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CHAPTER 1 
 
FIRST-ORDER DIFFERENTIAL EQUATIONS 
 
 
SECTION 1.1 
 
DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS 
 
The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of 
differential equations, and to show the student what is meant by a solution of a differential 
equation.  Also, the use of differential equations in the mathematical modeling of real-world 
phenomena is outlined. 
 
 
Problems 1–12 are routine verifications by direct substitution of the suggested solutions into the 
given differential equations.  We include here just some typical examples of such verifications. 
 
 
3. If  1 2cos2 and sin 2y x y x= = ,  then  1 22sin 2 and 2cos 2y x y x′ ′= − =  so 
 

1 14cos2 4y x y′′ = − = −      and     2 24sin 2 4 .y x y′′ = − = −  
 
 Thus  1 14 0y y′′+ =  and  2 24 0.y y′′ + =  
 
4. If  3 3

1 2andx xy e y e−= = ,  then  3 3
1 23 and 3x xy e y e−= = −   so 

 
3

1 19 9xy e y′′ = =      and     3
2 29 9 .xy e y−′′ = =  

 
5. If  x xy e e−= − ,  then  x xy e e−′ = +  so  ( ) ( ) 2 .x x x x xy y e e e e e− − −′ − = + − − =   Thus 

 2 .xy y e−′ = +  
 
6. If  2 2

1 2andx xy e y x e− −= = ,  then  2 2 2 2
1 1 22 , 4 , 2 ,x x x xy e y e y e x e− − − −′ ′′ ′= − = = −  and  

2 2
2 4 4 .x xy e x e− −′′ = − +   Hence 

 
   ( ) ( ) ( )2 2 2

1 1 14 4 4 4 2 4 0x x xy y y e e e− − −′′ ′+ + = + − + =  
 and 
  ( ) ( ) ( )2 2 2 2 2

2 2 24 4 4 4 4 2 4 0.x x x x xy y y e x e e x e x e− − − − −′′ ′+ + = − + + − + =  
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8. If  1 2cos cos2 and sin cos2 ,y x x y x x= − = −   then  1 sin 2sin 2 ,y x x′ = − +   

1 cos 4cos2 ,y x x′′ = − +  and  2 2cos 2sin 2 , sin 4cos2 .y x x y x x′ ′′= + = − +   Hence 
 
  ( ) ( )1 1 cos 4cos2 cos cos2 3cos2y y x x x x x′′+ = − + + − =  
 and 
  ( ) ( )2 2 sin 4cos2 sin cos2 3cos2 .y y x x x x x′′ + = − + + − =  
 
 
11. If  2

1y y x−= =   then  3 42 and 6 ,y x y x− −′ ′′= − =   so 
 
  ( ) ( ) ( )2 2 4 3 25 4 6 5 2 4 0.x y x y y x x x x x− − −′′ ′+ + = + − + =  
 
 If  2

2 lny y x x−= =   then  3 3 4 42 ln and 5 6 ln ,y x x x y x x x− − − −′ ′′= − = − +   so 
 

  
( ) ( ) ( )

( ) ( )
2 2 4 4 3 3 2

2 2 2 2 2

5 4 5 6 ln 5 2 ln 4 ln

5 5 6 10 4 ln 0.

x y x y y x x x x x x x x x x

x x x x x x

− − − − −

− − − − −

′′ ′+ + = − + + − +

= − + + − + =
 

  
 
13. Substitution of  rxy e=   into  3 2y y′ =  gives the equation  3 2rx rxr e e=  that simplifies 

to  3 2.r =   Thus  r = 2/3. 
 
 
14. Substitution of  rxy e=   into  4 y y′′ =  gives the equation  24 rx rxr e e=  that simplifies to  

24 1.r =   Thus  1/ 2.r = ±  
 
 
15. Substitution of  rxy e=   into  2 0y y y′′ ′+ − =  gives the equation  2 2 0rx rx rxr e r e e+ − =  

that simplifies to  2 2 ( 2)( 1) 0.r r r r+ − = + − =   Thus  r = –2  or  r = 1. 
 
