity v(9.41) = —43.48 m/s.

SECTION 2.6

THE RUNGE-KUTTA METHOD

Each problem can be solved with a "template" of computations like those listed in Problem 1. We
include a table showing the slope values &, k,, k;, k, and the xy-values at the ends of two

successive steps of size £ =0.25.

1.

To make the first step of size 4 =0.25 we start with the function defined by

flx , v 1

and the initial values

X =

0;

Yy = 2;

1= -y

and then perform the calculations

k1l
k2
k3
k4

Y
X

fIlx, yl

h

0.25;

flx + h/2, y + h*kl/2]
flx + h/2, y + h*k2/2]

flx + h, y + h*k3]
v + h/6*(kl + 2*k2 + 2*k3 + k4)

x + h

in turn. Here we are using Mathematica notation that translates transparently to standard
mathematical notation describing the corresponding manual computations. A repetition
of this same block of calculations carries out a second step of size /£ =0.25. The

following table lists the intermediate and final results obtained in these two steps.

k1 ko ks ka X Approx.y | Actual y

-2 -1/75 —1.78125 | —1.55469 0.25 1.55762 1.55760

-1.55762 | —-1.36292 | —1.38725 -1.2108 0.5 1.21309 1.21306
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10.

122

k1 k> ks ka X Approx.y | Actual y

1 1.25 1.3125 1.65625 0.25 0.82422 0.82436
1.64844 2.06055 2.16357 2.73022 0.5 1.35867 1.35914
k1 k> ks ka X Approx.y | Actual y

2 2.25 2.28125 2.57031 0.25 1.56803 1.56805
2.56803 2.88904 2.92916 3.30032 0.5 2.29740 2.29744
k1 ko ks ka X Approx.y | Actual y

-1 -0.75 -0.78128 -55469 0.25 0.80762 0.80760
-0.55762 | —0.36292 | —0.38725 | —0.21080 0.5 0.71309 0.71306
k1 k> ks ka X Approx.y | Actual y

0 -0.125 -0.14063 | —0.28516 0.25 0.96598 0.96597
-28402 -0.44452 | —0.46458 | —0.65016 0.5 0.85130 0.85128
ki ky ks ky X Approx.y | Actual y

0 -0.5 —0.48438 | —0.93945 0.25 1.87882 1.87883
-0.93941 | —1.32105 | —1.28527 | —1.55751 0.5 1.55759 1.55760
ki ky ks ky X Approx.y | Actual y

0 -0.14063 | —0.13980 | —0.55595 0.25 2.95347 2.95349
-0.55378 | -1.21679 | —1.18183 | —1.99351 0.5 2.6475 2.64749
ki ky ks ky X Approx.y | Actualy

1 0.88250 0.89556 0.79940 0.25 0.22315 0.22314
0.80000 0.72387 0.73079 0.66641 0.5 0.40547 0.40547
k1 k> ks ka X Approx.y | Actual y

0.5 0.53223 0.53437 0.57126 0.25 1.13352 1.13352
0.57122 0.61296 0.61611 0.66444 0.5 1.28743 1.28743
k1 ko ks ka X Approx.y | Actual y

0 0.25 0.26587 0.56868 0.25 1.06668 1.06667
0.56891 0.97094 1.05860 1.77245 0.5 1.33337 1.33333
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The results given below for Problems 11-16 were computed using the following MATLAB script.

% Section 2.6, Problems 11-16
0=0; y0=1;

X%

% first run:
h =0.2;
x = x0; y=y0; vyl =y0;
for n = 1:5
kl = £(x,y):
k2 = f(x+h/2,y+h*kl1l/2);
k3 = f(x+h/2,y+h*k2/2);
k4 = f(x+h,y+h*k3);

vy =y +(h/6)* (k1+2*k2+2*k3+k4) ;
vyl = [yl,v]l;

X = x + h;

end

% second run:
h =10.1;
x = x0; y=y0; y2 =y0;
for n = 1:10
kl = £(x,y);
k2 = f(x+h/2,y+h*kl1l/2);
k3 = f(x+h/2,y+h*k2/2);
k4 = f(x+h,y+h*k3);
vy =y +(h/6)* (k1l+2*k2+2*k3+k4) ;
y2 = [y2,y]:;
X = X + h;
end

% exact values
x =x0 : 0.2 : x0+1;
ye = g(x);

% display table

y2 = y2(1:2:11) ;

err = 100* (ye-y2)./ye;

X = sprintf('%10.6f',x), sprintf('\n');

vyl = sprintf('%$10.6£f',yl), sprintf('\n');
y2 = sprintf('%10.6£f',y2), sprintf('\n');
ye = sprintf('%10.6£f',ye), sprintf('\n');

err = sprintf('%10.6f',err), sprintf('\n');
table = [x;yl;y2;ye;err]

For each problem the differential equation "= f(x,y) and the known exact solution y = g(x)
are stored in the files £.m and g.m— for instance, the files

function yp = £(x,y)
YP = y-2;
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and

11.

12.

13.

14.

15.

function ye = g(x,y)
yve = 2-exp(x);
for Problem 11.
X 0.0 0.2 04 0.6 0.8 1.0
y (h=0.2) | 1.000000 0.778600 0.508182 0.177894 | —0.225521 | -0.718251
y (h=0.1) 1.000000 0.778597 0.508176 0.177882 | —0.225540 | —0.718280
y actual 1.000000 0.778597 0.508175 0.177881 | —0.225541 | —0.718282
error 0.00000% | —0.00002% | —0.00009% | —0.00047% | —0.00061% | —0.00029%
X 0.0 0.2 04 0.6 0.8 1.0
y (h=0.2) | 2.000000 2.111110 2.249998 2.428566 2.666653 2.999963
y (h=0.1) | 2.000000 2.111111 2.250000 2.428571 2.666666 2.999998
y actual 2.000000 2.111111 2.250000 2.428571 2.666667 3.000000
error 0.000000% | 0.000002% | 0.000006% | 0.000014% | 0.000032% | 0.000080%
X 1.0 1.2 1.4 1.6 1.8 2.0
y (h=0.2) | 3.000000 3.173896 3.441170 3.814932 4.300904 4.899004
y (h=0.1) | 3.000000 3.173894 3.441163 3.814919 4.300885 4.898981
y actual 3.000000 3.173894 3.441163 3.814918 4.300884 4.898979
error 0.00000% | —0.00001% | —0.00001% | —0.00002% | —0.00003% | —0.00003%
X 1.0 1.2 1.4 1.6 1.8 2.0
y (4h=0.2) | 1.000000 1.222957 1.507040 1.886667 2.425586 3.257946
y (h=0.1) 1.000000 1.222973 1.507092 1.886795 2.425903 3.258821
y actual 1.000000 1.222975 1.507096 1.886805 2.425928 3.258891
error 0.0000% 0.0001% 0.0003% 0.0005% 0.0010% 0.0021%
X 2.0 2.2 2.4 2.6 2.9 3.0
y (h=0.2) | 3.000000 3.026448 3.094447 3.191719 3.310207 3.444447
y (h=0.1) | 3.000000 3.026446 3.094445 3.191716 3.310204 3.444445
y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444
error 0.000000% | —0.000004% | —0.000005% | —0.000005% | —0.000005% | —0.000004%
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16.

17.

x 2.0 2.2 2.4 2.6 2.9 3.0
v (h=0.2) 3.000000 4.243067 5.361409 6.478634 7.634049 8.845150
y (h=0.1) 3.000000 4.242879 5.361308 6.478559 7.633983 8.845089
y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085
error 0.000000% | —0.000221% | —0.000094% | —0.000061% | —0.000047% | —0.000039%
With 7 = 0.2: (1) = 0.350258
With 4 = 0.1: (1) = 0.350234
With 4 = 0.05: (1) = 0.350232
With 4 = 0.025: (1) = 0.350232
The table of numerical results is
y with y with y with y with
X h=0.2 h=0.1 h=0.05 h=0.025
0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.002667 0.002667 0.002667 0.002667
04 0.021360 0.021359 0.021359 0.021359
0.6 0.072451 0.072448 0.072448 0.072448
0.8 0.174090 0.174081 0.174080 0.174080
1.0 0.350258 0.350234 0.350232 0.350232

In Problems 18-24 we give only the final approximate values of y obtained using the Runge-Kutta
method with step sizes # = 0.2, & = 0.1, # = 0.05,and & = 0.025.

18.

19.

20.

21.

With & =

With A

With & =
With h =

With & =
With h =
With h =
With & =

With h =
With A
With A
With &

With & =
With h =

0.2: 1(2) = 1.679513
0.1: 1(2) = 1.679461
005  »2) = 1.679459
0.025:  (2) = 1.679459
0.2: 1(2) = 6.411464
0.1: 1(2) = 6411474
005  1(2) = 6.411474
0.025:  »(2) = 6.411474
0.2: 1(2) = —1.259990
0.1: 1(2) = —1.259992
005  »(2) = —1.259993
0.025:  1(2) =~ —1.259993
0.2: 1(2) = 2.872467
0.1: 1(2) = 2.872468
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22,

23.

24.

25.

26.
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With £ = 0.05:  1(2) = 2.872468

With /# = 0.025:  1(2) = 2.872468
With & = 0.2: 12) = 7.326761
With & = 0.1: 1(2) = 7.328452
With £ = 0.05:  3(2) = 7.328971
With £ = 0.025:  1(2) = 7.329134
With & = 0.2: (1) = 1230735
With & = 0.1: (1) = 1230731
With # = 0.05: (1) = 1.230731

With 7 = 0.025: (1) = 1.230731

With & = 0.2: 3(1) = 1.000000
With & = 0.1: 3(1) = 1.000000
With 4 = 0.05: (1) = 1.000000

With 4 = 0.025: (1) = 1.000000

Here f(t,v)=32-1.6v and ¢,=0, v,=0.
With £ =0.1, 10 iterations of

k= f(t,,v,), k,= f(t,+Lh,v, +1hk),
k3 = f(tn +%havn +%hk2)’ k4 = f(tn +h,Vn +hk3),
k =+(k +2k, + 2k, +k,), V.=V, +hk

yield v(1) =15.9620, and 20 iterations with 2 =0.05 yield v(1) =15.9621. Thus we

observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting
velocity of 20 ft/sec.

With 4 =0.1, 20 iterations yield v(2) =19.1847, and 40 iterations with 2 =0.05 yield
v(2) =19.1848. Thus we observe an approximate velocity of 19.185 ft/sec after 2
seconds — 96% of the limiting velocity of 20 ft/sec.

Here f(¢,P)=0.0225P—0.003P*> and t,=0, P,=25.
With & =6, 10 iterations of

ko= f(@,F), k,= f(t, +L+h,P +L1hk),
k3:f(tn+%h’vn+%hk2)’ k4:f(tn+h,Pn+hk3),
k =+(k +2k, + 2k, +k,), P. =P +hk

yield P(60)=49.3915, as do 20 iterations with 4 = 3. Thus we observe an approximate
population of 49.3915 deer after 5 years — 65% of the limiting population of 75 deer.
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With 4 =6, 20 iterations yield P(120) = 66.1136, as do 40 iterations with 4 =3. Thus we

observe an approximate population of 66.1136 deer after 10 years — 88% of the limiting

population of 75 deer.

27.  Here f(x,y)=x>+3»"—1 and x,=0, y,=0. The following table gives the

approximate values for the successive step sizes 4 and corresponding numbers 7 of steps.

It appears likely that y(2)=1.00445 rounded off accurate to 5 decimal places.

h 1 0.1 0.01 0.001
n 2 20 200 2000
y(2) 1.05722  11.00447 11.00445 [1.00445

28.  Here f(x,y)=x+1y* and x,=-2, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers n of steps.

It appears likely that »(2) =1.46331 rounded off accurate to 5 decimal places.

In the solutions for Problems 29 and 30 we use the general MATLAB solver ode that was listed
prior to the Problem 29 solution in Section 2.5. To use the Runge-Kutta method, we call as

h 1 0.1 0.01 0.001
n 4 40 00 40000
y(2) 1.48990 |1.46332 1.46331 [1.46331

'method' the following function.

function [t,y]

0% o° J° o o° o° o°

h
k1l
k2
k3
k4
k
t

Y

[

t, vl = rk(yp, t0, t1, yO0)

= rk(yp, tO0,tl, yo0)

Takes one Runge-Kutta step for

f

y' =

rom t0 to
column vector

tl - t0;

feval (yp,
feval (yp,
feval (yp,
feval (yp,

yp( t,y ).,

tl with initial wvalue
yoO.

to

t0 + h/2, y0 + (h/2)*kl
t0 + h/2, yv0 + (h/2)*k2
t0 + h

, YO

;Y0 +

h *k3

(1/6)* (k1 + 2*k2 + 2*k3 + k4);

tl;
y0 + h¥*k;
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29.  Here our differential equation is described by the MATLAB function

function vp = vpboltl(t,v)
vp = -0.04*v - 9.8;

Then the commands

n = 100;
[tl,v1] = ode('rk',6 'vpboltl',0,10,49,n);
n = 200;

[t2,v] = ode('rk', 'vpboltl',0,10,49,n);
t = (0:10)"';

ve = 294*exp(-t/25) -245;

[t, v1(1:n/20:1+n/2), v(1l:n/10:n+l), vel

generate the table

t withn =100 withn=200 actualv

0 49.0000 49.0000 49.0000
1 37.4721 37.4721 37.4721
2 26.3962 26.3962 26.3962
3 15.7546 15.7546 15.7546
4 5.5303 5.5303 5.5303
5 -4.2932 -4 .2932 -4.2932
6 -13.7314 -13.7314 -13.7314
7 -22.7996 -22.7996 -22.7996
8 -31.5122 -31.5122 -31.5122
9 -39.8832 -39.8832 -39.8832
10 -47.9259 -47.9259 -47.9259

We notice first that the final three columns agree to the 4 displayed decimal places.
Scanning the last column for sign changes in v, we suspect that v=0 (at the bolt's apex)
occurs just after #=4.5 sec. Then interpolation between ¢#=4.55 and #=4.60 in the table

[£2(91:95),v(91:95)]

4.5000 0.5694
4.5500 0.0788
4.6000 -0.4109
4.6500 -0.8996
4.7000 -1.3873

indicates that t=4.56 at the bolt's apex. Now the commands

zeros (n+1,1);

Y
h 10/n;
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for j = 2:n+l

y(3) = y(3-1) + v(j-1)*h +

end

0.5%(-.04*v(j-1) - 9.8)*h"2;

ye = 7350* (1 - exp(-t/25)) - 245%*t;
[t, y(1:n/10:n+1), vel

generate the table

t Approx y

0
43.1974
75.0945
96.1342
106.7424
107.3281
98.2842
79.9883
52.8032
17.0775

0 -26.8540

P WO o0oJ0 Ul b WNREOo

We see at least 2-decimal place agreement between approximate and actual values of y.

Actual y

0
43.1976
75.0949
96.1348
106.7432
107.3290
98.2852
79.9895
52.8046
17.0790
-26.8523

Finally, interpolation between =9 and 7= 10 here suggests that y =0 just after #=9.4.

Then interpolation between ¢=9.40 and 7= 9.45 in the table

[t2(187:191),y(187:191)]

.3000
.3500
.4000
.4500 -
.5000 -

O v v w Lo
W RE OoON

.7448
.6182
L4713
.6957
.8829

indicates that the bolt is aloft for about 9.41 seconds.

30.  Now our differential equation is described by the MATLAB function

function vp =

vpbolt2 (t,v)

vp = -0.0011l*v.*abs(v) - 9.8;

Then the commands

n = 200;

[tl,vl] = ode('rk', 'vpbolt2',0,10,49,n);

n = 2*n;

[t2,v] = ode('rk', 'vpbolt2',0,10,49,n);

Section 2.6

129



130

t =
ve =

ve(6:11) =

[t, v1(1:n/20:1+n/2),

(

0:10)';

zeros (size(t));
ve(l:5)= 94.388*tan(0.478837

generate the table

P O o0 J0 Uldbd WNEFEO

with n =200

49.0000
37.1548
26.2430
15.9456
6.0046
-3.8015
13.5101
-22.9354
-31.8985
-40.2559
-47.9071

with n =400
49.0000 49.
37.1548 37.
26.2430 26.
15.9456 15.
6.0046
-3.8015 -3.
-13.5101 -13.
-22.9354 -22.
-31.8985 -31.
-40.2559 -40.
-47.9071 -47.

6.

- 0.103827*t(1:5));

v(l:n/10:n+1), vel

actual v

0000
1547
2429
9455
0045
8013
5100
9353
8984
2559
9071

-94.388*tanh(0.103827*(t(6:11)-4.6119)) ;

We notice first that the final three columns almost agree to the 4 displayed decimal places.
Scanning the last colmun for sign changes in v, we suspect that v=0 (at the bolt's apex)
occurs just after #=4.6 sec. Then interpolation between ¢#=4.600 and ¢=4.625 in the

table

[t2(185:189),v(185:189)]

L N

indicates that

Y
h =
for

v(3) = y(3-1) + v(§-1)*h + 0.5%(-.04*v(§-1)

end
ye =

ye(l:5)= 108.465+909.091*1log(cos(0.478837

.6000 0.
.6250 -0.
.6500 -0.
.6750 -0.
.7000 -0.

t=4.61 atthe bolt's apex. Now the commands

1165
1285
3735
6185
8635

zeros (n+1,1);
10/n;

3

= 2:n+1

zeros (size(t));

0.103827*t(1:5)));

ye(6:11)= 108.465-909.091*1log(cosh(0.103827
*(t(6:11)-4.6119)));

[t, y(1:n/10:n+1), vel
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generate the table

~

P O o0 J0 Ul dbd WNhEFEOo

We see almost 2-decimal place agreement between approximate and actual values of y.

Approx y

0
42.9881
74.6217
95.6719
106.6232
107.7206
99.0526
80.8027
53.3439
17.2113
-26.9369

Actual y

0.0001
42.9841
74.6197
95.6742
106.6292
107.7272
99.0560
80.8018
53.3398
17.2072
-26.9363

Finally, interpolation between =9 and = 10 here suggests that y =0 just after t=9.4.

Then interpolation between ¢=9.400 and ¢#=9.425 in the table

[£2(377:381),y(377:381)]

o o OV v Lo

indicates that the bolt is aloft for about 9.41 seconds.

.4000 0
.4250 -0.
.4500 -1.
.4750 -2
.5000 -3.

.4740

6137
7062

.8035

9055
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CHAPTER 3

LINEAR SYSTEMS AND MATRICES

SECTION 3.1

INTRODUCTION TO LINEAR SYSTEMS

This initial section takes account of the fact that some students remember only hazily the method of
elimination for 2x2 and 3x3 systems. Moreover, high school algebra courses generally
emphasize only the case in which a unique solution exists. Here we treat on an equal footing the
other two cases — in which either no solution exists or infinitely many solutions exist.

1.

132

Subtraction of twice the first equation from the second equation gives —5y =-10, so
y =2, and it follows that x = 3.

Subtraction of three times the second equation from the first equation gives 5y =-15, so
y=-3, and it follows that x = 5.

. . . . . 1
Subtraction of 3/2 times the first equation from the second equation gives 5 y=—, S0

y =13, and it follows that x =—4.

. . : . 1
Subtraction of 6/5 times the first equation from the second equation gives 3 y=—,

so y =4, and it follows that x = 5.

Subtraction of twice the first equation from the second equation gives 0=1, so no
solution exists.

Subtraction of 3/2 times the first equation from the second equation gives 0=1, so no
solution exists.

The second equation is —2 times the first equation, so we can choose y =¢ arbitrarily.
The first equation then gives x=-10+4¢.

The second equation is 2/3 times the first equation, so we can choose y =¢ arbitrarily.
The first equation then gives x =4+ 2¢.

Subtraction of twice the first equation from the second equation gives —9y —4z =-3.
Subtraction of the first equation from the third equation gives 2y+z =1. Solution of
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10.

11.

12.

13.

14.

15.

16.

these latter two equations gives y =—1, z=3. Finally substitution in the first equation
gives x =4.

Subtraction of twice the first equation from the second equation gives y+3z=-5.
Subtraction of twice the first equation from the third equation gives —y—2z=3.
Solution of these latter two equations gives y =1, z=-2. Finally substitution in the
first equation gives x = 3.

First we interchange the first and second equations. Then subtraction of twice the new
first equation from the new second equation gives y—z =7, and subtraction of three

times the new first equation from the third equation gives —2y+3z=-18. Solution of
these latter two equations gives y =3, z=-4. Finally substitution in the (new) first
equation gives x = 1.

First we interchange the first and third equations. Then subtraction of twice the new first
equation from the second equation gives —7y—3z =-36, and subtraction of twice the

new first equation from the new third equation gives —16y—7z=-83. Solution of these
latter two equations gives y =3, z=35. Finally substitution in the (new) first equation
gives x = 1.

First we subtract the second equation from the first equation to get the new first equation
x+2y+3z=0. Then subtraction of twice the new first equation from the second

equation gives 3y—2z =0, and subtraction of twice the new first equation from the
third equation gives 2y —z=0. Solution of these latter two equations gives
y=0, z=0. Finally substitution in the (new) first equation gives x =0 also.

First we subtract the second equation from the first equation to get the new first equation
x+8y—4z=45. Then subtraction of twice the new first equation from the second

equation gives —23y+28z =-181, and subtraction of twice the new first equation from
the third equation gives —9y+11z=-71. Solution of these latter two equations gives
y =3, z=-4. Finally substitution in the (new) first equation gives x = 5.