 
16. Substitution of  rxy e=   into  3 3 4 0y y y′′ ′+ − =  gives the equation  

23 3 4 0rx rx rxr e r e e+ − =  that simplifies to  23 3 4 0.r r+ − =   The quadratic formula then 

gives the solutions  ( )3 57 / 6.r = − ±  

 
 
The verifications of the suggested solutions in Problems 17–26 are similar to those in Problems 
1–12.  We illustrate the determination of the value of  C  only in some typical cases.  However, 
we illustrate typical solution curves for each of these problems. 
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17. C  =  2 18. C  =  3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19. If  ( ) 1xy x C e= −  then  y(0) = 5  gives  C – 1  =  5,  so   C  =  6.  The figure is on the 
 left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20. If  ( ) 1xy x C e x−= + −  then  y(0) = 10  gives  C – 1  =  10,  so   C  =  11.  The figure is 
 on the right above. 
 
21. C  =  7.  The figure is on the left at the top of the next page. 
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22. If  ( ) ln( )y x x C= +  then  y(0) = 0  gives  ln C  =  0,  so   C  =  1. The figure is on the 
 right above. 
 
 
23. If  5 21

4( )y x x C x−= +  then  y(2) = 1  gives  the equation  1 1
4 832 1C⋅ + ⋅ =   with 

solution  C = –56.  The figure is on the left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24. C  =  17.  The figure is on the right above. 
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25. If  2( ) tan( )y x x C= +  then  y(0) = 1  gives  the equation  tan C  =  1.  Hence one value 
of  C  is  / 4C π=  (as is this value plus any integral multiple of  π). 
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26. Substitution of  x = π   and  y = 0  into  ( )cosy x C x= +  yields the equation  

0 ( )( 1),Cπ= + −  so  .C π= −  
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27. y x y′ = +  
 
 
28. The slope of the line through  ( , ) and ( / 2,0)x y x   is  ( 0) /( / 2) 2 / ,y y x x y x′ = − − =   

so the differential equation is  2 .x y y′ =  
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29. If  m y′=  is the slope of the tangent line and  m′  is the slope of the normal line at  
( , ),x y  then the relation  1m m′ = −  yields  1/ ( 1) /( 0).m y y x′ ′= = − −   Solution for  
y′   then gives the differential equation  (1 ) .y y x′− =  

 
30. Here  2and ( ) 2 ,xm y m D x k x′ ′= = + =  so the orthogonality relation 1m m′ = −  gives 

the differential equation  2 1.x y′ = −  
 
31. The slope of the line through  ( , ) and ( , )x y y x−   is  ( ) /( ),y x y y x′ = − − −   so the 

differential equation is  ( ) .x y y y x′+ = −  
 
 
In Problems 32–36 we get the desired differential equation when we replace the "time rate of 
change" of the dependent variable with its derivative, the word "is" with the = sign, the phrase 
"proportional to" with  k,  and finally translate the remainder of the given sentence into symbols. 
 
32. /dP dt k P=     
 
33. 2/dv dt k v=      
 
34. / (250 )dv dt k v= −  
 
35. / ( )dN dt k P N= −     
 
36. / ( )dN dt k N P N= −  
 
37. The second derivative of any linear function is zero, so we spot the two solutions 
 ( ) 1 or ( )y x y x x≡ = of the differential equation  0.y′′ =    
 
38. A function whose derivative equals itself, and hence a solution of the differential 
 equation  y y′ =  is ( ) .xy x e=  
 
39. We reason that if  2 ,y kx=  then each term in the differential equation is a multiple of 2.x  
 The choice  1k =   balances the equation, and provides the solution 2( ) .y x x=   
   
40. If  y  is a constant, then  0y′ ≡  so the differential equation reduces to  2 1.y =  This gives 
 the two constant-valued solutions  ( ) 1 and ( ) 1.y x y x≡ ≡ −  
 
41. We reason that if  ,xy ke=  then each term in the differential equation is a multiple of .xe  
 The choice  1

2k =   balances the equation, and provides the solution 1
2( ) .xy x e=   
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42. Two functions, each equaling the negative of  its own second derivative, are the two 
 solutions  ( ) cosy x x=  and  ( ) siny x x=   of the differential equation  .y y′′ = −  
 
43. (a) We need only substitute  ( ) 1/( )x t C kt= −   in both sides of the differential 
 equation  2x kx′ =  for a routine verification. 
 
 (b) The zero-valued function  ( ) 0x t ≡  obviously satisfies the initial value problem 
 2, (0) 0.x kx x′ = =  
 
44. (a) The figure on the left below shows typical graphs of solutions of the differential 
 equation  21

2 .x x′ =  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) The figure on the right above shows typical graphs of solutions of the differential 
 equation  21

2 .x x′ = −   We see that — whereas the graphs with  1
2k =  appear to "diverge 

 to infinity" — each solution with  1
2k = −  appears to approach 0 as  .t → ∞   Indeed, we 

 see from the Problem 43(a) solution  1
2( ) 1/( )x t C t= −  that  ( )x t → ∞  as  2 .t C→   

 However, with  1
2k = −  it is clear from the resulting solution  1

2( ) 1/( )x t C t= +   that  
 ( )x t  remains  bounded on any finite interval, but ( ) 0x t →   as  .t → +∞  
 
45. Substitution of  1 and 10P P′ = =  into the differential equation  2P kP′ =  gives  1

100 ,k =  
 so Problem 43(a) yields a solution of the form  ( ) 1/( /100).P t C t= −   The initial 
 condition  (0) 2P =  now yields  1

2 ,C =  so we get the solution 

      1 100( ) .1 50
2 100

P t t t
= =

−−
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 We now find readily that  100 when 49,P t= =   and that  1000 when 49.9.P t= =  
 It appears that  P  grows without bound (and thus "explodes") as  t  approaches 50. 
 
46. Substitution of  1 and 5v v′ = − =  into the differential equation  2v kv′ =   gives  
 1

25 ,k = − so Problem 43(a) yields a solution of the form  ( ) 1/( / 25).v t C t= +   The initial 
 condition (0) 10v =  now yields  1

10 ,C =  so we get the solution 
 

      1 50( ) .1 5 2
10 25

v t t t
= =

++
 

 
 We now find readily that  1 when 22.5,v t= =   and that  0.1 when 247.5.v t= =  
 It appears that  v  approaches 0 as  t  increases without bound.  Thus the boat gradually 
 slows, but never comes to a "full stop" in a finite period of time. 
 
47. (a) (10) 10 yields 10 1/( 10), so 101/10.y C C= = − =  
 

(b) There is no such value of  C,  but the constant function  ( ) 0y x ≡  satisfies the 
conditions  2 and (0) 0.y y y′ = =  
 
(c) It is obvious visually (in Fig. 1.1.8 of the text) that one and only one solution 
curve passes through each point  ( , )a b  of the xy-plane, so it follows that there exists a 
unique solution to the initial value problem  2, ( ) .y y y a b′ = =  

 
48. (b) Obviously the functions  4 4( ) and ( )u x x v x x= − = +  both satisfy the differential 

equation  4 .xy y′ =   But their derivatives  3 3( ) 4 and ( ) 4u x x v x x′ ′= − = +  match at   
 x  =  0,  where both are zero.  Hence the given piecewise-defined function  ( )y x  is 

differentiable, and therefore satisfies the differential equation because  ( ) and ( )u x v x  
do so (for  0 and 0,x x≤ ≥  respectively). 

 
 (c) If  a ≥ 0  (for instance), choose  C+  fixed so that  4 .C a b+ =   Then the function 
 

     
4

4

if 0,
( )

if 0
C x x

y x
C x x

−

+

 ≤
=  ≥

 

 
 satisfies the given differential equation for every real number value of   .C−  
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SECTION 1.2 
 
INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS 
 
This section introduces general solutions and particular solutions in the very simplest situation 
— a differential equation of the form  ( )y f x′= — where only direct integration and evaluation 
of the constant of integration are involved.  Students should review carefully the elementary 
concepts of velocity and acceleration, as well as the fps and mks unit systems. 
 