Subtraction of the first equation from the second equation gives —4y+z=-2.

Subtraction of three times the first equation from the third equation gives (after division
by 2) —4y+z=-5/2. These latter two equations obviously are inconsistent, so the

original system has no solution.

Subtraction of the first equation from the second equation gives 7y—3z =-2.

Subtraction of three times the first equation from the third equation gives (after division
by 3) 7y—-3z=-10/3. These latter two equations obviously are inconsistent, so the

original system has no solution.
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17.

18.

19.

20.

21.

22,

23.

24.

25.

134

First we subtract the first equation from the second equation to get the new first equation
x+3y—6z=—4. Then subtraction of three times the new first equation from the second

equation gives —7y+16z =15, and subtraction of five times the new first equation from
the third equation gives (after division by 2) —7y+16z=35/2. These latter two
equations obviously are inconsistent, so the original system has no solution.

Subtraction of the five times the first equation from the second equation gives
—23y—40z =—14. Subtraction of eight times the first equation from the third equation

gives —23y—40z =-19. These latter two equations obviously are inconsistent, so the
original system has no solution.

Subtraction of twice the first equation from the second equation gives 3y —6z =9.
Subtraction of the first equation from the third equation gives y—2z =3. Obviously

these latter two equations are scalar multiples of each other, so we can choose z =¢
arbitrarily. It follows first that y =3+42¢ and then that x =8+ 3z.

First we subtract the second equation from the first equation to get the new first equation
x—y+6z=-5. Then subtraction of the new first equation from the second equation

gives 5y—5z =25, and subtraction of the new first equation from the third equation
gives 3y—3z =15. Obviously these latter two equations are both scalar multiples of the
equation y—z =35, so we can choose z =1 arbitrarily. It follows first that y=5+¢ and
then that x =-5¢.

Subtraction of three times the first equation from the second equation gives 3y —6z =9.
Subtraction of four times the first equation from the third equation gives -3y +9z =—-6.
Obviously these latter two equations are both scalar multiples of the equation y—3z=2,
so we can choose z =1t arbitrarily. It follows first that y =2+3¢ and then that
x=3-2t.

Subtraction of four times the second equation from the first equation gives 2y +10z=0.
Subtraction of twice the second equation from the third equation gives y+5z=0.

Obviously the first of these latter two equations is twice the second one, so we can
choose z =1t arbitrarily. It follows first that y =-5¢ and then that x=—4¢.

The initial conditions y(0)=3 and y’(0)=8 yield the equations 4=3 and 2B =8, so
A=3 and B=4. It followsthat y(x) = 3cos2x+4sin2ux.

The initial conditions y(0)=35 and »’(0)=12 yield the equations 4=35 and 3B =12,
so A=5 and B=4. It followsthat y(x) = Scosh3x+4sinh3x.

The initial conditions y(0) =10 and »’(0) =20 yield the equations 4+ B =10 and
54-5B=20 with solution 4=7, B=3. Thus y(x) = 7e* +3e™".
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26.

27.

28.

29.

30.

31.

32.

33.

The initial conditions y(0) =44 and y’(0) =22 yield the equations A4+ B =44 and
114-11B =22 with solution 4=23, B=21. Thus y(x) = 23¢'"" +2le'".

The initial conditions »(0) =40 and y’(0)=-16 yield the equations 4+ B =40 and
34-5B=-16 with solution A4=23, B=17. Thus y(x) = 23 +17¢™".

The initial conditions »(0) =15 and »’(0)=13 yield the equations A+ B =15 and
34+7B=-13 with solution 4=23, B=-8. Thus y(x) = 23¢’* —8¢’".

The initial conditions y(0)=7 and »’(0)=11 yield the equations 4+ B =7 and
1 4+1B=11 with solution 4=52, B=-45. Thus y(x) = 52¢"? —45¢".

The initial conditions »(0) =41 and y’(0) =164 yield the equations A+ B =41 and

%A—%B:IM with solution 4=81, B=-40. Thus y(x) = 8le*" —40e"".

The graph of each of these linear equations in x and y is a straight line through the
origin (0, 0) in the xy-plane. If these two lines are distinct then they intersect only at the
origin, so the two equations have the unique solution x =y =0. Ifthe two lines

coincide, then each of the infinitely many different points (x, y) on this common line
provides a solution of the system.

The graph of each of these linear equations in x, y, and z is a plane in xyz-space. If these
two planes are parallel — that is, do not intersect — then the equations have no solution.
Otherwise, they intersect in a straight line, and each of the infinitely many different
points (x,y,z) on this line provides a solution of the system.

(a) The three lines have no common point of intersection, so the system has no
solution.

(b) The three lines have a single point of intersection, so the system has a unique
solution.

(c) The three lines — two of them parallel — have no common point of intersection,
so the system has no solution.

(d) The three distinct parallel lines have no common point of intersection, so the
system has no solution.

(e) Two of the lines coincide and intersect the third line in a single point, so the
system has a unique solution.

® The three lines coincide, and each of the infinitely many different points (x, y,z)
on this common line provides a solution of the system.
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(a) If the three planes are parallel and distinct, then they have no common point of
intersection, so the system has no solution.

(b) If the three planes coincide, then each of the infinitely many different points
(x,y,z) of this common plane provides a solution of the system.

() If two of the planes coincide and are parallel to the third plane, then the three
planes have no common point of intersection, so the system has no solution.

(d)  If two of the planes intersect in a line that is parallel to the third plane, then the
three planes have no common point of intersection, so the system has no solution.

(e) If two of the planes intersect in a line that lies in the third plane, then each of the
infinitely many different points (x, y,z) of this line provides a solution of the system.

® If two of the planes intersect in a line that intersects the third plane in a single
point, then this point (x, y,z) provides the unique solution of the system.

SECTION 3.2

MATRICES AND GAUSSIAN ELIMINATION

Because the linear systems in Problems 1-10 are already in echelon form, we need only start at the
end of the list of unknowns and work backwards.

136

Starting with x; =2 from the third equation, the second equation gives x, =0, and then

the first equation gives x, =1.

Starting with x; =—3 from the third equation, the second equation gives x, =1, and

then the first equation gives x, =5.

If we set x; =t then the second equation gives x, =2+ 5¢, and next the first equation

gives x, =13+11z

If we set x, =t then the second equation gives x, =5+ 7¢, and next the first equation
gives x, =35+33¢.

If we set x, =¢ then the third equation gives x; =5+ 3¢, next the second equation gives

x, =6+¢, and finally the first equation gives x, =13 +4«.

If weset x, =t and x, =—4 from the third equation, then the second equation gives

x, =11+3¢, and next the first equation gives x, =17 +¢.
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10.

If weset x;=s and x, =¢, then the second equation gives x, =7+ 2s—7¢, and next
the first equation gives x, =3—-8s+19z.

If weset x, =5 and x, =¢, then the second equation gives x, =10-3¢, and next the
first equation gives x, =—-25+10s+221.

Starting with x, =6 from the fourth equation, the third equation gives x, =-5, next the

second equation gives x, =3, and finally the first equation gives x, =1.

If weset x; =s and x; =¢, then the third equation gives x, =5¢, next the second

equation gives x, =13s—8¢, and finally the first equation gives x, =63s—16¢.

In each of Problems 11-22, we give just the first two or three steps in the reduction. Then we
display a resulting echelon form E of the augmented coefficient matrix A of the given linear
system, and finally list the resulting solution (if any). The student should understand that the
echelon matrix E is not unique, so a different sequence of elementary row operations may
produce a different echelon matrix.

11.

12.

13.

14.

Begin by interchanging rows 1 and 2 of A. Then subtract twice row 1 both from row 2
and from row 3.

1 3 2 5
E=/01 0 2|; x=3 x,=-2, x;,=4
0 01 4

Begin by subtracting row 2 of A from row 1. Then subtract twice row 1 both from row
2 and from row 3.

1 -6 -4 15
E=[0 1 0 -3|; x=5 x,=-3, x,=2
00 1 2

Begin by subtracting twice row 1 of A both from row 2 and from row 3. Then add row
2 to row 3.

[S—
(8]

;0 x =4+3t, x,=3-2t, x;=t

=

I
o o ~
o - W
=3 SR

3
0
Begin by interchanging rows 1 and 3 of A. Then subtract twice row 1 from row 2, and
three times row 1 from row 3.
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1 -2 2 -9
E=/0 0 1 7/ x=5+2¢t x,=t, x;=7
0 0 0 O

15.

Begin by interchanging rows 1 and 2 of A. Then subtract three times row 1 from row 2,
and five times row 1 from row 3.

The system has no solution.

=
Il
S O
S =
S W =
—_— ) =

16.  Begin by subtracting row 1 from row 2 of A. Then interchange rows 1 and 2. Next
subtract twice row 1 from row 2, and five times row 1 from row 3.

-4 -7 6

1 2 0]
0 0 1

E =

[ R

The system has no solution.

17. x, —4x, —3x, -3x,

2x, —6x,—5x;-5x, = 5

3x,— x,—4x,-5x, = -7

Begin by subtracting twice row 1 from row 2 of A, and three times row 1 from row 3.

1 4 -3 -3 4
E=|0 1 0 -1 —4|; x=3-2t, x,=—4+¢, x,=5-3¢, x, =t
0 0o 1 3 5
18.  Begin by subtracting row 3 from row 1 of A. Then subtract 3 times row 1 from row 2,
and twice row 1 from row 3.
1 2 4 -13 -8
E=|0 0 1 4 3|, x=4+2s-3t, x,=s5, x;=3-4¢, x, =t
0 0 0 0 O
19.

Begin by interchanging rows 1 and 2 of A. Then subtract three times row 1 from row 2,
and four times row 1 from row 3.
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20.

21.

22,

23.

24.

1 -2 5 =5 -7
E=/0 1 -2 3 5| x=3-s—t x,=5+25-3¢, x;=s, x, =t
0 0 0 0 O

Begin by interchanging rows 1 and 2 of A. Then subtract twice row 1 from row 2, and
five times row 1 from row 3.

1 32 -7 309
E=101 3 -7 2 7|, x=2+43t, x,=1+5-2t, x;,=2+2s, x, =5, x5 =t
0 01 =2 0 2

Begin by subtracting twice row 1 from row 2, three times row 1 from row 3, and four
times row 1 from row 4.

6

20
;0 =2, x,=1, x;=3, x,=4

-0 = O

1
5
1
0

S O O =
O O = =

Begin by subtracting row 4 from row 1. Then subtracting twice row 1 from row 2, four
times row 1 from row 3, and three times row 1 from row 4.

1 -2 4 0 -9
0 1 6 1 21
E = ;0 =3, x,=-2, x;=4, x,=-1
0 0 1 0 4
0 0 0 1 -1

If we subtract twice the first row from the second row, we obtain the echelon form
3 2 1
E =
0 0 k-2

of the augmented coefficient matrix. It follows that the given system has no solutions unless
k=2, in which case it has infinitely many solutions given by x, =1(1-2¢), x, =t.

If we subtract twice the first row from the second row, we obtain the echelon form
3 2 0
E =
0 k-4 0
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25.

26.

27.

28.

140

of the augmented coefficient matrix. It follows that the given system has only the trivial
solution x, =x, =0 unless k=4, in which case it has infinitely many solutions given by

—_2 —
X =—=3t, x, =1

If we subtract twice the first row from the second row, we obtain the echelon form

302 11
E =
[0 k-4 —1}

of the augmented coefficient matrix. It follows that the given system has a unique solution
if k #4, but no solution if k=4,

If we first subtract twice the first row from the second row, then interchange the two rows,
and finally subtract 3 times the first row from the second row, then we obtain the echelon

form
1 1 k-2
E =
{O 1 3k—7}

of the augmented coefficient matrix. It follows that the given system has a unique solution
whatever the value of £.

If we first subtract twice the first row from the second row, then subtract 4 times the first
row from the third row, and finally subtract the second row from the third row , we obtain
the echelon form

3
E =

S O =

2 1
55
0 0 k-11

of the augmented coefficient matrix. It follows that the given system has no solution unless
k=11, in which case it has infinitely many solutions with x, arbitrary.

If we first interchange rows 1 and 2, then subtract twice the first row from the second row,
next subtract 7 times the first row from the third row, and finally subtract twice the second
row from the third row , we obtain the echelon form

1 2 1 b
E=|0 -5 1 a-2b
0 0 0 c¢c—-2a-3b

of the augmented coefficient matrix. It follows that the given system has no solution unless
¢ =2a+3b, in which case it has infinitely many solutions with x, arbitrary.
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29.

30.

In each of parts (a)-(c), we start with a typical 2x2 matrix A and carry out two row
successive operations as indicated, observing that we wind up with the original matrix A.

(s ¢ cR2 [ g ¢t Wor2 [¢ ¢
(a) A = — — = A
cu ¢y u v
(¢ ¢ SwAP(RLR2) [ | SWAP(RLR2) [ ¢
st u v

cu+s cv+t u v

[ ¢ cRi+R2 u v (-oRI+R2 [g ¢
(0 A = — — = A

Since we therefore can "reverse" any single elementary row operation, it follows that we can
reverse any finite sequence of such operations — on at a time — so part (d) follows.

(a) This part is essentially obvious, because a multiple of an equation that is satisfied is
also satisfied, and the sum of two equations that are satisfied is one that is also satisfied.

(b) Letuswrite A, =B,B,, ---,B,,B

from B, by a single elementary row operation (for k=1,2,---,n). Then it follows by »

= A, where each matrix B,,; is obtained

n+l

applications of part (a) that every solution of the system LS; associated with the matrix A,
is also a solution of the system LS, associated with the matrix A,. But part (d) of Problem
29 implies that A; also can be obtained by A, by elementary row operations, so by the
same token every solution of LS, is also a solution of LS.

SECTION 3.3

REDUCED ROW-ECHELON MATRICES

Each of the matrices in Problems 1-20 can be transformed to reduced echelon form without the
appearance of any fractions. The main thing is to get started right. Generally our first goal is to get
a 1 in the upper left corner of A, then clear out the rest of the first column. In each problem we
first give at least the initial steps, and then the final result E. The particular sequence of elementary
row operations used is not unique; you might find E in a quite different way.

1 271 RrR2-3R1 [1 27 RI2R2 [1 0
- -
3 7 0 1 0 1
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3 71 Ri-R2 [1 27 R2-2R1 [1 27 R-2R2 [1 0
2. - - -
2 5 2 5 0 1 0 1

3 7 15] R-R2 [1 2 47 R2-2R1 [1 2 471 R2R2 [] 0 2
3. - - -
2 5 11 2 5 11 0 1 3 013

3 7 —-1| R2-R1 |3 7 -—1| RI-R2 |1 12 -10
4. - -
5 2 8 2 -5 9 2 -5 9
R2-2R1 |1 12 —=10| GVU29R2 |1 12 —=10| R1-12R2 |1 (O 2
- - -
0 -29 29 0o 1 -1 0 1 -1
1 2 —=11| R2=2Rl |1 2 —11| =DR2 {1 2 —11| RI=2R2 [ 0 -5
5. - - -
2 3 -19 0O -1 3 01 -3 01 -3
1 _2 19 R2—-4R1 1 _2 19 RI1+2 R2 1 () 7
6. - -
4 -7 70 0O 1 -6 01 -6
1 2 1 2 3 1 2 3
R2-R1 R3-2R1
7 1 4 1 - 0o 2 -2 - 0o 2 =2
21 9 1 9 0 -3 3
(1/2)R2 L 2 3 R3+3R2 23 R1-2R2 oS
- 0 1 -1 - 01 -1 - 0 1 -1
0 -3 3 0 0 O 0 0 O
1 -4 -5 (1 -4 -5 1 4 -5
R2-3R1 R3-R1
8. 3 -9 3 - 0 3 18 - 0 3 18
1 -2 3 |1 -2 3 0O 2 8
R2-R3 I =4 = R3-2R2 =4 = (~1/12)R3 oo
- 0 1 10 - 0 1 10 - v = (01 0
0 2 8] 0O 0 -12 0 0 1
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14.

15.

16.

17.

144

1 3 2 1 1 0 0 3
R2-2R1 RI-3R2
- 01 0 =2 - — |01 0 =2
0O 01 2 0O 01 2
1 3 2 5 1 3 2 5 1 3
R2-2RI R3-2RI
2 5 2 3 - 0o -1 -2 -7 - 0 -1
2 7 7 22 2 7 7 22 0 1
R3+R2 13 2 5 (-)R2 100 4
- 0o -1 -2 -7 - — |01 0 -3
0 0 1 5 0O 01 5
2 2 4 2 SWAP(R1,R2) 1 -1 -4 R2-2RI
1 -1 4 3 - 2 2 4 2 -
2 7 19 =3 2 7 19 3
R3-2RI1 1 -1 -4 3 (1/4)R2 I -1 -4 3
- 0 4 12 -4 - 0 1 3 -1
0o 9 27 —9_ 0O 9 27 -9
1 -1 -4 3] 1 0 -1 2
R3-9R2 RI+R2
- 0 1 3 -1 - 01 3 -1
0O 0 O 0_ 00 0
1 3 15 7 1 3 15 7 3
R2-2RI R3-2RI
2 4 22 8 - 0 -2 -8 -6 - 0o 2
2 7 34 17 _2 7 34 17 0 1
(~1/2)R2 315 R3-R2 o3 =2
- 01 4 - — |01 4 3
01 4 3 000 0
1 1 1 -1 4 1 -1 -4
R2-R1 R3-2RI
1 -2 -2 8 -1 - |0 -3 -3 9 3 -
2 3 -1 3 11 2 3 -1 3 11

Chapter 3
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2 -7
3012

1 -1 -4 3
0 4 12 —4
2 7 19 -3
15 7

-8 -6

4 3
11 1 -l
0 3 -3 9
01 -3 5



(~1/3)R2 -1 -4 R3-R2 b
- o1 1 -3 -1 - |0 1
_O 1 -3 5 19 0 0
(~1/4)R3 -1 -4 RI-R2
- 011 -3 -1 - -
001 -2 -5
1 =2 -5 -12 1 1 -2 -5
R2-2RI
18. 2 3 18 11 9 - (0 7 28
2 5 26 21 11 2 5 26
(/T)R2 =2 - -121 (1/T)R2 I
— (0 1 4 5 1 - 0
0 9 36 45 9 0
(1/9)R3 =2 = -2 R3-R2
- 0 1 4 5 1 -
0 1 4 5 1
2 7 =10 -19 13 SWAP(RLR3)
19. 1 3 -4 -8 6 - 1
1 0 2 1 3 2 7
1 0 2 1 3
R2-RI R3-2R1
- 03 -6 -9 3 -
2 7 =10 =19 13
(1/3)R2 10 2 1 R3-7R2
- o1 -2 =31 -
0o 7 -14 =21 7
36 1 7 13 1 2 -4
RI-R3
20. 5 10 8 18 47 - 5 10 8
2 4 5 9 26 2 4 5 9
Section 3.3
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1 2 4 -2 -13 1 2 4 -2 -13
R2-5R1 R3-2RI
- 0 0 28 28 112 - 0 0 28 28 112
2 4 5 9 26 0 0 13 13 52
(1/28)R2 124 -2 -3 R3-13R2 12023
- 0 0 1 1 4 - - > |0 01 1 4
0 0 13 13 52 00 0 0 O

In each of Problems 21-30, we give just the first two or three steps in the reduction. Then we
display the resulting reduced echelon form E of the augmented coefficient matrix A of the
given linear system, and finally list the resulting solution (if any).

21.

22,

23.

24,

146

Begin by interchanging rows 1 and 2 of A. Then subtract twice row 1 both from row 2
and from row 3.

1 00 3
E=[0 1 0 2|, x=3 x,=-2 x,=4
001 4

Begin by subtracting row 2 of A from row 1. Then subtract twice row 1 both from row
2 and from row 3.

0
0 3|, x=5 x,=-3, x,=2
1

Begin by subtracting twice row 1 of A both from row 2 and from row 3. Then add row
2 to row 3.

1 0 -3 14
E=101 2 3| x=4+3¢ x,=3-2¢, x;=t
00 0 O

Begin by interchanging rows 1 and 3 of A. Then subtract twice row 1 from row 2, and
three times row 1 from row 3.

X, =5+2t, x,=t, x;=7

oS O
S = O
S N WD
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25.

26.

27.

28.

29.

Begin by interchanging rows 1 and 2 of A. Then subtract three times row 1 from row 2,
and five times row 1 from row 3.

The system has no solution.

=

I
o o ~-
)
o W
—_ o o

Begin by subtracting row 1 from row 2 of A. Then interchange rows 1 and 2. Next
subtract twice row 1 from row 2, and five times row 1 from row 3.

The system has no solution.

=

I
o o ~
o ~ o
R e
—_ o o

x,—4x,-3x,-3x, = 4
2x, —6x,—5x;=5x, = 5

3x,— x,—4x,-5x, = -7

Begin by subtracting twice row 1 from row 2 of A, and three times row 1 from row 3.

1 00 2 3
E=/01 0 -1 -4|; x=3-2t, x,=-4+t, x,=5-3t, x,=t
001 3 5

Begin by subtracting row 3 from row 1 of A. Then subtract 3 times row 1 from row 2,
and twice row 1 from row 3.

;0 X, =4+2s-3¢t, x, =5, x;=3-4¢t, x, =t

oS O

S~ O
S b~ W
S W A

Begin by interchanging rows 1 and 2 of A. Then subtract three times row 1 from row 2,
and four times row 1 from row 3.