1. Integration of  2 1y x′ = +   yields  2( ) (2 1) .y x x dx x x C= + = + +∫   Then substitution 

of  0, 3x y= =  gives  3  =  0 + 0 + C  =  C,  so  2( ) 3.y x x x= + +  
 
2. Integration of  2( 2)y x′ = −   yields  2 31

3( ) ( 2) ( 2) .y x x dx x C= − = − +∫   Then 

substitution of  2, 1x y= =  gives  1  =  0 + C  =  C,  so  31
3( ) ( 2) .y x x= −  

 
3. Integration of  y x′ =   yields  3/ 22

3( ) .y x x dx x C= = +∫   Then substitution of  

4, 0x y= =  gives  16
30 ,C= +   so  3/ 22

3( ) ( 8).y x x= −  
 
4. Integration of  2y x−′ =   yields  2( ) 1/ .y x x dx x C−= = − +∫   Then substitution of  

1, 5x y= =  gives  5 1 ,C= − +   so  ( ) 1/ 6.y x x= − +  
 
5. Integration of  1/ 2( 2)y x −′ = +   yields  1/ 2( ) ( 2) 2 2 .y x x dx x C−= + = + +∫   Then 

substitution of  2, 1x y= = −  gives  1 2 2 ,C− = ⋅ +   so  ( ) 2 2 5.y x x= + −  
 
6. Integration of  2 1/ 2( 9)y x x′ = +   yields  2 1/ 2 2 3/ 21

3( ) ( 9) ( 9) .y x x x dx x C= + = + +∫   

Then substitution of  4, 0x y= − =  gives  31
30 (5) ,C= +   so  

2 3/ 21
3( ) ( 9) 125 .y x x = + −   

 
7. Integration of  210 /( 1)y x′ = +   yields  2 1( ) 10 /( 1) 10 tan .y x x dx x C−= + = +∫   Then 

substitution of  0, 0x y= =  gives  0 10 0 ,C= ⋅ +   so  1( ) 10 tan .y x x−=  
 
8. Integration of  cos2y x′ =   yields  1

2( ) cos2 sin 2 .y x x dx x C= = +∫   Then substitution 

of  0, 1x y= =  gives  1 0 ,C= +   so  1
2( ) sin 2 1.y x x= +  

 
9. Integration of  21/ 1y x′ = −   yields  2 1( ) 1/ 1 sin .y x x dx x C−= − = +∫   Then 

substitution of  0, 0x y= =  gives  0 0 ,C= +   so  1( ) sin .y x x−=  
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10. Integration of  xy x e−′ =   yields   
 

( ) ( 1) ( 1)x u u xy x x e dx u e du u e x e C− −= = = − = − + +∫ ∫    

 
(when we substitute  u x= −  and apply Formula #46 inside the back cover of the 
textbook).  Then substitution of  0, 1x y= =  gives  1 1 ,C= − +   so  

( ) ( 1) 2.xy x x e−= − + +  
 
11. If  ( ) 50a t =  then  0( ) 50 50 50 10.v t dt t v t= = + = +∫   Hence 

 
  2 2

0( ) (50 10) 25 10 25 10 20.x t t dt t t x t t= + = + + = + +∫  

 
12. If  ( ) 20a t = −  then  0( ) ( 20) 20 20 15.v t dt t v t= − = − + = − −∫   Hence 

 
  2 2

0( ) ( 20 15) 10 15 10 15 5.x t t dt t t x t t= − − = − − + = − − +∫  

 
13. If  ( ) 3a t t=  then  2 23 3

02 2( ) 3 5.v t t dt t v t= = + = +∫   Hence 

 
  2 3 33 1 1

02 2 2( ) ( 5) 5 5 .x t t dt t t x t t= + = + + = +∫  

 
14. If  ( ) 2 1a t t= +  then  2 2

0( ) (2 1) 7.v t t dt t t v t t= + = + + = + −∫   Hence 

 
  2 3 31 1 1 1

03 2 3 2( ) ( 7) 7 7 4.x t t t dt t t t x t t t= + − = + − + = + − +∫  

 
15. If  2( ) 4( 3) .a t t= +  then  2 3 34 4

3 3( ) 4( 3) ( 3) ( 3) 37v t t dt t C t= + = + + = + −∫  (taking  

C = –37  so that  v(0) = –1).  Hence 
 
  3 4 44 1 1

3 3 3( ) ( 3) 37 ( 3) 37 ( 3) 37 26.x t t dt t t C t t = + − = + − + = + − − ∫  

 
16. If  ( ) 1/ 4a t t= +  then  ( ) 1/ 4 2 4 2 4 5v t t dt t C t= + = + + = + −∫   (taking   

C = –5  so that  v(0) = –1).  Hence 
 
  3/ 2 3/ 2 294 4

3 3 3( ) (2 4 5) ( 4) 5 ( 4) 5x t t dt t t C t t= + − = + − + = + − −∫  

 
 (taking  29 / 3C = −  so that  (0) 1x = ). 
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17. If  3( ) ( 1)a t t −= +  then  3 2 21 1 1

2 2 2( ) ( 1) ( 1) ( 1)v t t dt t C t− − −= + = − + + = − + +∫   

 (taking  1
2C =   so that  v(0) = 0).  Hence 

 
  2 1 11 1 1 1 1

2 2 2 2 2( ) ( 1) ( 1) ( 1) 1x t t dt t t C t t− − −   = − + + = + + + = + + −   ∫  

 
 (taking  1

2C = −  so that  (0) 0x = ). 
 