1 0 1 13
E=|101 -2 3 5|, x=3-s5-¢ x,=5+25-3¢, x;=5, x, =t
00 0 0O
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30.

31.

32.

33.

34.

148

Begin by interchanging rows 1 and 2 of A. Then subtract twice row 1 from row 2, and
five times row 1 from row 3.

1 00 0 -3 2
E=/01 0 -1 2 1| x=243t x,=14+5-2¢, x;=2+2s, x,=5, X;=t
001 =2 0 2
23 1/4)R2 23
4 0 — 010
0 1 0 01

If ad —bc #0, then not both @ and b can be zero. If, for instance, a # 0, then

a b| WaRlL 1 p/g| R2-Rl [] bla aR2 |1  bla
— — —
c d c d 0 d-bc/a 0 ad-bc
(ad-be)R2 [1 b/gl R-Gla)R2 T1 0
— — :
o o

If the upper left element of a 2x2 reduced echelon matrix is 1, then the possibilities are

1 0 1 *
{0 1} and {0 0} , depending on whether there is a nonzero element in the second

row. If the upper left element is zero — so both elements of the second row are also 0,

e 0 1 0 0
then the possibilities are and .
0 0 0 0

If the upper left element of a 3x3 reduced echelon matrix is 1, then the possibilities are

1 00 1 0 * I * 0 1 * *
0 1 0|, {01 *|, (0 0 1|, and |0 O O],
0 0 1 0 00 0 0 O 0 00

depending on whether the second and third row contain any nonzero elements. If the
upper left element is zero — so the first column and third row contain no nonzero
elements — then use of the four 2x2 reduced echelon matrices of Problem 33 (for the
upper right 2x2 submatrix of our reduced 3x3 matrix) gives the additional possibilities
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3S.

36.

37.

38.

39.

0 1 0 0 1 =* 0 01 0 00
0 0 1, {0 0 O, O O O, and [0 O O
0 00 0 00 0 00 0 00

(a) If (x,,y,) isa solution, then it follows that

a(kx,)+b(ky,) = k(ax,+by,) = k-0 = 0,
c(kx,)+d(ky,) = k(cxy+dy,)) = k-0

so (kx,,ky,) is also a solution.

(b) If (x,,y) and (x,,y,) are solutions, then it follows that

a(x, +x,)+b(y, +y,) = (ax, +by,)+(ax, +by,) = 0+0 = 0,
c(x, +x,)+d(y +y,) = (ex,+dy)+(cx, +dy,) = 0+0 = 0

so (x,+x,,y, +,) 1s also a solution.
By Problem 32, the coefficient matrix of the given homogeneous 2x2 system is row-
equivalent to the 2x2 identity matrix. Therefore, Theorem 4 implies that the given
system has only the trivial solution.
If ad —bc =0 then, much as in Problem 32, we see that the second row of the reduced
echelon form of the coefficient matrix is allzero. Hence there is a free variable, and thus
the given homogeneous system has a nontrivial solution involving a parameter ¢.
By Problem 37, there is a nontrivial solution if and only if

(c+2)(c=3)=(2)(3) = ¢*—c—12 = (c—4)(c+3) = 0,

that is, either ¢ =4 or ¢=-3.

It is given that the augmented coefficient matrix of the homogeneous 3x3 system has the
form

pa,+qa, pb+qgb, pc +qgc, 0

Upon subtracting both p times row 1 and ¢ times row 2 from row 3, we get the matrix
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a b ¢ 0
a, b, ¢, 0
0 0 0 O

corresponding to two homogeneous linear equations in three unknowns. Hence there is at
least one free variable, and thus the system has a nontrivial family of solutions.

40. In reducing further from the echelon matrix E to the matrix E*, the leading entries of
E become the leading ones in the reduced echelon matrix E*. Thus the nonzero rows of
E* come precisely from the nonzero rows of E. We therefore are talking about the same
rows — and in particular about the same number of rows — in either case.

SECTION 3.4
MATRIX OPERATIONS

The objective of this section is simple to state. It is not merely knowledge of, but complete mastery
of matrix addition and multiplication (particularly the latter). Matrix multiplication must be
practiced until it is carried out not only accurately but quickly and with confidence — until you can
hardly look at two matrices A and B without thinking of "pouring" the ith row of A down the jth
column of B.

3 -5 -1 0 9 —15] [-4 0 5 -15
1. 3 +4 = + —
2 7 3 —4 6 21 12 -16 18 5

) J2 0 B[22 3 1] _[1o 0 -15) [6 -9 3] [16 -9 -I8
' -1 5 6 7 1 5] |-5 25 30| [-21 -3 -15] |26 22 15

50 -4 5 -10 O -16 20 =26 20
3. =210 7 (+4/ 3 2|=| 0 =14+ 12 88 |=]12 -6
3 -1 7 4 -6 2 28 16 22 18

2 -1 0 6 -3 -4
4. 714 0 =3|+5|5 2 -1
5 =2 7 0 7 9

14 -7 0 30 -15 =20 44 22 =20

=128 0 =21|+25 10 -5|=1|53 10 =26

35 -14 49 0 35 45 35 21 94
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10.

11.

12.

13.

2 1[4 2] [-9 1] -4 22 -1
3 21 3] [-10 12] 1 3][3 2
1 0 -3][7 4 3] 7 -13 24
3 2 1 2| =1(23 10 41
2 -3 50 9 | 11 -8 57
7 -4 311 0 -3] 1 -17 22
1 5 =2 2 4| =12 16 7
0 3 92 3 5 27 21 57
3 3 36 9
[1 2 3]|4|=[26]; 41t 2 3] = |4 8 12
6 6 5 10 15
3.0 3.0 B}
1 0 3 21 15 1 0 3
-1 4| = ;| -1 4
2 -5 4 35 0 2 -5 4
- 6 5 6 5 -
[0 2 ; 4 0 -2]
3 3
3 1 [2 = | 7 | but the product { 2} 3 1
-4 5 - =22 —4 5
2 1[-1 0 4 )
AB = =
4 3|3 =25 5 -6 31
2 756
AB = [3 -5]
-1 4 2 3

Neither product matrix AB or BA is defined.

3 12 50 1 3 1
A(BC) = =
-1 4](|-3 1J[2 3 -1 4
3 112 5010 1] [ 3
(AB)C = =
-1 4)|-3 1])|2 3] |-14
Section 3.4
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16
-1

10 17

d

2

I

0
2

1
3

|

3 0 9
=|7 =20 13
16 -25 38

is not defined.

13
} but the product BA is not defined.

} =[11 1 5 3] butthe product BA is not defined.

32
-2
32
-2

51
-17

51
-17
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14.  A(BC)
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15. A(BC) = ﬂ 1 -1 2]§ %] = [1[4 5] = [182 1(5)}

2 0 2 0
3 3 36 12 15
(AB)C = [1 -1 2]]j0 3|= 0 3|=
2 2 2 4 8 10
4 1 4
2.0
1 -1][1 0 -1 2
16. A(BC)=1{0 3
3 20132 0 1
1 4
2 0], —4 -4 2 2
-2 -2 -1 1
=10 3 =9 -12 -9 12
-3 -4 -3 4
1 4] -14 -18 -13 17
2.0
1 -1t 0 -1 2
(AB)C =|[0 3
3 2([3 2 0 1
1 4
2 -2 4 4 2 2
1 0 -1 2
=19 -6 =9 -12 -9 12
32 0 1
13 -9 -14 -18 -13 17

Each of the homogeneous linear systems in Problems 17-22 is already in echelon form, so it
remains only to write (by back substitution) the solution, first in parametric form and then in
vector form.

17. X =5 x, =t x =55-4, x,=-2s+7t

x = 5(5,-2,1,0)+1(~4,7,0,1)

18. X, =S8, x, =t x =3s-6t x;=-9

x = 5(3,1,0,0)+¢(=6,0,-9,1)
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19.

20.

21.

22.

23.

24,

25.

X, =S8, X =1t x =-3s+t, x, =25—-6t, x; =-—5+8

x = 5(=3,2,-1,1,0)+£(1,-6,8,0,1)

X, =8, x; =1t x =3s=-Tt, x, =2 x, =10¢

x = 5(3,1,0,0,0)+#(~7,0,2,10,0)

X, =r, X,=85 Xs=1t x =r=2s=T7t, x, = =2r+3s—-4

x = 7(1,-2,1,0,0)+5(=2,3,0,1,0)+(~7,-4,0,0,1)

X, =r, X, =8 Xs=1 x =r=Ts=3t, x; =s5+2t

x = r(1,1,0,0,0)+5(~7,0,1,1,0)+#(-3,0,2,0,1)

i . 2 1)|la b 1 0 ) .
The matrix equation 3 = : entails the four scalar equations

21lec d 0
2a+ ¢ =1 2b+d =0
3a+2c = 0 3b+2d =1

that we readily solve for a=2, b=-1, ¢c=-3, d =2. Hence the apparent inverse
2 -1
matrix of A, suchthat AB=1,is B = { 3 9 } Indeed, we find that BA =1

as well.

) , 3 4ila b 1 0 ) )
The matrix equation s = : entails the four scalar equations

Tlle d 0
3a+4c =1 3b+4d =0
S5a+7¢c =0 5b+7d =1

that we readily solve for a=7, b=-4, ¢=-5, d =3. Hence the apparent inverse

7

-4
matrix of A, suchthat AB=1,is B = { 3 } Indeed, we find that BA =1

as well.

i , 5 7|la b 1 0 ) .
The matrix equation = entails the four scalar equations
2 3|lc d 0 1
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26.

27.

28.

29.

154

Sa+7¢c =
2a+3c =

that we readily solve for a =3, b=-7, ¢c=-2, d =5. Hence the apparent inverse

3 -7
matrix of A, suchthat AB=1,is B = { s } Indeed, we find that BA =1
as well.
) ) 1 2{la b 1 0 ) )
The matrix equation = entails the four scalar equations
-2 4dlc d 0 1
a—2c = b-2d =0
—2a+4c =0 -2b+4d = 1.

But the two equations in a and ¢ obviously are inconsistent, because (—1)(1) #0, and
the two equations in b and d are similarly inconsistent. Therefore the given matrix A

has no inverse matrix.

5b+7d =0
2b+3d =1

a 0 0 - O0l[h 0 0 0 fab, 0 0 0
0 a 0 -~ 0|0 b, O -~ 0 0 ab, 0 0
0 0 a -~ 0|0 0 b -~ 0] =[]0 0 ab, 0
00 0 - 4|0 0 0 -« B| |O 0 0 a,b,

Thus the product of two diagonal matrices of the same size is obtained simply by
multiplying corresponding diagonal elements. Then the commutativity of scalar
multiplication immediately implies that AB = BA for diagonal matrices.

The matrix power A" is simply the product AAA---A of n copies of A. It follows
(by associativity) that parentheses don't matter:

ArAS — (AAA...A)(AAA...A) = (AAA...A) = Ar+s’

7 copies s copies r+s copies

the product of »+s copies of A in either case.

(a+d)A - (ad —be)l (+d)[a b} (ad b){l 0}
a —(aad —0ocC = \a —(aa —oc
c d 0 1

ab+bd }_ {a2+bc ab+bd}

- ac+cd be+d?

B (a* +ad)—(ad —bc)
- (ad +d*) - (ad — bc)

ac+cd
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30.

31.

32.

AZ

A3

A4

AS

(@

but

(b)

(a

N’

but

11

c

a b

d

-+

2 1
If A= L 2} then a+d = 4 and ad —bc = 3. Hence

2o V=13

2
4A =31 = 4[
1
, 5
4A% -3A =
4
(14
4A° —3A° = 4
13
41
4A° -3A° = 4
40

;

321_1413.
1 2| [13 14(

13 o 5 4 41 40
14 40 41

Al { } |

2 -1
If A= and B = then
-4 3

(A+B)(A-B) _[ 1 10}[

B 8§ -5] [16 40] [-8 -45
=20 13| |24 64| |-44 51/

If AB=BA then

(A+B)(A -

- 2

B) = A(A-B)+B(A-B)

= A°’~AB+BA-B? = A’-B’.

2 -1 1 5
If A= and B = then
-4 3 3 7
) 3 4|3 4 5 52
(A+B)” = =
-1 10(|-1 10 —-13 96

, , 8 5] 2 11 5] [16 40
A"+2AB+B° = +2 +
20 13 4 3|3 7| |24 64

]

8§ 5] -1 3] [16 40 22 41
+2 + = .
20 13 {5 1} [24 64} [14 79}

Section 3.4 155



33.

34.

35.

36.

37.

38.

39.

40.

41.

156

(b) If AB=BA then
(A+B)A-B) = A(A-B)+B(A-B)

= A’~AB+BA-B* = A’-B~

Four different 2x2 matrices A with A>=1 are

ot Lo Lo S [0

1 -1

If A= | J # 0 then A* = (0)A—(0)I = 0.
2 -1 s

If A=], _ |#0then A® = (DA-(OI = A
0 1 )

If A= Lol 0 then A’ = (0)A—(-DI = L

0 1
If A= 0} # 0 then A> = (0)A-(DI = -1

0 1 0
If A= { 0} # 0 is the matrix of Problem 36 and B = {

of Problem 37, then A>+B?> = (I)+(-I) = 0.

If Ax; = Ax, =0, then

A(cx, +6,x,) = ¢ (Ax))+c, (AX,) = ¢,(0)+¢,(0) = 0.

(a) If Axo=0 and Ax;=b, then A(x,+X,) = Ax,+Ax, =

(b) If Ax;=b and Ax;=b, then A(x,-X,) = Ax, —Ax, =

If AB = BA then

(A+B)" = (A+B)(A+B)’ = (A+B)(A’+2AB+B’)
A(AZ+2AB+B2)+B(A2+2AB+B2)
(A3+2A2B+AB2)+(A2B+2AB2+B3)

Chapter 3
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= A’ +3A°B+3AB’* +B°.

To compute (A + B)4 , write (A+ B)4 = (A+B)(A +B)3 and proceed similarly,
substituting the expansion of (A + B)3 just obtained.

0 0 4 0 0 0
42. (a)  Matrix multiplication gives N> = |0 0 0| and N’ =[{0 0 0
0 0 0 0 0 0
1 00 0 2 0] [0 0 4 1 4 4
(b) A =I+2N+N*={0 1 0[|+2(0 0 2|+|/0 0 O|=|0 1 4
0 0 1 0 0 0/ [0 0O 0 0 1
0 0 0 2 0 0 0 4 1 6 12
A’ =T+3N+3N* =|0 1 0[+3/0 0 2[+3/0 0 0= 6
0 1 000 0 0 0 0 0
0 0 020 0 0 4 1 8 24
A* = T+4N+6N> =0 1 O0|+4[0 0 2|+6/0 0 O = 1 8
0 0 1 0 0 0 0 0 0 0 0 1
2 -1 -1 6 -3 -3
43. First, matrix multiplication gives A> = |-1 2 -1|=|-3 6 -3| = 3A. Then
-1 -1 2 -3 3 6
A’ = A’ A =3A-A = 3A° = 3.3A = 9A,
A' = AP A = 9A-A = 9A% = 9.3A = 27A,
and so forth.
SECTION 3.5

INVERSES OF MATRICES

The computational objective of this section is clearcut — to find the inverse of a given invertible

matrix. From a more general viewpoint, Theorem 7 on the properties of nonsingular matrices
summarizes most of the basic theory of this chapter.
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In Problems 1-8 we first give the inverse matrix A~ and then calculate the solution vector x.

-4 3] -4 36 -2

) Al 5 7] 5 =7][-1] [-26
= . X = =

-2 3 -2 3 [3] [11

3 A 6 —7] 6 7121 [33]
= . X = =

-5 6 | -5 6 ||-3] |-28

L 1712 17 -12][5 25
4. Al = ©ox = =
-7 5 -7 5|5 -10
5 A —1_4 _2_' x—l 4 =203 —l 8
) 21-5 3/ 21-5 31|l6| 2]-7
¢ A71_1_6 -71 L[ 6 7o} 1
: 33 4 3|3 45| 3
7 A —1_7 _9_' x—l 7903 —l 3
) 41-5 7V 41-5 72| 4|-1

g Al 1110 =15 110 =157] 1] 25
. = — ; X = — = —
5/-5 8 5/-5 8 ||3] 5|-11

In Problems 9-22 we give at least the first few steps in the reduction of the augmented matrix
whose right half is the identity matrix of appropriate size. We wind up with its echelon form, whose
left half is an identity matrix and whose right half is the desired inverse matrix.

56 1 0| RI=R2 |1 1 1 —-1| R2#4Rl |1 1 1 -1
9. - -
4 5 0 1 4 5 0 1 01 4 5

RI-R2 |1 0 5 -6 4 5 -6
- ; thus A7 =
01 -4 5 -4 5

57 1 0] R=R2 |1 1 1 -1 R2=4RL |1 1 1 -1
10. — —
4 6 0 1 4 6 0 1 02 -4 5
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SWAP(R1,R2)
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1
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2
-3 0
4 -1

18

thus A™' = {

0
0
1

1 3 2 01
27 3 10
379 00
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0
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-1 -3

=22 2
10

=22 2 7
=27 3 8
10 -1 -3

1 00
- |0 1 0
0 0 1
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-3 0 0
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1 0
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-3 0 0 1
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0
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0 0 2 -1
5 0 O

R2-R1
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45010
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-1 0 0
0 0
-3

1

0

1

}

-1 -2 0
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R4-5R2

0 4 91 -3 4 020

R4-3R1
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9

0 4
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1 3 1 3 4 0
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1
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%

0
1
In Problems 23-28 we first give the inverse matrix A~ and then calculate the solution matrix X.

-1 -2 0 1 -1 0 O
1 3 1 -3 4 30
1 2 0 0
5 10 1 3

1
0
0
0

R2-3R3
—

-1

0 0 0 1
1 00 0 =2

1

0
0

:

-3

1

0 00

5

35

-16

-3
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25.

26.

27.

28.

29.

30.

31.

32.

33.
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11 -9 4 11 -9 491 0 3 7 -14 15
At =2 2 -1, X=[-2 2 -1|l0 2 2|=|-1 3 =2
2 1 0 2 1 0of|l-1 10 2 2 -4
16 3 11] -16 3 11 0 1 21 9 6
A= 6 -1 -4|; X=|6 -1 =40 3 0 8§ -3 =2
13 2 9| -13 2 9 0 2 -17 6 5
7 =20 17] 7 =20 17][0 0 1 1 17 =20 24 -13
A'=]0 -1 1/ ;X=|0 -1 11{01 0 1|=]1 -1 1 -1
2 6 5] 2 6 =51 010 -5 6 -7 4
-5 5 10 -5 5 102 102 -5 5 10 1
A'=-8 8 15|:X=/-8 8 151{|-1 3 5 0|=|-8 8 15 7
24 23 -45 24 -23 45|[1 1 0 5 24 23 -45 -13
(a)  The fact that A" is the inverse of A means that AA™ = A'A =1 That is, that

when A~ is multiplied either on the right or on the left by A, the result is the identity
matrix I. By the same token, this means that A is the inverse of A™.

®) A'A)Y =A"-AAT (A = A" 1Ay =...=1. Similarly,
(A" A" =1, soit follows that (A™)" is the inverse of A”.

ABC-C'B'A"'=AB-I-B"'A"' =A-I-A"" =1, and we see is a similar way that
C'B'A"-ABC=L

Let p=—r>0, g=—s>0, and B=A"". Then

A'A’ = APAT = (ATH)"(ATY
= B’B’ = B”" (because p,q>0)
— (A—l)p+q :A—p—q — Ar+s

as desired, and (A”) =(A ") =(B?) ¢ =B = A" = A" similarly.

Multiplication of AB = AC on the left by A~ yields B =C.

In particular, Ae, =e, where e, denotes the jth column vector of the identity matrix I.

Hence it follows from Fact 2 that AI =1, and therefore A = I''=1L
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34.

3S.

36.

37.

38.

39.

40.

41.

42,

43.

The invertibility of a diagonal matrix with nonzero diagonal elements follows immediately
from the rule for multiplying diagonal matrices (Problem 27 in Section 3.4). The inverse of
such a diagonal matrix is gotten simply by inverting each diagonal element.

If the jth column of A is all zeros and B is any nXn matrix, then the jth column of BA is
all zeros, so BA #I. Hence A has no inverse matrix. Similarly, if the ith row of A is all

zeros, then so is the ith row of AB.

If ad — bc =0, then it follows easily that one row of A is a multiple of the other. Hence the

% %
reduced echelon form of A is of the form [O O} rather than the 2x2 identity matrix.

Therefore A is not invertible.

Direct multiplication shows that AA™ = A™A =1.

3 0Ofla b 3a 3b
EA = =
0 1ilc d c d
0 Ofla, a, a; ap ap a;
EA =10 Oflay ay ay|= a4y a4y 3
_2 0 1_ | 431 O3 A3 | | a5t 2a,, ay+ta, ay+ta;
01 0fla, a, a; ) 4y Ay
EA = 0 Oflay ay ay|=|a, a, a;
10 0 1]la, ay, as; | %31 43 Ay

This follows immediately from the fact that the ijth element of AB is the product of the ith
row of A and the jth column of B.

Let e, denote the ith row of 1. Then e,B=B., the ith row of B. Hence the result in
Problem 41 yields

€ eB B,
e e,B B
B=|’B=|"> |=|.|=B
em emB BWI
Let E,E,, ---,E, be the elementary matrices corresponding to the elementary row

operations that reduce A to B. Then Theorem 5 gives B=E,E, ,---E,E A =GA where
G=EE, --EE,.
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44, This follows immediately from the result in Problem 43, because an invertible matrix is
row-equivalent to the identity matrix.

45.  One can simply photocopy the portion of the proof of Theorem 7 that follows Equation (20).
Starting only with the assumption that A and B are square matrices with AB =1, itis
proved there that A and B are then invertible.

46. If C=AB isinvertible, so C' exists, then ABC™")=I and (C'A)B =1 Hence the
fact that A and B are invertible follows immediately from Problem 45.

SECTION 3.6
DETERMINANTS
0 0
4 0
1. 4 0 o:+(3)‘ ‘=3-4-5=60
0 5
0 5
2 0
2 1 2 1—+(2)‘2 1‘ (1)‘1 1‘—2(4 D-(2-0) = 4
: B 1 2 0 2 B
1 2
10 0
0 5 0
3 205 O—+(1)6 9 8§ = (5)6 8 _ 5(42-0) = —210
) 3 6 8 B 0 7 -
0 10 7
4 0 10 7
5 11 8 7
5 11 8
4 372623 =33 =2 6—3(4)5 8 _ 12(30-24) = =72
: 0 0 0 -3 B 3 6 B
0 4 0
0 4 0 17
00100
200 0
200 0 0 0 3 0
0030 30
5 000 3 0=+1 = 4200 0 4] =2(+5) =2.5.3-4 = 120
00 0 4 0 4
0000 4 50 0
0500
0500 0
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10.

11.

12.

13.

N O O =

0 11 -5 0
3 0 -5 0
4 13 6 5 3 00
-2 4 6 5 4 5
0 5 0 0 =+5 = 5(-2)-2 4 5| = -10(+3) = 60
6 17 7 6 7
6 -9 17 7 7 6 7
o o0 2 0
0 8 2 0
1 1 1
R2-2R1
2 2 = 0 0=20
3 3 3 3 3
3 2 4
R2+R1 3
-3 1 = |0 5 ——5‘ ‘:—5(4—9):25
3 2
2 7 3 7
-2 5 -2 5
R3-2RI1 3 5
5 171 = [0 5 17 = +20 2‘ = 5(6—0) = 30
-4 12 0 0 2
6 o 0 -7
RI+3R2 1 -2
-2 -4 = 1 -2 4 :+(—7)‘2 5‘:—7(—5+4)=7
-5 12 2 =5 12
2 3 4 1 2 3 4
5 6 7
5 6 7| R4&2RLI0 5 6 7 8 9
= =+10 8 9 =+5 = 5.8 = 40
0 8 9 0 0 8 9 0 1
0 0 1
4 6 9 0 0 0 1
0 0 -3 2 0 0 -3
1 11 12
1 11 12| R4+2R1 10 1 11 12 5 13
= =420 5 13| =+2 =2-5=10
0 5 13 0 0 5 13 0 1
0 0 1
o o0 7 00 0 1
4 - -4 4 -1 0 20 11
R2+R3 R1+4R3 20 11
-2 2 = 0O 2 5 = 0O 2 5 =+1‘2 ‘:100—22:78
4 3 1 4 3 1 4 3
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4 2 22 1 1 3| r-3r|(l 1 3
RI-R2 R3+5RI1 2 —14
14. 3 1 =5 = 3 1 =5 = |0 =2 -14| = +1 { 18‘ = -22
-5 -4 3 -5 4 3 0 1 18
-2 5 4 13 14 13 14
RI+2R3 R2-5R3 13 14
15. 5 3 1 = 5 3 1 = |0 =17 -24| = +1 = -74
-17 24
1 4 5 1 4 5 1 4 5
2 4 =2 10 0 -4 0O 0 -4
RI-2R3 R2+2R3 10 -4
16. -5 4 -1 = |-5 -4 -1 = |-13 0 1| = —2‘ 13 1‘ = &4
-4 2 1 -4 2 1 -4 2 1
2 3 3 1 2 3 3 1
4 3 3| r+rt |4 3 =3
0 4 3 3IRrR-rR|0 4 3 =3 R3+R
17. = =24 4 -4 = 210 -1 -7 =28
2 -1 -1 3 0 4 -4 4
-4 -3 2 0 0 -1
0O 4 -3 2 0O 4 -3 2
1 4 4 1 1 4 4 1
1 =2  2|ror1|l =2 2
0 1 =2 2|R-3RI)0 1 -2 2 R3-R1
18. = =1-9 -11 1 = [0 =29 19| =135
3 3 1 4 0 -9 —-11 1
1 -3 2 0O -1 -4
01 -3 =2 o 1 -3 =2
1 0 0 3 1 0 0 3
1 =2 1 0 O
0 1 =2 Ol mB+2RrR|0 1 =2 0 C2+2C1
19. = =13 -2 9 = 3 4 9 =39
-2 3 -2 3 0 3 -2 9
-3 3 3 -3 -3 3
0O -3 3 3 0 -3 3 3
1 2 1 -1 1 2 1 -1
R2-2R1 -3 1 5 re+2r1|-3 1 5
2 1 3 3| R#RU |0 =3 1 R3+R1
20. = =11 -2 3 = |-5 0 13 =179
0O 1 -2 3 0o 1 =2
6 -1 3 3 0 8
-1 4 2 4 0 6 -1
3 4 112 4 113 2
5 7 All 7 A5 1
5 8 113 8 115 3
22. A = =1 = — =-1 y=— ~1
8 13 A5 13 A8 5
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23.

24,

25.

26.

27.

28.

29.

17 7
12 5

11 15
8 11

16 7 117 6
1’ = — = , y:— = —
A4 5 All2 4
110 15 111 10
1, = — =), y:—
AT 11 A8 7
112 6 15 12
2, = — = , y:— = —
Al6 4 A3 6
13 7 1 16 3
A4 9 2 AB 4
-2 1 -2 .
—3| = 96; X =—2 5 -3 =—,
A 3
5 2 -3 5
-2 5 15 2 1 .
-3 = =, X, =—1 5 2/ =-=
3 A 3
5 5 3 2
-2 14 4 =2 .
3| = 35 x=—2 0 3|=-=,
A 7
I -1 1
-2 ; 15 4 4 5
30 =2, x,=—2 0 2[=2=
7 A 7
1 2 -1 1
=5 | 3 -1 -5
=3| = 23; X = Z_4 -4 3| =2,
-5 2 0 -5
-5 13 -1 3
-3 =3, X, =—4 -4 4 =0
A
=5 1 0 2
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31.

:6;

3 =2 4

A

32.

-1

3 2

-3

35

=8

3 =27

s 7 4=y, =4
A A
33

X, =

-1

4
13

4
15
28 25 23

14
—| 16
4

= —4, Al =

det A

33.

e —
\O
1 N o D
(@) | —
N = 0
— |
S0
N <t |
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v
S n
L L 1
—-|& —|a
Il 1]
T T
< <
w v
on on
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< <
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Q [P}
o] o
<t v
en en
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36.

37.

38.

39.

40.

41.

42.

| 5 20 -17
detA = 23, Al =—]10 17 -11
23
14 -8
| 11 -14 -15
detA = 29, A7 = 2—9 -17 19 10
| 18 15 -14
. -6 10 2
detA = 6, Al = g 15 21 -6
12 -18 -6
. -21 -1 -13
detA = 37, Al=—| 4 9 6
37
-6 5 -9
9 12 -13
detA = 107, Al = L 11 21 -4
107
-15 =20 -14
a
If A:{ 1} and B=[b, b,] interms of the two row vectors of A and the two column
a,
ab, ab,
vectors of B, then AB = , SO
ab, ab,
ab, ab b’
(AB)T= ™1 20| 1T [alr alT]:BTAT,
ab, a)b, b,
because the rows of A are the columns of A’ and the columns of B are the rows of B’.
a bl x ax+ by ax by
c dl|ly cx+dy| |ex+dy| |cx+dy
= ac X +ad X +bc y +bd‘y‘ = ad X‘+bc y
X y X Yy Yy X
X X X
= ad —bc = (ad —bc) ‘ = (det A)(det B)
y Yy Yy
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44.

45.

172

We expand the left-hand determinant along its first column:

ka,, @, a;
kay —a,, a;
ka, ay, asy
= kay, (a12a23 —ayd; ) —kay, (a12a33 —a30; ) +kas, (a12a23 - a22a13)
= kl:an (1205 = ya5) = ay, (a,055 = a3,0,5) + a5, (@505, = ayay, )]
a, ap a;
= klay ay ay

a; 4y Ay
We expand the left-hand determinant along its third row:

) 4y Ay

= 4y (a22a13 —aydp ) — a3 (a21a13 —aydy, ) Tay (a21a13 —anay, )

== I:an (ana, —aynay; ) —ay, (aya, —a,a,) + a5 (a0, —aya; )]
a,  4p 4

= klay ay ay

a3 Gy G
We expand the left-hand determinant along its third column:

a b ¢ +d,
a, b, c,+d,
a, by c,+d,
= (¢, +d,)(ab; —ash,) = (e, +d, ) (aby - asby ) +(cs +dy ) (@b, —ayby)
= ¢ (aby—asb,) —c, (aby —asb,) +¢; (a0, —ah))
+d, (a,b,—asb,) - d, (ab;, —a;b ) +d; (ab, - a,b,)
a b ¢ a b 4
=|a, b, ¢ +|a, b, d,

a, by, ¢ a, b, d,
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46.  We expand the left-hand determinant along its first column:

a,+kb, b ¢
a,+kb, b, c,
a,+kb, by c,
= (a,+kb ) (byey —bsey) —(ay + kb, ) (bie; = esbs ) +(a; + kb, ) (be, = byc )

I:al (bzcs —byc, ) 4, (blc3 — ;b ) ta, (blcz —by )]

+k I:bl (byes —bye, )= by (bie; —csby ) + by (e, —bye )]
a b ¢ b b 4, a b ¢
=la, b, ¢ +klb, b, d,|=la, b, c

a; by ¢ by by d, a, by ¢

47.  We illustrate these properties with 2x2 matrices A = [aij] and B= [b,.j ]

(a) (AT)T _ [an azﬂ _ [an a12:| — A

ap dy Gy, Ay

T
(b) (CA)T _ |:Ca11 ca12i| _ {Cau ca21i| _ c{all a21i| NG

Ca,;  Cy ca, Cdy a4, A4y

T
a, +by, an‘”’u} _ [a11+b11 a21+b21:|
ay +by  ay+b, ay +by,  ay, +by

b, b
_ {an a21}+|: I 21} - AT4+B’
ap dy b, by,
48.  The jjth element of (AB)" is the jith element of AB, and hence is the product of the jth

row of A and the ith column of B. The ijth element of B A’ is the product of the ith row
of B” and the jth column of A’. Because transposition of a matrix changes the ith row to
the ith column and vice versa, it follows that the ijth element of B"A” is the product of the
jthrow of A and the ith column of B. Thus the matrices (AB)" and B’ A’ have the
same ijth elements, and hence are equal matrices.

© (A+B) :[

a b ¢ a a, a,
49, If we write A =|a, b, c¢,| and AT = b, b, b,|, then expansion of |A| along its
a; by ¢ G 6 G
first row and of ‘AT‘ along its first column both give the result

a,(bye; —bc, )+ b (a,0—ase, ) +¢ (a0, —ash, ).
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50.

51.

52.

53.

54.

55S.

56.

57.

S58.

174

If A>’=A then |A|2 :|A , SO |A|2—|A| = |A|(|A|—1) = 0, and hence it follows
immediately that either |A| =0 or |A| =1.

If A"=0 then |A|" =0, so it follows immediately that |A|=0.
If A" =A" then |A|=‘AT‘:‘A"1‘:|A|A. Hence |A|2 = 1, so it follows that |A|:i1.
If A=P~'BP then |A|=|P"'BP|=|P"|[B|[P|=[P[" [B||P|=|B].

If A and B are invertible, then |A|¢0 and |B|¢O. Hence |AB|=|A||B|¢O, S0 it
follows that AB is invertible. Conversely, AB invertible implies that |AB| :|A||B| #0,

so it follows that both |A| #0 and |B| # 0, and therefore that both A and B are
invertible.

Ifeither AB=1 or BA =1 is given, then it follows from Problem 54 that A and B are

both invertible because their product (one way or the other) is invertible. Hence A~ exists.
So if (for instance) it is AB=1 that is given, then multiplication by A™' on the right

yields B=A"".

The matrix A~ in part (a) and the solution vector x in part (b) have only integer entries
because the only division involved in their calculation — using the adjoint formula for the

inverse matrix or Cramer's rule for the solution vector — is by the determinant |A| =1.

a d f bc —cd de—bf
If A=|0 b e|then A" = —| 0 ac —ae
abc
0 0 b 0 0 ab

The coefficient determinant of the linear system

ccosB+bcosC = a
ccos 4 +acosC = b
bcosA+acosB =c

in the unknowns {cos 4, cos B, cos C} is
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59.

60.

61.

62.

Hence Cramer's rule gives

@b ab*—a’+ac® b -a’+c’
cosd = b 0 al = = ,
2abc 2abc 2bc
c a 0

whence a® = b* +c* —2bccos A.

These are almost immediate computations.

(a) In the 4x4 case, expansion along the first row gives

21 00
21 0 |1 1 0 210
1 210 2 1
=21 2 1]-0 2 1 =2|1 2 1- ,
01 2 1 2
01 2 01 2 01 2
0 01 2

so B, = 2B,—B, = 2(4)—(3) = 5. The general recursion formula B, = 2B

n—

results in the same way upon expansion along the first row.

(b) If we assume inductively that
B, =m-)+l=nand B_, = (n-2)+1=n-1,
then the recursion formula of part (a) yields

B, = 2B, —B,, = 2(n)—(n—1) = n+1.

Subtraction of the first row from both the second and the third row gives

2

(b—a)c—a)c+a)—(c—a)b—a)(b+a)

= (b—a)(c—a)[(c+a)—(b+a)] = (b—a)(c—a)(c-b).

Expansion of the 4x4 determinant defining P(y) along its 4th row yields

Section 3.6

1 a a 1 a a’
1 b Bl =10 b—a b*-d*| = (b-a)c?-a*)—(c—a)b>—d*)
1 ¢ ¢ 0 c—a c*-d°

1 _an2
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63.

64.

176

1 x x
P(y) = y'|l x, xj|+- = yV(x,x,,x;)+ lower-degree terms in y.

2
I x; X

Because it is clear from the determinant definition of P(y) that

P(x,)=P(x,) = P(x;) =0, the three roots of the cubic polynomial P(y) are x,,x,,x;.
The factor theorem therefore says that P(y) = k(¥ —x,)(y—x,)(y—x;) for some constant
k, and the calculation above implies that

k = V(x,x,x) = (6 —x)(x —x)(x, —x).
Finally we see that

V(x,x,,x5,x,) = P(x,) = V(x,%,x) (x, —x)(x, —x,)(x, — X,)

= (0, = x)(x = 2,) (g = x)(o65 = 2, )(o65 = X,) (%, = ;)

which is the desired formula for V(x,,x,,x;,x,).

The same argument as in Problem 62 yields

P(J’) = V(xlaxza"'9xn—1)'(y_xl)(y_x2) """ (y_xn—l)'

Therefore

i>j

= ll[(x[ —xj).

i>j

(@ 1,2,3,4) = (@E-1D)(E-2)4-3)3-D3-2)2-1) = 12
b)  T(-1,2-2,3) =

[3-(-D]B-2][3-(-2)][(-2)- (-1 ][(-2)-2][2-(-1)] = 240
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SECTION 3.7

LINEAR EQUATIONS AND CURVE FITTING

In Problems 1-10 we first set up the linear system in the coefficients a, b, ... that we get by

substituting each given point (x,, y,) into the desired interpolating polynomial equation

y=a+bx+---.

1.

y(x) = a+bx

bobjpar 1 2, b=3 - 243
Lallel Tl = a=-2,b= so  y(x) = —-2+43x

y(x) = a+bx

I =ljjal |11 4 he7 _ 47
L2l T 1210 = a=4, b=- so y(x) =4-Tx

y(x) = a+bx+cx’

1 0 Offla 3
1 1 1||p| =1|1 = a=3,b=0,c=-2 so yp(x)=3-2x
1 2 4||c -5

y(x) = a+bx+cx’
I -1 1}|a
1 1 1b| =15 = a=0,b=2c=3 so ypx)=2x+3x"
1 2 4jc 16

y(x) = a+bx+cx’

I 1
I 2
I 3

© B o=
SRS T

3
=13 = a=5 b=-3,c=1 so yp(x)=5-3x+x
5

y(x) = a+bx+cx’

I -1 1}||a -1
1 3 9|b| = |-13
1 25 || c 5

Section 3.7

Then we give the polynomial that results from solution of this linear system.
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8.

9.

10.

= a=-10, b=-7, c=2 so p(x) = —10—-Tx+2x’

y(x) = a+bx+cx’ +dx’

1 -1 1 -1||la 1

1 0 0 O0fb| |0

1 1 1 1]e] |1

1 2 4 8||d —4
4 4 1

= a=0,b=—, c=1,d=—— 5o x) = —(4x+3x" —4x°
3 3 ) = )
y(x) = a+bx+cx’ +dx’

1 -1 1 -1}||la 3

1 0 0 O0yfb| |5

1 1 1 cl |7

1 2 4 8||d 3

= a=5b=3,¢c=0,d=-1 so pkx)=5+3x—x

y(x) = a+bx+cx’ +dx’

1 2 4 -8[a -2
1 -1 1 -1|b]| |2
1 1 1|le| |10
1 2 4 8|ld 26

= a=4,b=3,c=2,d=1 so yx)=4+3x+2x" +x°

y(x) = a+bx+cx’ +dx’

1 -1 1 -1][a 17
1 1 bl |5
1 4 8|lc| |3
1 3 9 274 -2

= a=17, b=-5¢=3,d=-2 so y(x) = 17-5x+3x"-2x’

In Problems 11-14 we first set up the linear system in the coefficients A, B, C that we get by

substituting each given point (x,,y,) into the circle equation Ax+ By+C=-x"—)" (see

Eq. (9) in the text). Then we give the circle that results from solution of this linear system.
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11.  Ax+By+C=-x*—)"

-1 -1 1]} 4 -2
6 6 1||B| = |-72 = A=-6, B=—4, C=-12
7 5 1||C 74

X +y —6x—4y—-12 =0

(x=3)+(y=2) =25 center (3,2) and radius 5

12.  Ax+By+C=-x*—)"

3 4 1|4 -25
5 10 1||B| = |-125 = A4=6, B=-8, C=-75
-9 12 1| C =225

X’ +y +6x-8y-75 = 0

(x+3)*+(y—4)> =100  center (-3, 4) and radius 10

13.  Ax+By+C=-x"—)’

1 0 1[4 -1
0 =5 1||B| = |-25| = A=4, B=4, C=-5
-5 -4 1||c —41

X +y +4x+4y-5=10

(x+2)°+(y+2)* =13 center (-3,-2) and radius /13

14. Ax+By+C=-x> -y’

0 0 1|4 0
10 0 1||B| = |-100 = A=-10, B=-24, C=0
=7 7 1]||C -98

x> +y°—10x-24y = 0

(x=5)°+(y—12)*> =169  center (5,12) and radius 13

In Problems 15—18 we first set up the linear system in the coefficients A4, B, C that we get by
substituting each given point (x,,y,) into the central conic equation Ax” + Bxy+Cy” =1 (see
Eq. (10) in the text). Then we give the equation that results from solution of this linear system.
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15. Ax* +Bxy+Cy* =1

0 0 25|14 1
25 25 25| C 1

X —xy+y’ =25

16. Ax* +Bxy+Cy* =1

0 0 254 1
25 0 0 (B
100 100 100 || C 1

I
U
N
|||
I
I
|

4x* —Txy+4y> = 100

17. Ax* +Bxy+Cy* =1

0 0 1 || 4 1
1 0 0 (B = |1 = A=1,B=—%,C=l
100 100 100 || C 1

100x> —199xy +100y> = 100

18. Ax* +Bxy+Cy* =1

0 0 16]4 1
9 0 0|B|=|1] = 4=—, B= C=—
25 25 25]|C 1

400x> —481xy +225y° = 3600

19.  We substitute each of the two given points into the equation y = A+ E

X
b A 5 2
1 = = A=3, B=2 so y =3+—
B 4 x

20.  We substitute each of the three given points into the equation y = Ax+ B + %
X x
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1 1 1 y )

2 l l B| =120 = A=10, B=8, C=-16 soy=10x+§—¥
2 4 C 41 X X
1 1
4 16

In Problems 21 and 22 we fit the sphere equation (x—#)* +(y—k)>+(z—1)* =7’ in the expanded
form Ax+By+Cz+D=-x>—y" —z* that is analogous to Eq. (9) in the text (for a circle).

21. Ax+By+Cz+D=—-x"—y* =7

4 6 15 1[4 —277
13 5 7 1|8 243
_ = A=-2, B=-4, C=—6, D=-155
5 14 6 1||C —257
5 5 9 1||D ~131

X4y +z2=2x—4y—62z-155 =0

(x=1°+(y=2)"+(z=3)*> =169 center (1,2,3) andradius 13

22, Ax+By+Cz+D=-x"—y> -7

11 17 17 1[4 —699
29 1 15 1||B ~1067
- = A4=-10, B=14, C=-18, D=-521
13 -1 33 1||C ~1259
-19 -13 1 1||D -531

x4+ +22=10x+14y—-182-521 = 0
(x=52+(y+7) +(z=9)* = 676 center (5,-7,9) and radius 26
In Problems 23-26 we first take ¢ = 0 in 1970 to fit a quadratic polynomial P(t) = a+bt+ct’.

Then we write the quadratic polynomial Q(T) = P(T —1970) that expresses the predicted
population in terms of the actual calendar year 7.

23. P(t) = a+bt+ct’

I 0 0 |a 49.061
1 10 1001/ b 49.137
1 20 400 c 50.809
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25.

26.

In Problems 27-30 we first take # = 0 in 1960 to fit a cubic polynomial P(f) = a+bt+ct’ +dt .
Then we write the cubic polynomial Q(T) = P(T —1960) that expresses the predicted population

P(t) = 49.061-0.0722¢+0.00798¢
O(T) = 31160.9-31.5134T +0.00798 7"

P(t) = a+bt+ct?

I 0 O ||a 56.590
1 10 100 || b| =|58.867
1 20 400||c 59.669

P(t) = 56.590+0.30145¢—0.007375¢*
O(T) = —29158.9+29.3589T —0.007375T"

P(t) = a+bt+ct’

I 0 0 |a 62.813
1 10 100||b| =|75367
I 20 400|(| c 85.446

P(t) = 62.813+1.37915¢-0.012375¢°
O(T) = —50680.3+50.1367T —0.012375T"

P(t) = a+bt+ct?

I 0 O ||a 34.838
1 10 100|b| =|43.171
1 20 400||c 52.786

P(t) = 34.83840.7692¢+0.00641¢>
O(T) = 23396.1—-24.4862T +0.006417"

in terms of the actual calendar year T.
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27.

28.

29.

30.

P(t) = a+bt+ct’ +dt’

1 0 0 0 |la 44.678
1 10 100 1000 || & 49.061

1 20 400 8000 || ¢ 49.137

1 30 900 27000 | d 50.809

P(t) = 44.678+0.850417¢—0.05105¢> +0.000983833¢°

O(T) = —7.60554x10°+11539.4T —5.83599 7% +0.000983833 T

P(t) = a+bt+ct’ +dt’

0 0 0 Jla 51.619
10 100 1000 || 5| [56.590
20 400 8000 || c| |58.867
30 900 27000 || d 59.669

—_— =

P(t) = 51.619+0.672433¢—0.019565¢* +0.000203167 £
O(T) = —1.60618x10° +2418.827 —1.21419T* +0.000203167 T

P(t) = a+bt+ct’ +dt’

0 O 0 a 54.973
10 100 1000 || b 62.813
20 400 8000 || c| |75.367
30 900 27000 || d 85.446

—_— ek

P(t) = 54.973+0.308667¢+0.059515¢* —0.00119817 ¢
O(T) = 9.24972x10° —14041.6T +7.10474T* —0.00119817 T

P(t) = a+bt+ct’ +dt’

1 0 0 0 |la 28.053
1 10 100 1000 || b 34.838
1 20 400 8000 || ¢ 43.171
1 30 900 27000 | d 52.786
P(t) = 28.053+0.592233¢+0.00907 > —0.0000443333 ¢’
O(T) = 367520—545.895T +0.26975T7 —0.0000443333 7"

Section 3.7

183



In Problems 31-34 we take £ =0 in 1950 to fit a quartic polynomial P(t) = a+bt+ct’ +dt’ +et*.
Then we write the quartic polynomial Q(7) = P(T —1950) that expresses the predicted
population in terms of the actual calendar year 7.

31.  P(t) = a+bt+ct’ +dt’ +et.

1 0 0 0 0 a 39.478 ]
1 10 100 1000 10000 || b 44.678
1 20 400 8000 160000 || c | = |49.061
1 30 900 27000 810000 ||d 49.137
1 40 1600 64000 2560000 e | |50.809 |

P(t) = 39.478+0.209692¢+0.0564163¢* —0.00292992* +0.0000391375¢"
O(T) = 5.87828x10% —1.19444x10° T +910.118 7> —0.308202 7" +0.0000391375T*

32.  P(t) = a+bt+ct’ +dt’ +et.

1 0 0 0 0 a 44 461 |
1 10 100 1000 10000 || & 51.619
1 20 400 8000 160000 || c | =|56.590
1 30 900 27000 810000 || d 58.867
|1 40 1600 64000 2560000 e | |59.669 |

P(t) = 44.461+0.7651¢—0.000489167¢* —0.000516¢ +7.19167x10~° ¢*
O(T) = 1.07807x10°—219185T +167.096T* —0.0566117" +7.19167x10~° T*

33.  P(t) = a+bt+ct’ +dt +et.

1 0 0 0 0 a [47.197 ]
1 10 100 1000 10000 || b 54.973
1 20 400 8000 160000 || c | = |62.813
1 30 900 27000 810000 ||d 75.367
|1 40 1600 64000 2560000 || e | |85.446

P(t) = 47.197+1.22537¢t-0.0771921¢* +0.00373475¢ —0.0000493292 ¢*
O(T) = —7.41239x10° +1.50598x10° T —1147.37T* +0.388502 7> —0.0000493292 T*
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34.

3S.

36.

37.

38.

P(t) = a+bt+ct’ +dt’ +et’.

1 0 0 0 0 a 20.190 |
1 10 100 1000 10000 || b 28.053
1 20 400 8000 160000 || c | = |34.838
1 30 900 27000 810000 ||d 43.171
1 40 1600 64000 2560000 e | |52.786

P(t) = 20.190+1.000037—0.031775¢* +0.00116067 £ —0.00001205¢"
O(T) = —1.8296x10* +370762T —281.742T7 +0.0951507 > —0.00001205 T*

Expansion of the determinant along the first row gives an equation of the form
ay+bx* +cx+d =0 that can be solved for y = Ax* + Bx+C. If the coordinates of any

one of the three given points (x,,),), (x,,»,), (x;, ;) are substituted in the first row, then
the determinant has two identical rows and therefore vanishes.

Expansion of the determinant along the first row gives

2
y x x 1 111 Bl B11Bo11
301 11 .
RN E S0 EIR R R A R R
o 31 731 |7 9117 9 3
7 9 31

2y+4x" —12x+14 = 0.

Hence y = 2x°—6x+7 is the parabola that interpolates the three given points.

Expansion of the determinant along the first row gives an equation of the form
a(x’>+y*)+bx+cy+d =0, and we get the desired form of the equation of a circle upon
division by a. If the coordinates of any one of the three given points (x,,y,), (x,,»,), and
(x;,y;) are substituted in the first row, then the determinant has two identical rows and
therefore vanishes.

Expansion of the determinant along the first row gives

)C2 +y2 X y

1
25 3 -4 1
125 5 10 1
25 -9 12 1
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39.

40.

186

3 41 |25 -4 1 25 3 1] |25 3 —4
= (x*+y)|5 10 1j-x[125 10 1+yp[125 5 1-[125 5 10
-9 12 1| 225 12 1 225 -9 1] [225 -9 12

200(x> + y*)+1200x — 1600y —15000 = 0.

Division by 200 and completion of squares gives (x+3)> +(y—4)> =100, so the circle has
center (-3, 4) and radius 10.

Expansion of the determinant along the first row gives an equation of the form
ax’ +bxy +cy® +d =0, which can be written in the central conic form

Ax* + Bxy + Cy*> =1 upon division by —d. If the coordinates of any one of the three given

points (x,,»,), (x,,¥,), and (x;, y,) are substituted in the first row, then the determinant
has two identical rows and therefore vanishes.

Expansion of the determinant along the first row gives

2 2

x xy yoo 1
0 0 16 1 _
9 0 0 1
25 25 25 1

0 16 1 0 16 1 0 0 1 |0 0 16
x[0 0 1-x9 0 I+y|9 0 1-[9 0 0
25 25 1 25 25 1) 25 25 1] 25 25 25

400x> —481xy +225y° —3600 = 0.
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CHAPTER 4

VECTOR SPACES

The treatment of vector spaces in this chapter is very concrete. Prior to the final section of the
chapter, almost all of the vector spaces appearing in examples and problems are subspaces of
Cartesian coordinate spaces of n-tuples of real numbers. The main motivation throughout is the
fact that the solution space of a homogeneous linear system Ax = 0 is precisely such a
"concrete" vector space.

SECTION 4.1
THE VECTOR SPACE R®

Here the fundamental concepts of vectors, linear independence, and vector spaces are introduced in
the context of the familiar 2-dimensional coordinate plane R* and 3-space R°. The concept of a
subspace of a vector space is illustrated, the proper nontrivial subspaces of R’ being simply lines
and planes through the origin.

1. la—b| = |(2,5,-4)-(1,-2,-3)| = |(1,7,-1)| = J51
2a+b = 2(2,5,-4)+(1,-2,-3) = (4,10,-8)+(1,-2,-3) = (5,8,—11)
3a—4b = 3(2,5,-4)—-4(1,-2,-3) = (6,15,—12)—(4,-8,—12) = (2,23,0)

2. Ja-b| = [(-1,0,2)~(3,4,-5)| = [(-4,~4,7)| = /81 = 9
2a+b = 2(-1,0,2)+(3,4,-5) = (-2,0,4)+(3,4,~5) = (L,4,~1)
3a-4b = 3(-1,0,2)-4(3,4,-5) = (-3,0,6)-(12,16,-20) = (~15,-16,26)

3. la—b| = |(2i—-3j+5k)—(5i+3j—7k)| = |-3i-6j+12K| = V189 = 321
2a+b = 2(2i—3j+5k)+(5i+3j—7k)
= (4i—6j+10K)+(5i+3j—7k) = 9i—3j+3k
3a—4b = 3(2i—3j+5k)—4(5i+3j—7K)
= (6i—9j+15K)—(20i+12j—28k) = —14i—21j+43k

4. |a-b| = |Qi-j)-(-3k)| = |2i-2j+3k| = V17

2a+b = 2Q2i—j)+(j-3k) = (4i-2j)+(j-3K) = 4i—j-3k
3a—4b = 3(2i—j)-4(j—3k) = (6i-3j)—(4j-12k) = 6i—7j+12k
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5. v = 3u, sothe vectors u and v are linearly dependent.

6. au+bv = a(0,2)+b(3,0) = (3b,2a) = 0 implies a =b =0, so the vectors u and v
are linearly independent.

7. au+bv = a(2,2)+b(2,-2) = (2a+2b,2a—-2b) = 0 implies a =b =0, so the vectors
u and v are linearly independent.

8. v = —u, so the vectors u and v are linearly dependent.

In each of Problems 9—14, we set up and solve (as in Example 2 of this section) the system

MM AR
au+bv = = =w
u, v, || b w,

to find the coefficient values @ and b such that w =aqu+bv,

1 -1][a 1
9. = = a=3b=2 so w =3u+2v

-2 3 ||b 0
3 2][a] [O

10. = = a=2,b=-3 so w =2u-3v
4 3b] |-1
5 2][a] [1

11. = = a=1 b=-2 so w =u-2v
|7 3|6 |1

4 21[a 2
12. }[ }:{ } = a=3,b=5 so w =3u+5v

7 3|la 5

13. = = a=2,b=-2 so w =2u-3v
5 4||b -2
5 —6|la 5

14. = = a=7,b=5 so w =7u+5v
-2 4 ||b 6

In Problems 15-18, we calculate the determinant |u v w| so0 as to determine (using Theorem

4) whether the three vectors u, v, and w are linearly dependent (det = 0) or linearly
independent (det # 0).
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3 5 8
15. -1 4 3| = 0 so the three vectors are linearly dependent.
2 -6 —4
5 2 4
16. -2 -3 5| = 0 so the three vectors are linearly dependent.
4 5 -7
1 3 1
17. -1 0 -2[ = =5 # 0 so the three vectors are linearly independent.
2 1 2
1 4 3
18. 1 3 2| =9 # 0 so the three vectors are linearly independent.
0 1 -4

In Problems 19-24, we attempt to solve the homogeneous system Ax = 0 by reducing the
coefficient matrix A = [u v w]| toechelon form E. If we find that the system has only the
trivial solution a = b = ¢ = 0, this means that the vectors u, v, and w are linearly independent.
Otherwise, a nontrivial solution x = [a b c] # 0 provides us with a nontrivial linear

combination au+bv+cw # 0 that shows the three vectors are linearly dependent.

2 -3 0 1 0 3
19. A=|01 2| - 1]01 -2y =E
1 -1 -1 0 0 O

The nontrivial solution a=3, b=2, c=1 gives 3u+2v+w = 0, so the three vectors
are linearly dependent.

5
20. A = |5
4

—_— W N

4 1 0
I1f - 10 1 3] = E
5 0 0

The nontrivial solution a=-2, b=3, c=1 gives 2u+3v+w = 0, so the three
vectors are linearly dependent.

1 -2 3 I 0 11
21. A=|1 -17 =101 4| =E
-2 6 2 0 0 0
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The nontrivial solution a=11, b=4, ¢c=-1 gives 1lu+4v—-w = 0, so the three
vectors are linearly dependent.

1 50 1 00
22. A=1]111| > |01 0] =E
0 3 2 0 0 1
The system Ax =0 has only the trivial solution a =b = c =0, so the vectors u, v, and
w are linearly independent.
2 5 2 1 00
23. A =10 4 —-1| - |0 1 0| = E
3 2 1 0 0 1
The system Ax =0 has only the trivial solution a =b = ¢ =0, so the vectors u, v, and
w are linearly independent.
1 4 -3 1 00
24, A =142 3| ->1]1010|=E
5 5 -1 0 0 1

The system Ax =0 has only the trivial solution a =b = c =0, so the vectors u, v, and
w are linearly independent.

In Problems 25-28, we solve the nonhomogeneous system Ax = t by reducing the augmented

coefficient matrix A = [u v w t]| toechelon form E. The solution vector

X = [a b c]T appears as the final column of E, and provides us with the desired linear

combination t = qu+bv+cw.

I 3 1 2 1 0 0 2
25. A=|-20-1 -7 -010 -1| = E
2 1 2 9 0 01 3

Thus a=2, b=-1, c=3 so t = 2u—v + 3w.

5 1 5 5 1 0 0 1
26. A=12 5 -3 30| =010 5| =E
-2 -3 4 =21 0 01 -1

Thus a=1, b=5, c=-1 sot = u+5v-w.
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27.

28.

29.

30.

31.

32.

1 -1 4 0 1 0 0 2
A=14-24 0| —>1(01206|=E
3 2 119 0 0 1 1

Thus a=2, b=6, c=1 so t = 2u+6v-+w.

2 4 17 1 0 01
A=|5117 -=101201| =E
3 -1 5 7 0 0 1 1

Thus a=1, b=1,c=1sot=ut+tv+w.

Given vectors (0,y,z) and (0,v,w) in V, we see that their sum (0, y+v,z+w) and the
scalar multiple ¢(0,y,z) = (0,cy,cz) both have first component 0, and therefore are
elements of V.

If (x,y,z) and (u,v,w) arein V, then
x+vV)+(y+u)+(z+w) = (x+y+z)+(u+v+w) = 0+0 = 0,
so their sum (x+u,y+v,z+w) isin V. Similarly,
cx+cey+cz = e(x+y+x) = ¢(0) =0,
so the scalar multiple (cx,cy,cz) isin V.
If (x,y,z) and (u,v,w) arein V, then
2(x+u) = 2x)+Q2u) = By)+@3v) = 3(y+v),
so their sum (x+u,y+v,z+w) isin V. Similarly,
2(cx) =c(2x) = cBy) = 3(cp),
so the scalar multiple (cx,cy,cz) isin V.
If (x,y,z) and (u,v,w) arein V, then

z+w = 2x+3y)+Qu+3v) = 2(x+u)+3(y+v),
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34.

3S.

36.

37.

38.

39.
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so their sum (x+u,y+v,z+w) isin V. Similarly,
cz =c(2x+3y) = 2(cx)+3(cy),
so the scalar multiple (cx,cy,cz) isin V.

(0,1,0) isin ¥V but the sum (0,1,0)+(0,1,0) = (0,2,0) isnotin V; thus V is not
closed under addition. Alternatively, 2(0,1,0) = (0,2,0) isnotin V, so V isnot
closed under multiplication by scalars.

(1,1,1) isin V, but
2(LLD = LLD+(@LLD = (2,2,2)

is not, so V' is closed neither under addition of vectors nor under multiplication by
scalars.

Evidently V' is closed under addition of vectors. However, (0,0,1) isin V but
(-1(0,0,1) = (0,0,—1) is not, so V is not closed under multiplication by scalars.

(1,1,1) isin V, but
2(LLD = (LLD+(@LI) = (2,2,2)

is not, so V is closed neither under addition of vectors nor under multiplication by
scalars.

Pick a fixed element u in the (nonempty) vector space V. Then, with ¢ =0, the scalar
multiple cu = Ou = 0 mustbe in V. Thus V necessarily contains the zero vector 0.

Suppose u and v are vectors in the subspace ¥ of R’ and a and b are scalars. Then
au and bv arein V because V is closed under multiplication by scalars. But then it
follows that the linear combination au+bv isin V because V is closed under addition
of vectors.

It suffices to show that every vector v in V' is a scalar multiple of the given nonzero
vector u in V. If u and v were linearly independent, then — as illustrated in Example
2 of this section — every vector in R? could be expressed as a linear combination of u
and v. In this case it would follow that V is all of R® (since, by Problem 38, V'is closed
under taking linear combinations). But we are given that ¥ is a proper subspace of R,
so we must conclude that u and v are linearly dependent vectors. Since u #0, it
follows that the arbitrary vector v in V' is a scalar multiple of u, and thus V' is
precisely the set of all scalar multiples of u. In geometric language, the subspace V is
then the straight line through the origin determined by the nonzero vector u.
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41.

Since the vectors u, v, w are linearly dependent , there exist scalars p, g, » not all zero
such that pu+gv+rw = 0. If =0, then p and g are scalars not both zero such that

pu+gv = 0. But this contradicts the given fact that u and v are linearly independent.
Hence »# 0, so we can solve for

w=-Ly-2y = au+bv,

r r
thereby expressing w as a linear combination of u and v.

If the vectors u and v are in the intersection V' of the subspaces V| and V5, then
their sum u+v isin ¥V, because both vectors arein V;, and u+v isin ¥V, because
both are in V5. Therefore u+v isin V, and thus V is closed under addition of
vectors. Similarly, the intersection V' is closed under multiplication by scalars, and is
therefore itself a subspace.

SECTION 4.2

THE VECTOR SPACE R" AND SUBSPACES

The main objective in this section is for the student to understand what types of subsets of the vector
space R" of n-tuples of real numbers are subspaces — playing the role in R” of lines and planes
through the origin in R®. Our first reason for studying subspaces is the fact that the solution space
of any homogeneous linear system Ax = 0 is a subspace of R".

1.

If x=(x,x,,0) and y=(y,,»,,0) are vectors in W, then their sum

X+y = (x,%,0)+(,1,,0) = (x,+y,,x,+,,0)

and the scalar multiple cx = (cx;,cx,,0) both have third coordinate zero, and therefore are
also elements of W. Hence W is a subspace of R’.

Suppose x =(x,,x,,x;) and y=(»,,»,,y;) are vectors in W, so x,=5x, and y, =5y,.
Then their sum s = x+y = (x,+y,,X, +1,,x,+¥;) = (s,,5,,5;) satisfies the same
condition

s, = x,+y = 5x,+5y, = 5(x,+y,) = 5s,,

and thus is an element of W. Similarly, the scalar multiple m = cx = (cx,,cx,,cx;) =
(m,,m,,m,) satisfies the condition m, = cx, =c(5x,) =5(cx,) =5m,, and hence is also an
element of W. Therefore W is a subspace of R’.
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The typical vector in W is of the form x=(x;,1,x,) with second coordinate 1. But the
particular scalar multiple 2x =(2x,,2,2x;) of such a vector has second coordinate 2 #1,

and thus is notin W. Hence W is not closed under multiplication by scalars, and
therefore is not a subspace of R’. (Since 2x =x +x, Wis not closed under vector addition
either.)

The typical vector x=(x,,x,,x;) in W has coordinate sum x, +x, +x; equal to 1. But
then the particular scalar multiple 2x = (2x,,2x,,2x;) of such a vector has coordinate

sum
2x, +2x,+2x; = 2(x,+x,+x;) = 2(1) = 2 # 1,

and thus is not in W. Hence W is not closed under multiplication by scalars, and
therefore is not a subspace of R’. (Since 2x =x +x, Wis not closed under vector addition
either.)

Suppose x =(x,,x,,x;,x,) and y=(y,,,,¥;,»,) are vectors in W, so
X +2x,+3x;+4x, = 0 and y +2y,+3y,+4y, = 0.

Then theirsum s = x+y = (x; +y,,X, + ¥,, X+ V3, %, +y,) = (5,,5,,5;,5,) satisfies the
same condition

S, +28, +3s, +4s, = (x,+,)+2(x,+y,)+3(x; + ;) +4(x, +y,)
= (x, +2x, +3x; +4x,) + (y, +2y,+3y,+4y,) = 0+0 = 0,

and thus is an element of W. Similarly, the scalar multiple m = cx = (cx;, ex,,cx;,¢0x,) =

(m,,m,,m,, m,) satisfies the condition
m; +2m, +3m, +4m, = cx, +2cx, +3cx; +4cx, = c(x, +2x, +3x;,+4x,) = 0,
and hence is also an element of W. Therefore W is a subspace of R”.
Suppose x =(x,,x,,x;,x,) and y =(y,,,,;,,) are vectors in W, so
x,=3x;, x,=4x, and y =3y, y,=4y,.

Then their sum s = x+y = (x,+y,,X, +1,, %+ Yy, X, +¥,) = (5,,5,,5;,5,) satisfies the
same conditions

s = X+ = 343y, = 3(x+y;) = 35,
s, = x,+y, = 4x,+4y, = 4x,+y,) = 4s,,
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11.

12.

and thus is an element of W. Similarly, the scalar multiple m = cx = (cx;, ex,,cx;,¢0x,) =

(m,,m,,m,, m,) satisfies the conditions
m, = cx;, = ¢(3x;) = 3(ex;) = 3my, m, = cx, = c(4x,) = 4(cx,) = 4m,,
and hence is also an element of W. Therefore W is a subspace of R”.

The vectors x=(1,1) and y =(1,—1) are in W, but their sum x+y=(2,0) is not,

because |2| % |O| Hence W is not a subspace of R”.

W is simply the zero subspace {0} of R’.

The vector x =(1,0) isin W, but its scalar multiple 2x =(2,0) is not, because
(2)> +(0)*> =4 #1. Hence W is not a subspace of R%.

The vectors x=(1,0) and y=(0,1) arein W, but their sum s=x+y =(1,1) is not,
because |1| + |1| =2#1. Hence W isnot a subspace of R”.

Suppose x =(x,,x,,x;,x,) and y=(y,,,,V;,»,) are vectors in W, so
X+x, = x+x, and  y+y, =yt

Then theirsum s = x+y = (X, +y,,X, + ¥,, X+ V3, X, +y,) = (5,,5,,5;,5,) satisfies the
same condition

si+s, = (q+y)+g+y,) = (q+x)+(+),)
= (G+x)+(s+y) = (G+y)+H(x+y,) = s;+s,

and thus is an element of W. Similarly, the scalar multiple m = cx = (cx;, ex,,cx;,¢0x,) =

(m,,m,,m,, m,) satisfies the condition
m +m, = cx,+cx, = c(x; +x,) = c(x;+x,) = cx;+ex, = my+my,
and hence is also an element of W. Therefore W is a subspace of R”.

The vectors x=(1,0,1,0) and y =(0,2,0,3) are in W (because both products are 0 in
each case) but their sum s=x+y =(1,2,1,3) isnot, because s,s, =2 but s,5, =3.
Hence W is not a subspace of R*.
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13. The vectors x=(1,0,1,0) and y=(0,1,0,1) are in W (because the product of the 4
components is 0 in each case) but their sum s =x+y =(1,1,1,1) is not, because
5,5,8,5, =1#0. Hence W is not a subspace of R*.

14. The vector x=(1,1,1,1) isin W (because all 4 components are nonzero) but the multiple
0x =(0,0,0,0) is not. Hence W is not a subspace of R".

In Problems 15-22, we first reduce the coefficient matrix A to echelon form E in order to
solve the given homogeneous system Ax = 0.

1 41 4 1 01 4
15. A=1|1 21 8| =101 0 2| =E
I 1 1 6 00 0O

Thus x;=s and x, =t are free variables. We solve for x, =—s—4¢ and x, =-2¢, so

X = (X,X%,,X;5,%,) = (—s—4t,-2t,s,1)
= (-s,0,5,0)+(—4t,-2¢,0,¢) = su+tv

where u = (-1,0,1,0) and v = (-4,-2,0,1).

1 4 -3 -7 1 015
16. A=|2-11 7| —=1011 3| =E
1 2 3 11 0 00O

Thus x;=s and x, =t are free variables. We solve for x;, =—s—5¢ and x, =—-s-3t,
S0

X = (X,X,,X;,%,) = (=s—=5¢,—5-3¢,5,¢)

= (-s,—s,5,0)+(-5¢,-3¢,0,¢) = su+tv

where u = (=1,—1,1,0) and v = (=5,-3,0,1).

I 3 & -1 1 0 -1 2
17. A=1]1 -3 -10 5| —-101 3 -1| =E
1 4 11 =2 0 0 0 O

Thus x;=s and x, =¢ are free variables. We solve for x;, =s—-2¢ and x, =-3s+¢,
S0
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19.

20.

X = (X,X%,,X;,X,) = (=s—5t,—s—-3¢,5,¢)
= (s,-3s,5,0)+(-2¢,1,0,) = su+tv

where u = (1,-3,1,0) and v = (-2,1,0,1).

1 3 2 5 -1 1 0 0 =2 3
A=|27411 2| =010 1 4| =E
2 6 5 12 -7 001 2 -5

Thus x, =s and x, =t are free variables. We solve for x, =2s+3¢, x, =—-s—4¢,
and x; =-2s5+5¢, so

X = (X,X,,X;,%,,X5) = (25 +3¢t,—s—4t,-2s+5¢,5,¢)
= (2s,—s,—2s,5,0)+(3¢,—41,5t,0,t) = su+tv

where u = (2,-1,-2,1,0) and v = (3,-4,5,0,1).

1 -3 -5 -6 1010
A=21 4 -4 50120 =E
13 7 1 00 0 1

Thus x, =t is a free variable and x, =0.. We solve for x,=—t and x, =-2¢, so
X = (x,%,%,x,) = (—t,-2,¢,0) = tu

where u = (-1,-2,1,0).

1 51 -8 1 0 0 5
A=1250-5 ->1(0120 3| =E
2 71 -9 001 2

Thus x, = ¢ is a free variable. We solve for x, =-5¢, x, =3¢, and x, =-2¢. so
X = (x,X%,,%;5,x,) = (=5¢,3t,-2¢t,t) = tu

where u = (-5,3,-2,1).

1 7 2 =3 1 0 0 3

A =127 1 4] —- |01 0 2| = E
3 5 -1 -5 0 01 4
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24.

25.

26.

27.

28.
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Thus x, = ¢t is a free variable. We solve for x, =3¢, x, =2¢, and x, =—4t. so
X = (X,X,,X;,x,) = (=3t,2t,-4t,t) = tu

where u = (-3,2,-4,1).

1 3 3 3 1 00 6
A=1275 -1 -]101 0 -4 = E
27 4 4 0 01 3

Thus x, = ¢ is a free variable. We solve for x, =—6¢, x, =4¢, and x, =-3t. so
X = (x,X%,,X;,x,) = (—6¢,4¢,-3t,t) = tu
where u = (-6,4,-3,1).

Let u be avectorin W. Then Ou is alsoin W. But Ou = (0+0)u = Ou + Ou, so upon
subtracting Ou from each side, we see that Ou = 0, the zero vector.

(a) Problem 23 shows that Ou =0 for every vector u.

(b) The fact that c0 = ¢(0+0) = c0+ c0 implies (upon adding —c0 to each side)
that c0=0.

(©) The fact that u + (-1)u = (1 +(-1))u = Ou = 0 means that (—1)u=—u.

If W is a subspace, then it contains the scalar multiples au and bv, and hence contains
their sum au + bv. Conversely, if the subset W is closed under taking linear combinations
of pairs of vectors, then it contains (1)u+ (1)v = u+v and (c)u+ (0)v = cu, and hence
is a subspace.

The sum of any two scalar multiples of u is a scalar multiple of u, as is any scalar
multiple of a scalar multiple of u.

Let aju+byv and aou +byv be two vectorsin W ={au+bv}. Then the sum
(au+byv) + (au+byv) = (a,+a,)u+(b +b,)v

and the scalar multiple c(au+5b,v) = (ca,)u+(ch)v are again scalar multiples of
u and v, and hence are themselves elements of . Hence W is a subspace.

If u and v are vectorsin W, then Au=ku and Av=kv. It follows that

A(autbv) = a(Au) + b(Av) = a(ku) + b(kv) = k(au + bv),
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so the linear combination au +bv of u and v is alsoin W. Hence W is a subspace.
29. If Ax=b and y= x—Xx¢, then
Ay = A(x—Xgp) = Ax—Axy) = Ax — b.
Hence it is clear that Ay =0 if and only if Ax=Db.

30. Let W denote the intersection of the subspaces U and V. If u and v are vectors in W,
then these two vectors are both in U and in V. Hence the linear combination au + bv is
bothin U and in V, and hence is in the intersection W, which therefore is a subspace. If
U and V are non-coincident planes through the origin if R?, then their intersection W is a
line through the origin.

31. Let w; and w, be two vectors in the sum U+ V. Then w; = w; +v; where uw; isin U
and v; isin V (i=1, 2). Then the linear combination

aw; +bw, = a(u; +vy) +b(uy +vy) = (au; +buy) + (av; +bvy)

is the sum of the vectors au; + bu, in U and av; +bv, in U, and therefore is an element
of U+ V. Thus U+ V isasubspace. If U and V' are noncollinear lines through the
origin in R, then U+ V is a plane through the origin.

SECTION 4.3

LINEAR COMBINATIONS AND
INDEPENDENCE OF VECTORS

In this section we use two types of computational problems as aids in understanding linear
independence and dependence. The first of these problems is that of expressing a vector w as a

linear combination of &k given vectors v, v,,---, v, (if possible). The second is that of

determining whether & given vectors v, Vv,,---, v, are linearly independent. For vectors in R”,

each of these problems reduces to solving a linear system of n equations in & unknowns. Thus an
abstract question of linear independence or dependence becomes a concrete question of whether or
not a given linear system has a nontrivial solution.

1. v, = %vl, so the two vectors v; and v, are linearly dependent.

2. Evidently the two vectors v; and v, are not scalar multiples of one another. Hence they
are linearly dependent.

3. The three vectors v, v,, and v; are linearly dependent, as are any 3 vectors in R% The
reason is that the vector equation c¢;v; + cv2 + ¢3vs = 0 reduces to a homogeneous linear
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system of 2 equations in the 3 unknowns ¢, c,, and c;, and any such system has a
nontrivial solution.

4., The four vectors v;, v,, v3, and v, are linearly dependent, as are any 4 vectors in R’. The

reason is that the vector equation c¢;v) + cava + ¢3v3 + cavs = 0 reduces to a homogeneous
linear system of 3 equations in the 4 unknowns ¢, c,, c;, and c¢,, and any such system

has a nontrivial solution.
5. The equation ¢, v, +c,v, +c,v; = 0 yields
¢,(1,0,0)+¢,(0,-2,0)+¢,(0,0,3) = (¢,,—2¢,,3¢;) = (0,0,0),

and therefore implies immediately that ¢, = ¢, = ¢; = 0. Hence the given vectors
Vi, V2, and vs are linearly independent.

6. The equation ¢, v, +c,v, +c,v; = 0 yields
¢,(1,0,0)+¢,(1,1,0)+c,(1,1,1) = (¢, +¢, +¢5,¢, +¢5,¢5) = (0,0,0).

But it is obvious by back-substitution that the homogeneous system
¢te,+c; =0
c,tce; =0

¢, =0

has only the trivial solution ¢, = ¢, = ¢; = 0. Hence the given vectors
Vi, V2, and vs are linearly independent.

7. The equation ¢, v, +c,v, +c,v; = 0 yields
¢(2,1,0,0)+¢,(3,0,1,0)+¢,(4,0,0,1) = (2¢, +3c¢,,¢,,¢,,¢;) = (0,0,0,0).

Obviously it follows immediately that ¢, = ¢, = ¢; = 0. Hence the given vectors
Vi, V2, and vs are linearly independent.

8. Here inspection of the three given vectors reveals that v, = v, +v,, so the vectors

Vi, Vo, and vs are linearly dependent.

In Problems 9-16 we first set up the linear system to be solved for the linear combination
coefficients {c,}, and then show the reduction of its augmented coefficient matrix A to reduced

echelon form E.
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5 3 1 1 0 2
A=1]32 0| =101 3| =E
4 5 -7 0 0 O

We see that the system of 3 equations in 2 unknowns has the unique solution
¢ =2,¢c,=-3, so w = 2v,-3v,.

v, te,v, = W

3 6 3 10 7
A=|1 =2 -1| 5|01 4/ =E
2 3 =2 000

We see that the system of 3 equations in 2 unknowns has the unique solution
a=T,¢c,=4, so w = Tv,+4v,.

v, te,v, = W

7 3 1 1 0 1
-6 -3 0 01 -2
A = — = E
4 2 0 0 0 O
5 3 -1 0 0 O

We see that the system of 4 equations in 2 unknowns has the unique solution
ag=lLc,=-2, so w =v,=2v,.

v, te,v, = W

7 -2 4 1 0 2
3 2 -4 01 5
A = —> = E
-1 1 3 0 0 O
9 -3 3 0 0 O

We see that the system of 4 equations in 2 unknowns has the unique solution
¢=2,c,=5, so w = 2v,+5v,.

v, te,v, = W

1 5 5 1 00
A=|5 -3 2| -=>1010]=E
-3 4 =2 0 0 1
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The last row of E corresponds to the scalar equation Oc, +0c, = 1, so the system of 3

equations in 2 unknowns is inconsistent. This means that w cannot be expressed as a
linear combination of v; and v».

14. oV, tC,V,+Cv, = W
1 0 0 2 1 0 00
0 1 -1 -3 0 1 00
A = — = E
0 -2 1 2 0 010
3 0 1 -3 0 0 01

The last row of E corresponds to the scalar equation Oc, +0c, +0c; = 1, so the system

of 4 equations in 3 unknowns is inconsistent. This means that w cannot be expressed as
a linear combination of vy, v, and vs.

15. av,tCV,+Cv, = W
2 3 1 4 1 00 3
A=|-10 2 5 =010 2| =E
4 1 -1 6 0 01 4

We see that the system of 3 equations in 3 unknowns has the unique solution
¢ =3,¢c,=-2,c;,=4, so w = 3v,—-2v,+4v,.

16. v, te,v,+evy; = W

2 4 1 7 1 0 0 6
01 3 7 01 0 =2
A = — = E
3 3 -1 9 0 01 3
1 2 3 11 0 00 O

We see that the system of 4 equations in 3 unknowns has the unique solution
¢ =6,c,=-2,c,=3, so w = 6v,—2v,+3v,.

In Problems 17-22, A = [v, v, v,] isthe coefficient matrix of the homogeneous linear

system corresponding to the vector equation ¢,v,+c,v, +c;v, = 0. Inspection of the indicated
reduced echelon form E of A then reveals whether or not a nontrivial solution exists.

I 2 1 0 0
17 A =10 3 5 = (01 0| =E
1 4 2 0 0 1
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18.

19.

20.

21.

22,

We see that the system of 3 equations in 3 unknowns has the unique solution
¢, =c,=c, =0, sothevectors v,,v,, v, are linearly independent.

2 4 2 1 0 -3/5
A=]0 -5 1| —->1]01 -1/5| = E
-3 -6 3 00 O

We see that the system of 3 equations in 3 unknowns has a 1-dimensional solution space.
If we choose c¢; =5 then ¢, =3 and ¢, =1. Therefore 3v,+v,+5v, = 0.

2 5 2 1 00
0 4 -1 01 0
A = - = E
3 2 1 0 0 1
0 1 -1 0 0 O

We see that the system of 4 equations in 3 unknowns has the unique solution
¢, =c,=c, =0, sothevectors v,,v,, v, are linearly independent.

—_
—_ =N
—_— N = W
(e e
oS o = O
S = O O

We see that the system of 4 equations in 3 unknowns has the unique solution
¢, =c, =c; =0, sothevectors v, v,, v, are linearly independent.

31 1 1 0 1
0 -1 2 01 2
A = - = E
1 0 1 0 0 O
2 1 0 0 0 O

We see that the system of 4 equations in 3 unknowns has a 1-dimensional solution space.
If we choose ¢; =—1 then ¢, =1 and ¢, =-2. Therefore v,-2v,—-v, = 0.

3 3 5 1 0 7/9
9 0 7 01 5/9
A = - = E
0 9 5 00 0
5 =7 0 00 O

We see that the system of 4 equations in 3 unknowns has a 1-dimensional solution space.
If we choose ¢; =-9 then ¢, =7 and ¢, =5. Therefore 7v,+5v,—-9v, = 0.
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23.  Because v; and v, are linearly independent, the vector equation
au +ou, = ¢(vi+v,)+6(vi—v,) =0
yields the homogeneous linear system

¢+c, =0

¢—c, = 0.

It follows readily that ¢, =c, =0, and therefore that the vectors u; and wu, are linearly
independent.

24.  Because v; and v, are linearly independent, the vector equation
cu,+cu, = ¢(v,+v,)+c,(2v,+3v,) = 0
yields the homogeneous linear system

aq+t2c, =0
¢ +3c, =

Subtraction of the first equation from the second one gives ¢, =0, and then it follows
from the first equation that ¢, = 0 also. Therefore the vectors u; and u, are linearly
independent.

25.  Because the vectors v,,v,, v, are linearly independent, the vector equation
cu, +cu, +cuy = ¢ (v))+e, (v, +2v,)+c (v, +2v, +3v,) = 0
yields the homogeneous linear system

ag+c+ ¢, =0
2¢,+2¢;, = 0
3¢, = 0.

It follows by back-substitution that ¢, =c¢, = ¢, =0, and therefore that the vectors

u,, u,, u, are linearly independent.
26.  Because the vectors v,,v,, v, are linearly independent, the vector equation

cu,+cou, +cuy, = (v, +vy)+e, (v +vy)+e (v, +v,) =0
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27.

28.

29.

30.

31.

32.

yields the homogeneous linear system

c,+c; =0
q +c =0
¢ te, = 0.
The reduction
0 1 1 1 00
A=1|101| - (01 0] =E
1 10 0 0 1

then shows that ¢, =c, =c, =0, and therefore that the vectors u,, u,, u, are linearly

independent.

If the elements of S are v, v,,---,v, with v, =0, then we can take ¢, =1 and

¢, =---=c¢, =0. This choice gives coefficients ¢,,c,, -, c, not all zero such that
¢v,+c,v,+ ---+c,v, = 0. This means that the vectors v,, v,,---, v, are linearly
dependent.

Because the set S of vectors v,,v,,---, v, is linearly dependent, there exist scalars

¢, Cy, ¢, notall zero such that ¢,v,+c,v,+ ---+¢c,v, = 0. If ¢, , =---=¢, =0,
then ¢,v,+c,v,+ ---+c¢,v, = 0 with the coefficients ¢, c,, -, c, notall zero. This
means that the vectors v, v,,---, v, comprising 7" are linearly dependent.

If some subset of S were linearly dependent, then Problem 28 would imply immediately
that § itself is linearly dependent (contrary to hypothesis).

Let W be the subspace of V' spanned by the vectors v,,v,,---,v,. Because U isa

subspace containing each of these vectors, it contains every linear combination of
V,, V,,-+, V,. But W consists solely of such linear combinations, so it follows that U

contains W.

If S is contained in span(7), then every vector in S is a linear combination of vectors in
T. Hence every vector in span(S) is a linear combination of linear combinations of
vectors in 7. Therefore every vector in span(S) is a linear combination of vectors in 7,
and therefore is itself in span(7). Thus span(S) is a subset of span(7).

If u is another vector in S then the k+1 vectors v, v,,---, v,,u are linearly

dependent. Hence there exist scalars ¢, c,, -, ¢,, ¢ not all zero such that
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v, +c,v,+ ---+c v, +cu = 0. If ¢=0 then we have a contradiction to the
hypothesis that the vectors v,, v,,---, v, are linearly independent. Therefore ¢ # 0,

so we can solve for u as a linear combination of the vectors v,, v,, -, v,.

33.  The determinant of the kXA identity matrix is nonzero, so it follows immediately from
Theorem 3 in this section that the vectors v, v,,---, v, are linearly independent.

34. If the vectors v,, v,,---, v, are linearly independent, then by Theorem 2 the matrix
A =[v, v, - v,] isnonsingular. If B is another nonsingular nXn matrix, then

the product AB is also nonsingular, and therefore (by Theorem 2) has linearly
independent column vectors.

35.  Because the vectors v,,v,,--, v, are linearly independent, Theorem 3 implies that some

kxk submatrix Ay of A has nonzero determinant. Let Ay consist of the rows
ij,1,,--+, i, of the matrix A, andlet Cy denote the kXxk submatrix consisting of the

same rows of the product matrix C = AB. Then Cy = A(B, so |C0| = |A0||B| # 0

because (by hypothesis) the kxk matrix B is also nonsingular. Therefore Theorem 3
implies that the column vectors of AB are linearly independent.

SECTION 4.4
BASES AND DIMENSION FOR VECTOR SPACES

Abasis {v,,v,,---,v,} forasubspace W of R" enables up to visualize W as a k-dimensional

plane (or "hyperplane") through the origin in R". In case W is the solution space of a
homogeneous linear system, a basis for W is a maximal linearly independent set of solutions of
the system, and every other solution is a linear combination of these particular solutions.

1. The vectors v; and v, are linearly independent (because neither is a scalar multiple of
the other) and therefore form a basis for R%.

2. We note that v, = 2v,. Consequently the vectors v,, v,, v, are linearly dependent, and
therefore do not form a basis for R’.

3. Any four vectors in R® are linearly dependent, so the given vectors do not form a basis
for R’.
4. Any basis for R* contains four vectors, so the given vectors v,, v,, v, do not form a

basis for R*.
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10.

11.

12.

The three given vectors v,,v,, v, all lie in the 2-dimensional subspace x; =0 of R’.
Therefore they are linearly dependent, and hence do not form a basis for R®.

Det ([Vl vV, V, ]) =—1#0, so the three vectors are linearly independent, and hence do

form a basis for R>.

Det ([V1 v, Vv, ]) =1#0, so the three vectors are linearly independent, and hence do

form a basis for R>.

Det ([V1 vV, Vv, V¥ 4]) =66 # 0, so the four vectors are linearly independent, and hence

do form a basis for R*,

The single equation x—2y+5z = 0 is already a system in reduced echelon form, with
free variables y and z. With y=s, z=1¢, x=25—5¢ we get the solution vector

(x,y,z) = (2s=5t,5,t) = 5(2,1,0)+¢(=5,0,1).

Hence the plane x—2y+5z = 0 is a 2-dimensional subspace of R’ with basis consisting
of the vectors v, =(2,1,0) and v, =(-5,0,1).

The single equation y—z = 0 is already a system in reduced echelon form, with free
variables x and z. With x=s, y=2z=t we get the solution vector

(x,y,2) = (s,t,t) = 5(1,0,0)+7(0,1,1).

Hence the plane y—z = 0 is a 2-dimensional subspace of R’ with basis consisting of the
vectors v, =(1,0,0) and v, =(0,1,1).

The line of intersection of the planes in Problems 9 and 11 is the solution space of the

system
x=2y+5z =0

y—z=0.
This system is in echelon form with free variable z=+¢ With y=¢ and x=-3¢ we have
the solution vector (—3¢,¢,¢) = ¢(—3,1,1). Thus the line is a 1-dimensional subspace of R’

with basis consisting of the vector v = (-3,1,1).

The typical vector in R* of the form (a,b,¢,d) with a=b+c+d can be written as

v = (b+c+d,b,c,d) = b(1,1,0,0)+c(1,0,1,0)+d(1,0,0,1).
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13.

14.

Hence the subspace consisting of all such vectors is 3-dimensional with basis consisting
of the vectors v, =(1,1,0,0), v, =(1,0,1,0), and v, =(1,0,0,1).

The typical vector in R* of the form (a,b,c¢,d) with a=3c and b=4d can be written

as
v = (3¢,4d,c,d) = ¢(3,0,1,0)+d (0,4,0,1).

Hence the subspace consisting of all such vectors is 2-dimensional with basis consisting
of the vectors v, =(3,0,1,0) and v, =(0,4,0,1).

The typical vector in R* of the form (a,b,¢,d) with a=-2b and ¢=-3d canbe

written as
v = (-2b,b,-3d,d) = b(-2,1,0,0)+d (0,0,-3,1).

Hence the subspace consisting of all such vectors is 2-dimensional with basis consisting
of the vectors v, =(-2,1,0,0) and v, =(0,0,-3,1).

In Problems 15-26, we show first the reduction of the coefficient matrix A to echelon form E.
Then we write the typical solution vector as a linear combination of basis vectors for the
subspace of the given system.

15.

16.

17.

208

1 -2 3 1 0 -11
A = - = E
2 31 01 -7
With free variable x, =¢ and x, =11¢, x, =7t we get the solution vector

x = (11#,7t,t) = t(11,7,1). Thus the solution space of the given system is 1-
dimensional with basis consisting of the vector v, =(11,7,1).

1 3 4 1 0 -11
A: —> :E
[387} [01 5}

With free variable x, =¢ and with x, =11z, x, =—5¢ we get the solution vector
x = (11¢,-5¢,t) = t(11,-5,1). Thus the solution space of the given system is 1-
dimensional with basis consisting of the vector v, =(11,-5,1).

1 -3 2 -4 1 0 11 11
A = — = E

2 =5 7 3 01 3 5
With free variables x, =s, x, =¢ and with x, =—11s—11¢, x, =-3s—5¢ we get the
solution vector

x = (-11s—11t,-3s—5¢t,5,¢) = s(-11,-3,1,0) + ¢(~11,-5,0,1).
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Thus the solution space of the given system is 2-dimensional with basis consisting of the
vectors v, =(-11,-3,1,0) and v, =(-11,-5,0,1).

1 3 45 1 3 0 25
A = — = E

2 6 95 0 01 -5
With free variables x, =s, x, =¢ and with x, =—-3s5—-25¢, x, =5¢ we get the solution
vector

x = (—3s—-25¢,s,5t,t) = 5(-3,1,0,0) + #(-25,0,5,1).

Thus the solution space of the given system is 2-dimensional with basis consisting of the
vectors v, =(=3,1,0,0) and v, =(-25,0,5,1).

1 -3 -8 -5 1 0 -3 4
A=121 -4 11| =101 2 3| =E
1 3 3 13 00 0 O

With free variables x, =s, x, =¢ and with x, =3s—4¢, x, =-25—3¢ we get the
solution vector

x = (3s—4¢t,-2s-3t,s,t) = s(3,-2,1,0) + t(—4,-3,0,1).

Thus the solution space of the given system is 2-dimensional with basis consisting of the
vectors v, =(3,-2,1,0) and v, =(-4,-3,0,1).

1 -3 -10 5 1 0 -1 2
A=1|1 4 11 2| - |01 3 -1| =E
I 3 & -1 00 0 O

With free variables x, =s, x, =t and with x, =s—2¢, x, =-3s+¢ we get the solution
vector

x = (s—2¢t,-3s+t,s,t) = s(1,-3,1,0) + #(-2,1,0,1).

Thus the solution space of the given system is 2-dimensional with basis consisting of the
vectors v, =(1,-3,1,0) and v, =(-2,1,0,1).

1 4 -3 -7 1 015
A=|2-11 7| —=1011 3| =E
1 2 3 11 0 00O
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22,

23.

24,

210

With free variables x, =s, x, =¢ and with x, =—s—5¢, x, =—s—3¢ we get the solution
vector

X = (=s—5¢t,—s-3t,s,t) = s(—-1,-1,1,0) + ¢(-5,-3,0,1).

Thus the solution space of the given system is 2-dimensional with basis consisting of the
vectors v, =(=1,-1,1,0) and v, =(-5,-3,0,1).

1 -2 -3 -16 1 -2 0 5
A=|2-41 17| -0 0 1 7| =E
1 -2 3 26 0 0 0O

With free variables x, =s, x, =¢ and with x, =2s-5¢, x, =-7¢ we get the solution
vector

x = (2s-5¢,5,-7t,t) = 5(2,1,0,0) + #(-5,0,-7,1).

Thus the solution space of the given system is 2-dimensional with basis consisting of the
vectors v, =(2,1,0,0) and v, =(-5,0,-7,1).

1 5 13 14 1 0 -2 0
A =12 511 12| - |01 3 0| =E
2 7 17 19 0 0 0 1

With free variable x, =s and with x, =2s, x, =-3s, x, =0 we get the solution
vector x = (2s,-3s,5,0) = 5(2,-3,1,0). Thus the solution space of the given system is
1-dimensional with basis consisting of the vector v, =(2,-3,1,0).

1 3 4 -8 6 1 0 2 1 3
A=1|10 2 1 3] =101 2 -3 1| =E
2 7 -10 -19 13 00 0 0 O

With free variables x, =r, x, =s, x; =t and with x, =-2r—s-3¢, x, =2r+3s—t we
get the solution vector

X = (2r-s-3t,2r+3s—t,r,s,t) = r(-2,2,1,0,0) + s(-1,3,0,1,0)+7(-3,-1,0,0,1).

Thus the solution space of the given system is 3-dimensional with basis consisting of the
vectors v, =(-2,2,1,0,0), v, =(-13,0,1,0), and v, =(-3,-10,0,1).
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26.

27.

28.

1 27 -9 31 1 2 0 -2 3
A =12 47 -11 34, - |0 01 -1 4| = E
3 6 5 —-11 29 000 0 O

With free variables x, =7, x, =s, x; =t and with x, =-2r+2s-3¢, x; =54t we get
the solution vector

X = (2r+2s-3t,r,s—4t,s,t) = r(-2,1,0,0,0) +s(2,0,1,1,0)+7(-3,0,—4,0,1).

Thus the solution space of the given system is 3-dimensional with basis consisting of the
vectors v, =(-2,1,0,0,0), v, =(2,0,1,1,0), and v, =(-3,0,-4,0,1).

31 -3 11 10 1 00 2 -3
A=|58 2 -2 7| -=10120 -1 4| =E
25 0 -1 14 0 01 -2 -5

With free variables x, =s, x; =¢ and with x, =-2s5+3¢, x, =s—4¢, x, =2s+5¢ we get
the solution vector

X = (—2s+3t,5s—4¢,2s+5t,5,t) = s(-2,1,2,1,0)+¢(3,-4,5,0,1).

Thus the solution space of the given system is 2-dimensional with basis consisting of the
vectors v, =(-2,1,2,1,0) and v, =(3,-4,5,0,1).

If the vectors v,, v,,---, v, are linearly independent, and w is another vector in V, then
the vectors w, v, v,,---, v are linearly dependent (because no n+1 vectors in the n-

dimensional vector space V' are linearly independent). Hence there exist scalars
¢, ¢, C,,,c, notall zero such that

cw+ov,+c,v,+--+c,v, = 0.
If ¢=0 then the coefficients c,c,, -, c, would not all be zero, and hence this equation
would say (contrary to hypothesis) that the vectors v,, v,,---, v, are linearly dependent.

Therefore ¢ #0, so we can solve for w as a linear combination of the vectors
V,, V,,--, V. Thus the linearly independent vectors v, v,,---, v, span V, and

therefore form a basis for V.

Ifthe n vectors in S were not linearly independent, then some one of them would be a
linear combination of the others. These remaining n—1 vectors would then span the n-

dimensional vector space ¥, which is impossible. Therefore the spanning set S is also
linearly independent, and therefore is a basis for V.
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29.

30.

31.

32.

33.

34.

3S.

212

Suppose cv+¢v,+c,v,+---+¢,v, = 0. Then c=0 because, otherwise, we could

solve for v as a linear combination of the vectors v,, v,,---, v,. But this is impossible,
because v is not in the subspace W spanned by v,,v,,---, v,. It follows that

v, +c,v,+--+c,v, =0, whichimplies that ¢, = ¢, =---=¢, =0 also, because the
vectors v,,Vv,,---, v, are linearly independent. Hence we have shown that the A+1
vectors v, v,,Vv,,---, v, are linearly independent.

Let S ={v,,v,,---,v,} be alinearly independent set of k<n vectorsin V. If the

vector v,,, in V isnotin W= span(S), then Problem 29 implies that the k+1 vectors
V,, V,, -, V,,V,,, are linearly independent. Continuing in this fashion, we can add one

vector at a time until we have n linearly independent vectors in V, which then form a
basis for V' that contains the original basis S.

If v,,, is alinear combination of the vectors v,,v,,---, v,, then obviously every linear
combination of the vectors v, v,,---,v,,v,, is also a linear combination of

V,, V,, -, v,. Butthe former set of k+1 vectors spans V, so the latter set of & vectors
also spans V.

If the spanning set S for V' is not linearly independent, then some vector in § is a
linear combination of the others. But Problem 31 says that when we remove this
dependent vector from S, the resulting set of one fewer vectors still spans V.

Continuing in this fashion, we remove one vector at a time from S until we wind up with
a spanning set for V' that is also a linearly independent set, and therefor forms a basis for
V' that is contained by the original spanning set S.

If § is a maximal linearly independent set in V, the we see immediately that every other
vector in V' is a linear combination of the vectors in S. Thus S also spans V, and is
therefore a basis for V.

If the minimal spanning set S for J were not linearly independent, then (by Problem

28) some vector S would be a linear combination of the others. Then the set obtained

from the minimal spanning set S by deleting this dependent vector would be a smaller
spanning set for S (which is impossible). Hence the spanning set S is also a linearly

independent set, and therefore is a basis for V.

Let S ={v,,v,,---,v,} beauniquely spanning set for V. Then the fact, that
0=0v,+0v,+---+0v,

is the unique expression of the zero vector 0 as a linear combination of the vectors in S,
means that S is a linearly independent set of vectors. Hence S is a basis for V.
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36. If a,a,,--,a, arescalars, then the linear combination ¢,v, +c,v,+---+c¢,v, — of the
column vectors of the matrix in Eq. (12) having the kxk identity matrix as its "bottom"
kxk submatrix — is a vector of the form (*,*,---,*,a,,a,,---,a, ). Hence this linear
combination can equal the zero vector only if @, = a, =---=a, =0. Thus the vectors
V,, V,, -, v, are linearly independent.

SECTION 4.5

ROW AND COLUMN SPACES

Conventional wisdom (at a certain level) has it that a homogeneous linear system Ax =0 of m
equations in n > m unknowns ought to have »n —m independent solutions. In Section 4.5 of the
text we use row and column spaces to show that this "conventional wisdom" is valid under the
condition that the m equations are irredundant — meaning that the rank of the coefficient
matrix A is m (soits m row vectors are linearly independent).

In each of Problems 1-12 we give the reduced echelon form E of the matrix A, a basis for the
row space of A, and a basis for the column space of A.

1 0 11
E=(0 1 4
0 0 O
Row basis: The first and second row vectors of E.

Column basis: The first and second column vectors of A.

1 0 2
E=|0 1 -3
0 0 O
Row basis: The first and second row vectors of E.

Column basis: The first and second column vectors of A.

1 015
E=(0 11 3
0 00O

Row basis: The first and second row vectors of E.
Column basis: The first and second column vectors of A.
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1 0 0 4
E=|0 1 0 3
0 01 o0
Row basis: The three row vectors of E.

Column basis: The first three column vectors of A.

1 0 =2 0
E=(01 3 0
0 0 0 1
Row basis: The three row vectors of E.

Column basis: The first, second, and fourth column vectors of A.

1 01 0
E=]101 2 0
0 0 0 1
Row basis: The three row vectors of E.

Column basis: The first, second, and fourth column vectors of A.

-3

S O O =
S O = O
S O W oA

Row basis: The first two row vectors of E.
Column basis: The first two column vectors of A.

1 01 0
01 2 0
E =
0 0 0 1
0 0 0O
Row basis: The first three row vectors of E.

Column basis: The first, second, and fourth column vectors of A.
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10.

11.

12.

1 0 0 3
01 0 2
E =
0 01 4
0 0 0 O
Row basis: The first three row vectors of E.

Column basis: The first three column vectors of A.

1 01 0 O
01 1 01
E =
0 0 01 1
0 00 0O
Row basis: The first three row vectors of E.

Column basis: The first, second, and fourth column vectors of A.

1 0210
01 1 2 0
E =
0 0 0 0 1
0 0 00O
Row basis: The first three row vectors of E.

Column basis: The first, second, and fifth column vectors of A.

E is the same reduced echelon matrix as in Problem 11.
Row basis: The first three row vectors of E.
Column basis: The first, second, and fifth column vectors of A.

In each of Problems 13—16 we give the reduced echelon form E of the matrix having the given
vectors v,, v,,... as its column vectors.

13.

o O O =
S = O
S O N =

Linearly independent: v, and v,
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10 L2
01 21
4. E=
000 0
000 0

Linearly independent: v, and v,

1 0 2 0

01 -120
15. E =

0 0 1

0 0 0

Linearly independent: v, v,, and v,

1 0 2 00

01 -1 0O
16. E =

0 0 1 0

0 0 0 1

Linearly independent: v, v,, v,, and v,

In each of Problems 17-20 the matrix E is the reduced echelon matrix of the matrix
A:[Vl e Vk el e en].

1 0 -3 0 2
17. E=|0 1 0 -1
0 0 1 -1

Basis vectors: v, v,, e,

1 0L 0 -2
18. E=|01 10 2
0001 2

Basis vectors: v, v,, e,
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19.

20.

1 0 3 00 -2

01 -1 00 1
E =

00 0 1 0 -1

00 0 01 -1

Basis vectors: v, v,, e,, €,

100 -0 2
o010 3 0
001 0 0 -1
000 0 1 -1

Basis vectors: v, v,, e, €,

In each of Problems 21-24 the matrix E is the reduced echelon form of the transpose A’ of
the coefficient matrix A.

21.

22,

23.

=

Il
S O =
oS = O
S = N

The first and second equations are irredundant.

1 0 2

01 1
E =

0 0 O

0 0 O

The first and second equations are irredundant.

0
0
1
0

S O O =
S O = O
S O = N

The first, second, and fourth equations are irredundant.
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26.

27.

28.

29.

30.

31.
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1
E=|0
0

S = O
S N =
S = N
_ O O

The first, second, and fifth equations are irredundant.

The row vectors of A are the column vectors of its transpose matrix A’ so
rank(A) = row rank of A = column rank of A’ = rank(A").

The rank of the nxn matrix A is n if and only if its column vectors are linearly
independent, in which case det(A)# 0 by Theorem 2 in Section 4.3, so it follows by
Theorem 2 in Section 3.6 that A is invertible.

The rank of the 3x5 matrix A 1is 3, so its column vectors a,a,,..., a5 span R’
Therefore any given vector b in R’ can be expressed as a linear combination
b =x,a, +x,a, +---+x,a, of the column vectors of A. The column vector x whose

elements are the coefficients in this linear combination is then a solution of the equation
Ax =bh.

The rank of the 5x3 matrix A 1is 3, so its three column vectors a, a,, a, are linearly

independent. Therefore any given vector b in R’ can be expressed in at most one way
as a linear combination b = x,a, +x,a, + x;a, of the column vectors of A. This means

that the equation Ax =b has at most one solution x=[x, x, x,] .

The rank of the m xn matrix A is at most m < n, and therefore is less than the number
n of its column vectors. Hence the column vectors a,,a,,...,a, of A are linearly

dependent, so there exists a linear combination y,a, +y,a, +---+y,a, =0 with not all

the coefficients being zero. If x=[x, x, ... xn]T 1s one solution of the equation
Ax=b, then A(x+y)=Ax+Ay=b+0=D>b, so x+Yy isasecond different solution.
Thus solutions of the equation are not unique.

The rank of the m xn matrix A is at most n <m, and therefore is less than the number
m of its row vectors. Hence the dimension of the column space of A is less than m, so

this column space is a proper subspace of R". Hence there exists a vector b in R”
that is not a linear combination of the column vectors of A. This means that the equation
Ax =b has no solution.

The rank of the m xn matrix A is m if and only if A has m linearly independent
column vectors — in which case these m linearly independent column vectors constitute

a basis for R". Hence the rank of A is m if and only if its column vectors
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33.

34.

3S.

a,a,...,a, span R” —in which case every vector b in R" can be expressed as a

linear combination b =x,a, +x,a, +---+x,a,, so the equation Ax=b has the solution

n-nd

x=[x x, .. xn]T.

The rank of the m xn matrix A is n if and only if the n column vectors a,,a,...,a

n
of A are linearly independent — in which a vector b in R™ can be expressed in at
most one way as a linear combination b =xa, +x,a, +---+x,a . This means that the

equation Ax=Db has at most one solution x=[x, x, ... xn]T.

Suppose that some linear combination of the & pivot column vectors p,, p,,...,p, in (8)
equals the zero vector. Denote by ¢, ¢, ..., ¢, the coefficients in this linear

combination. Then the first & scalar components of the equation
cp, +c,p, tcepy+---+c,p, =0 yield the kxk upper-triangular system

cd, +¢,p, +Cipy +otepy =0
Cd,+ ¢pyt+etep, =0
cd, +--+c,p, =0

cd, =0

where p,; (for i> j) denotes the jth element of the vector p, and p, =d,. Because the
leading entries d,,d,,...,d, are all nonzero, it follows by back-substitution that

¢, =c, =---=c, =0. Therefore the column vectors are linearly independent.

If no row interchanges are involved, then (for any k) the space spanned by the first & row
vectors of A is never changed in the process of reducing A to the echelon matrix E;
this follows immediately from the proof of Theorem 2 in this section. Hence the first r
row vectors of A span the r-dimensional space Row(A), and therefore are linearly
independent.

Look at the » row vectors of the matrix A that are determined by its largest nonsingular
rXr submatrix. Then Theorem 3 in Section 4.3 says that these » row vectors are
linearly independent, whereas any 7 +1 row vectors of A are linearly dependent.
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SECTION 4.6
ORTHOGONAL VECTORS IN R”

The generalization in this section, of the dot product to vectors in R”, enables us to flesh out the
algebra of vectors in R" with the Euclidean geometry of angles and distance. We can now refer to
the vector space R" (provided with the dot product) as n-dimensional Euclidean space.

L v, v, =Q)3)+()(=6)+@)1)+(1)(-2)=6-6+2-2=0
v, v, =(2)3)+ (=) +(2)(=5) + (1)(5) =6—-1-10+5=0
v, v, =(3)3) + (=6)(=1) + (1)(=5) + (=2)(5) =9 +6-5-10=0

Yes, the three vectors are mutually orthogonal.

2. v, v, =(3)6)+(=2)(3)+ (B)(4) +(—4)(6) =18—6+12-24 =0
v, v, = 317 +(=2)(—12) + B)(=21) + (-4)(3) =51+24-63-12=0
v, v, =(6)(17) + 3)(=12) + (4)(—21) +(6)(3) =102 - 36 -84 +18 = 0

Yes, the three vectors are mutually orthogonal.

3. v,-v,=15-10-4-1=0, v,-v,=15+0-32+17=0, v, v, =9+0+8-17=0
Yes, the three vectors are mutually orthogonal.

vV, V,=344+9-12-4=0, v, v,=6+4-12-24+4=0,
vV, v, =184+4-124+6-16=0
Yes, the three vectors are mutually orthogonal.

In each of Problems 5-8 we write u = @, V= a, and w= AB. Then we calculate a = |u

b=|v

2

, and c=|w]| soas to verify that a®+b* =c”.

5. u=(112,-1), v=(1,-11,2), w=(0,2,1,-3); a*=7, b*=7, c* =14

6. u=(3,-1,2,2), v=(2,2,-3,1), w=(1,-3,5,1); a*=18, b* =18, ¢* =36

7. u=(2,1,-2,1,3), v=(3,2,2,2,-2), w=(-1,-1,-4,—1,5); a*=19, b* =25, > =44
8. u=(3,2,4,57), v=(7,5,-5,2,-3), w=(-4,-3,9,3,10); a*=103, b* =112, ¢* =215

The computations in Problems 5—-8 show that in each triangle AABC the angle at C is a right

angle. The angles at the vertices 4 and B are then determined by the relations
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ABAC  vew

e _ BA-BC _ u-w
|4B|ac|  |v]|w|

and cossAB=———=+ .
BApc] W]

The fact that £A+ ZB =90 then serves as a check on our numerical computations.

-7 1 o 7 1 .
9 ZA=cos™'| - =cos'| — |=45, ZB=cos”'| +——— |=cos™' | —= |=45
( ﬁm] ( 2j ( ﬁm] V2
-18 1
10. fA=cos'|————— |=cos™ (—j=45,
( \/ﬁ\/%j 2
18 1
/B=cos'| + =cos’'| — | =45
( \/ﬁ\/36j ( 2J
=25 25 .
11. AZA=cos’'| —————|=cos™'| .,[— |=41.08,
( \/25\/44J { 4]
19 19 .
/B=cos'| ———|=cos™'| ,[— |=48.92
(\/19\/44j ( 4]
-112 112 .
12. LA=cos” | —————|=cos™'| ,|— |=43.80,
( \/112\/215) [ 215)

103 103 .
/B=cos!| ———— |=cos™ ,/— =46.20
(\/103\/215J ( 215]

In each of Problems 13-22, we denote by A the matrix having the given vectors as its row
vectors, and by E the reduced echelon form of A. From E we find the general solution of the
homogeneous system Ax =0 in terms of parameters s,,.... We then get basis vectors

u,, u,,... for the orthogonal complement ¥'* by setting each parameter in turn equal to 1 (and
the others then equal to 0).

13. A=E=[1 -2 3]; x,=s5, x,=t, x,=25-3t
ul = (2,1,0), u2 = (_3a051)

4. A=E=][1 5 3], x,=s5, x,=t, x,==55+3¢
u, = (-5,1,0), u, = (3,0,1)

15. A=E=[1 -2 -3 5]; X,=r, X;=8, x,=t, x,=2r+3s—5¢t
u, = (2,1,0,0), u, = (3,0,1,0), u, = (-5,0,0,1)
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17.

18.

19.

20.

21.

222

A=E=[1 7 -6 9]; x,=r, x,=s, x,=t, x,=—Tr+6s+9¢
u, = (-7,1,0,0), u, = (6,0,1,0), u, = (9,0,0,1)

10 -7 19
E =
{01 3 —5}

X, =8, x,=t, x,=-3s+5t, x, =7s—19¢

ul = (7’_3a150)a uz = (_19,5,0,1)

10 12 -16
E =
{o 13 —7}

X, =S8, x,=t, x,==3s+7t, x, =—12s +16¢

u, = (-12,-3,1,0), u, = (16,7,0,1)

1 0 13 -4 11
E =
01 4 3 4
X;=r, X, =S8, X;=t, x,=4r—=3s+4¢, x, =-13r+4s—-11z

u, = (-13,4,1,0,0), u, = (4,-3,0,1,0), u, = (-1L4,0,0,1)

10 5 12 19
E =
{01—1 —4 —7}

X, =71, X,=S8, X;=1, x,=r+4s+7¢t, x, ==5r—125-19¢

u, = (-5,1,1,0,0), u, = (-12,4,0,1,0), u, = (-19,7,0,0,1)

S~ O

1
1
0

=
Il
o o ~

1
X,=8, X;=1t, X, ==, X, =—S—1, X, =—S§

u, = (_19_1319070)3 u, = (0,—1,0,—1,1)
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23.

24.

25.

26.

27.

28.

X, =8, x,=t, x;=0, x,=5-2¢, x, =25+t

u, = (-2,1,1,0,0), u, = (1,-2,0,1,0)

(a) |u+v|2+|u—v|2 = (u-u+2u-v+v-v)+(u-u-2u-v+v-v)
= 2|u|2+|v|2 = 2u-u+2u-u

(b) |u+v|2—|u—v|2 = (wut+2u-v+v-v)—(u-u=2u-v+v-v) = 4u-v

Equation (15) in the text says that the given formula holds for k£ =2 vectors. Assume
inductively that it holds for £ =n—1 vectors. Then

2
2
)+

as desired. The case k =2 is used for the first equality here, and the case kK =n—1 for
the second one.

2
+

2
= [V, +v, 4V

|V1+V2+---vn_1+vn v

n—1 n

2
\4

2 2
= (|Vl| +|V2| +--t anl n

Suppose, for instance, that 4=e, =(1,0,0,0,0), B=e,=(0,0,1,0,0), and
C=e,=(0,0,0,0,1) in R°. Then AB=e,—e, =(—1,0,1,0,0) and
AC=e,~e,=(0,0,1,0,0,-1). Then AB-AC=1 while [4B|=|4C|=2. It follows

that cosZ4 = 1/(\/5)(\/5) =1, so Z4=060°. Similarly, ZB=2C =60° so we see
that AABC is an equilateral triangle.

Because u-v= |u||v|cos 0, it follows that u-v= |u||v| if and only if cos@ =1, in which

case @ =0 so the two vectors are collinear.

If the u lines both in the subspace ¥ and in its orthogonal complement V'*, then the

vector u is orthogonal to itself. Hence u-u = |u|2 =0, so it follows that u=0.

If W is the orthogonal complement of V, then every vector in V' is orthogonal to every
vectorin W. Hence V is contained in W~. But it follows from Equation (18) in this
section that the two subspaces ¥ and W have the same dimension. Because one
contains the other, they must therefore be the same subspace, so W* =V as desired.
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32.

33.

34.
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If u is orthogonal to each vector in the set S of vectors, then it follows easily (using the
dot product) that u is orthogonal to every linear combination of vectors in S. Therefore
u is orthogonal to V" = Span(S).

If u-v=0 and u+v=0 then
0 =u-(u+v)=u-u+u-v=u-u,
so it follows that uw =0, and then u+v =0 implies that v =0 also.

We want to show that any linear combination of vectors u,, u,,...,u, of vectors in S is

orthogonal to every linear combination of vectors v,,v,,...,v_ in 7. Butifeach u, is

q
orthogonal to each v, so u,-v, =0, then it follows that

(alul +a,u, +---+apup)-(blvl +b,v, +---+bqvq) = ZZaib.u v, =0,

p
i

i=l j=l1

so we see that the two linear combinations are orthogonal, as desired.

Suppose that the linear combination au, +a,u, +b,v, +b,v, =0, and we want to deduce

that all four coefficients a,, a,, b,, b, must necessarily be zero. For this purpose, write
u = aqu, +a,u, and v = bv,+b,v,.

Then the vectors u and v are orthogonal by Problem 31, so by Problem 30 the fact that
u+v=0 implies that

u=au+au, =0 and v = bv,+byv, = 0.

Now the assumed linear independence of {u,,u,} implies that @, =a, =0, and the

assumed linear independence of {v,v,} implies that & =, =0. Thus we conclude
that all four coefficients are zero, as desired.

This is the same as Problem 32, except with
u=qu, +au,+--+au, and v = bv,+bv,+---+b v, .

It follows immediately from Problem 33 and from Equation (18) in the text that the union

of a basis for the subspace ¥ and a basis for its orthogonal complement V" is a linearly
independent set of n vectors, and is therefore a basis for the n-dimensional vector space

R".
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This is one of the fundamental theorems of linear algebra. The nonhomogeneous system

Ax = b

is consistent if and only if the vector b is in the subspace Col(A)=Row(A"). But b
isin Row(A”) ifand only if b is orthogonal to the orthogonal complement of
Row(A”). But Row(A")" = Null(A"), which is the solution space of the
homogeneous system

Ay = 0.
Thus we have proved (as desired) that the nonhomogeneous system Ax = b hasa

solution if and only if the constant vector b is orthogonal to every solution y of the
nonhomogeneous system A’y = 0.

SECTION 4.7

GENERAL VECTOR SPACES

In each of Problems 1-12, a certain subset of a vector space is described. This subset is a subspace
of the vector space if and only if it is closed under the formation of linear combinations of its
elements. Recall also that every subspace of a vector space must contain the zero vector.

1.

It is a subspace of M33, because any linear combination of diagonal 3x3 matrices — with
only zeros off the principal diagonal — obviously is again a diagonal matrix.

The square matrix A is symmetric if and only if A’=A. If A and B are symmetric
3%3 matrices, then (cA+dB)" = cA’" +dB’ = cA +dB, so the linear combination
cA +dB is also symmetric. Thus the set of all such matrices is a subspace.

The set of all nonsingular 3x3 matrices does not contain the zero matrix, so it is not a
subspace.

The set of all singular 33 matrices is not a subspace, because the sum

1 00 0 00 1 00
0 00| +{0 1 0] =1]01120
0 00 0 01 0 0 1

of singular matrices is not singular.

The set of all functions f:R — R with f(0)=0 is a vector space, because if
f(0)=g(0)=0 then (af+bg)0) = af(0)+bg(0) = a-0+b-0 = 0.
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The set of all functions f:R — R with f(0)#0 is not a vector space, because it does
not contain the zero function f(0)=0.

The set of all functions f:R — R with f(0)=0 and f(1)=1 is not a vector space. For
instance, if g=2f then g(1)=2f(1)=2-1=2#1, so g is not such a function. Also,
this set does not contain the zero function.

A function f:R — R suchthat f(—x)=—f(x) is called an odd function. Any linear
combination af +bg of odd functions is again odd, because

(af +bg)(=x) = af (-x)+bg(~x) = —af(x)=bg(x) = —(af +bg)(x).

Thus the set of all odd functions is a vector space.

For Problems 912, let us call a polynomial of the form a, + a,x +a,x” +a,x’ a "degree at most 3"

polynomial.

9.

10.

11.

12.

13.

14.

15.

226

The set of all degree at most 3 polynomials with nonzero leading coefficient a; #0 isnota
vector space, because it does not contain the zero polynomial (with all coefficients zero).

The set of all degree at most 3 polynomials not containing x or x* terms is a vector space,
because any linear combination of such polynomials obviously is such a polynomial.

The set of all degree at most 3 polynomials with coefficient sum zero is a vector space,
because any linear combination of such polynomials obviously is such a polynomial.

If the degree at most 3 polynomials f and g have all-integer coefficients, the linear
combination a f +b g may have non-integer coefficient, because a and b need not be

integers. Hence the set of all degree at most 3 polynomials having all-integer coefficients is
not a vector space.

The functions sinx and cosx are linearly independent, because neither is a scalar
multiple of the other. (This follows, for instance, from the facts that sin(0) =0, cos(0) =1
and sin(z/2)=1, cos(x/2) =0, noting that any scalar multiple of a function with a zero
value must have the value 0 at the same point.)

The functions e* and xe"are linearly independent, since obviously neither is a scalar

multiple of the other (their ratios xe*/e* =x and e*/xe" neither being constants).

If
c(1+x)+c,(1-x)+c;(1-x*) = (¢, +¢,+¢;)+(c,—¢,)x—cx* = 0,
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17.

18.

19.

20.

21.

then
ate,te; =¢—c, =c¢ = 0.

It follows easily that ¢, =c, = ¢, =0, so we conclude that the functions (1+x), (1-x),

and (1-x*) are linearly independent.

(=D-(1+x)+1)-(x+x>)+(1)-(1-x*) = 0, so the three given polynomials are linearly
dependent.

cos2x = cos’ x—sin’ x according to a well-known trigonometric identity. Thus these
three trigonometric functions are linearly dependent.

If

¢,(2cosx+3sinx)+c,(4cosx+5sinx) = (2¢, +4c,)cosx+ (3¢, +5¢,)sinx = 0

then the fact that sinx and cosx are linearly independent (Problem 13) implies that

2¢,+4c, = 3¢, +5¢c, = 0. It follows readily that ¢, =c, =0, so we conclude that the two
original linear combinations of sinx and cosx are linearly independent.

Multiplication by (x—2)(x—3) yields
x—=5 = A(x-3)+B(x-2) = (A+B)x—(34+2B).

Hence A+ B=1 and 34+2B =5, and it follows readily that 4 =3 and B=-2.

Multiplication by x(x* —1) yields
2 = A(xX* =1+ Bx(x+1)+Cx(x=1) = —A+(B-C)x+(4+B+C)x’.

Hence —4=2, B—C=0 and A+ B+C=0. It follows readily that 4 =-2 and
B=C=1.

Multiplication by x(x* +4) yields
8 = A(X*+4)+Bx*+Cx = 44+ Cx+(A+B)x*.

Hence 44=8, C=0 and A+ B=0. It follows readily that 4 =2 and B=-2.
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Multiplication by (x+1)(x+2)(x+3) yields

2x = A(x+2)(x+3)+B(x+D)(x+3)+C(x+1)(x+2)
= (A+B+C)x* +(54+4B+3C)x+(64+3B+20).

Hence
A+ B+ C =0
SA+4B+3C = 2
64+3B+2C = 0,

and we solve these three equations for 4 =—1, B=4, and C=-3.

If y”(x)=0 then

Y0 = [y (dr = [0)dx = 4,
Y(x) = Iy”(x)dx = _[Adx = Ax+B, and
y(x) = Jy'(x)dx = I(Ax+B)dx = 14X’ +Bx+C,

where A, B, and C are arbitrary constants of integration. It follows that the function
y(x) is a solution of the differential equation y”(x)=0 if and only if it is a quadratic (at

most 2nd degree) polynomial. Thus the solution space is 3-dimensional with basis
{ Lx,x* } .

If y*(x)=0 then

Y = [yP@dx = [0)dx = 4,
Y'(x) = _[y"'(x) dx = IA dx = Ax+B,
V(x) = Jy"(x) dx = J(Ax+ B)dx = 1 4x*+ Bx+C, and
y(x) = Jy'(x)dx = J‘(%sz +Bx+C)dx = L Ax* +1Bx+Cx+D.
where A, B, C, and D are arbitrary constants of integration. It follows that the function

¥(x) is a solution of the differential equation y(x)=0 ifand only if it is a cubic (at

most 3rd degree) polynomial. Thus the solution space is 4-dimensional with basis
{l,x,xz,xS}.

If y(x) is any solution of the second-order differential equation y”—5)" =0 and
v(x) =y'(x), then v(x) is a solution of the first-order differential equation V'(x) = 5v(x)

with the familiar exponential solution v(x) = Ce’*. Therefore
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27.

28.

y(x) = Jy'(x)dx = Jv(x)dx = J-Cesx dx = 1Ce™ +D.

We therefore see that the solution space of the equation y”—53" =0 is 2-dimensional with
basis {l,esx}.

If y(x) is any solution of the second-order differential equation y”+10y"=0 and

v(x)=y'(x), then v(x) is a solution of the first-order differential equation

—10x

V(x) =—10v(x) with the familiar exponential solution v(x) = Ce™'"*. Therefore

y(x) = J-J/(X)dx = Iv(x)dx = j‘ce*“))‘ dx = —%Cemx+D_

We therefore see that the solution space of the equation y”+10)" =0 is 2-dimensional with
basis {l,e‘lox}.

If we take the positive sign in Eq. (20) of the text, then we have v’ = y* +a” where
v(x) = y'(x). Then

2
(d_yj =y +a’, so a1
dx dy y +a

(taking the positive square root as in the text). Then

x—Jd—y—J& (y = au)
Jy +a’ Na'ul +a’
= | = Ginhwsb = sinh L 4b,
u’ +1 a
It follows that
y(x) = asinh(x—b) = a(sinhxcoshb—coshxsinhb)

Acosh x + Bsinh x.

We start with the second-order differential equation y”+ y =0 and substitute
v(x) = y'(x), so
” dv dv dy dv

= == ==y

y' === =v— =
dx dydx dy
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as in Example 9 of the text. Then vdv = — ydy, and integration gives

12— 1,2 —
sV =—3y"+C, so Vv =a -y

(taking for illustration a positive value for the arbitrary constant C). Then

2
(2] <oy 0 o
dx dy a’ -y’

(taking the positive square root). Then

x—Jd—y—J& (v = au)
/az_yz [0 — d2u?
= du_ _ sinu+b = sin" L +b.
1—u? a
It follows that
y(x) = asin(x—b) = a(sinxcosb—cosxsinb)

= Acosx+ Bsinx.

Thus the general solution of the 2nd-order differential equation y”+y =0 is a linear
combination of cosx and sinx. It follows that the solution space is 2-dimensional with

basis {cosx,sinx}.

(a) The verification in a component-wise manner that J~ is a vector space is the same as
the verification that R" is a vector space, except with vectors having infinitely many
components rather than finitely many components. It boils down to the fact that a linear
combination of infinite sequences of real numbers is itself such a sequence,

1

a-{xn}Ter-{yn}T = {ax,+by,} .

(b) If e, ={0,---,0,1,0,0,--} isthe indicated infinite sequence with 1 in the nth
position, then the fact that

ce +ce,+--+tce, = {c,c,,¢,0,0,-}
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31.

evidently implies that any finite set e, e,, ---, e, of these vectors is linearly independent.

Thus V' contains "arbitrarily large" sets of linearly independent vectors, and therefore is
infinite-dimensional.

(a) If x,=x_,+x,,, y,=y,,+»,, and z =ax, +by, foreach n, then

Zn = a(‘xn—l + xn—2) + b(yn—l + yn—Z)
= (axn—l + bynfl) + (axn—2 + bynf2) = Zn—l + Zn—2 :

Thus W is a subspace of V.

(b) Let v, = {1,0,1,1,2,3,5,---} be the element with x, =1 and x, =0, and let
v, = {0,1,1,2,3,5,---} be the element with x, =0 and x, =1. Then v; and v, forma
basis for W.

(@ If zy=a,+ib and z, =a, +ib,, then direct computation shows that

ca, +c,a, —cb —ba,
T(czy+c,z,) = ¢T(z)+c,T(z,) = .
¢b +ba, ca +ca,

b)) If zy=a,+ib and z,=a,+ib,, then zz, = (a,a,—bb,)+i(ab,+a,b) and
direct computation shows that

a,a, —=bb, —ab,—a,b,
ab,+ab, aa,-bb, '

T(zz,) = T(z)T(z,) = |:

(b) If z=a+ib then

1 ‘a—bi a->bi

a+bi a->bi a’+b*

1
zZ
Therefore

rety = ¢ P o T - e
A +b | -b al |b a B '
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CHAPTER 5

HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECTION 5.1
INTRODUCTION: SECOND-ORDER LINEAR EQUATIONS

In this section the central ideas of the theory of linear differential equations are introduced and
illustrated concretely in the context of second-order equations. These key concepts include
superposition of solutions (Theorem 1), existence and uniqueness of solutions (Theorem 2),
linear independence, the Wronskian (Theorem 3), and general solutions (Theorem 4). This
discussion of second-order equations serves as preparation for the treatment of nth order linear
equations in Section 5.2. Although the concepts in this section may seem somewhat abstract to
students, the problems set is quite tangible and largely computational.

In each of Problems 1-16 the verification that y; and y, satisfy the given differential equation
is a routine matter. As in Example 2, we then impose the given initial conditions on the general
solution y = c1y; + ¢cyy2. This yields two linear equations that determine the values of the
constants ¢; and c».

1. Imposition of the initial conditions »(0) =0, y’(0) =5 on the general solution
y(x) = ce' +c,e”" yields the two equations ¢, +c¢, =0, ¢, —c, =0 with solution

¢, =5/2, ¢, ==5/2. Hence the desired particular solution is y(x) = 5(¢* - e™)/2.

2. Imposition of the initial conditions y(0)=—1, y’(0) =15 on the general solution
y(x) = ¢’ +c,e” yields the two equations ¢, +c¢, =—1, 3¢, —3c, =15 with solution
¢, =2, ¢, =3. Hence the desired particular solution is y(x) = 2¢** - 3¢™>".

3. Imposition of the initial conditions y(0) =3, »’(0) =8 on the general solution
y(x) = ¢ cos2x+c,sin2x yields the two equations ¢, =3, 2¢, =8 with solution

¢, =3, ¢, =4. Hence the desired particular solution is y(x) = 3 cos 2x + 4 sin 2x.

4. Imposition of the initial conditions y(0) =10, y’(0) =—10 on the general solution
y(x) = ¢ cos5x+c,sinS5x yields the two equations ¢, =10, 5¢, =—10 with solution

¢, =3, ¢, =4. Hence the desired particular solution is y(x) = 10 cos 5x - 2 sin 5x.
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10.

11.

12.

13.

Imposition of the initial conditions y(0) =1, »’(0)=0 on the general solution
y(x) = e’ +c,e’" yields the two equations ¢, +c, =1, ¢, +2¢, =0 with solution
¢, =2, ¢, =—1. Hence the desired particular solution is y(x) = 2¢" - e

Imposition of the initial conditions y(0) =7, y’(0)=-1 on the general