 
18. If  ( ) 50sin5a t t=  then  ( ) 50sin5 10cos5 10cos5v t t dt t C t= = − + = −∫   (taking   

0C =   so that  v(0) = –10).  Hence 
 
  ( ) ( 10cos5 ) 2sin5 2sin5 10x t t dt t C t= − = − + = − +∫  

 
 (taking  10C = −  so that  (0) 8x = ). 
 
 
19. Note that  ( ) 5v t =  for  0 5t≤ ≤  and that ( ) 10v t t= −  for  5 10.t≤ ≤   Hence   
 1( ) 5x t t C= + for  0 5t≤ ≤  and  21

22( ) 10x t t t C= − +  for  5 10.t≤ ≤  Now  1 0C =  
 because  (0) 0,x =  and continuity of  ( )x t  requires that  ( ) 5x t t=   and  
 21

22( ) 10x t t t C= − + agree when  5.t =   This implies that  25
2 2 ,C = −  and we get the 

 following graph. 
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20. Note that  ( )v t t=  for  0 5t≤ ≤  and that ( ) 5v t =  for  5 10.t≤ ≤   Hence   21

12( )x t t C= +  
 for  0 5t≤ ≤  and  2( ) 5x t t C= +  for  5 10.t≤ ≤  Now  1 0C =  because  (0) 0,x =  and 
 continuity of  ( )x t  requires that  21

2( )x t t=   and  2( ) 5x t t C= +  agree when  5.t =   
 This implies that  25

2 2 ,C = −  and we get the graph on the left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21. Note that  ( )v t t=  for  0 5t≤ ≤  and that ( ) 10v t t= −  for  5 10.t≤ ≤   Hence   
 21

12( )x t t C= +  for  0 5t≤ ≤  and  21
22( ) 10x t t t C= − +  for  5 10.t≤ ≤  Now  1 0C =  

 because  (0) 0,x =  and continuity of  ( )x t  requires that  21
2( )x t t=   and  

 21
22( ) 10x t t t C= − + agree when  5.t =   This implies that  2 25,C = −  and we get the 

 graph on the right above. 
 
 
22. For 0 3 :t≤ ≤   5

3( )v t t=   so  25
16( ) .x t t C= +   Now  1 0C =   because  (0) 0,x =  so  

 25
6( )x t t=   on this first interval, and its right endpoint value is  1

2(3) 7 .x =  
 
 For 3 7 :t≤ ≤   ( ) 5v t =   so  2( ) 5 .x t t C= +   Now  1

2(3) 7x =  implies that  1
2 27 ,C = −    

 so  1
2( ) 5 7x t t= −   on this second interval, where its right endpoint value is  1

2(7) 27 .x =  
 
 For 7 10 :t≤ ≤   5

35 ( 7),v t− = − −   so  5 50
3 3( ) .v t t= − +   Hence  25 50

36 3( ) ,x t t t C= − + +  
 and  1

2(7) 27x =  implies that  290
3 6 .C = −   Finally,  21

6( ) ( 5 100 290)x t t t= − + −   on this 
 third interval, and we get the graph at the top of the next page. 
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23. v  =  –9.8t + 49,  so the ball reaches its maximum height  (v = 0) after  t = 5 seconds.  Its 
 maximum height then is  y(5) = –4.9(5)2 + 49(5) = 122.5 meters. 
 
24. v  =  –32t  and   y  =  –16t2 + 400,  so the ball hits the ground  (y  =  0)  when   
 t  =  5 sec,  and then  v  =  –32(5)  = –160 ft/sec. 
  
25. a  =  –10 m/s2  and  v0  =  100 km/h  ≈  27.78 m/s,  so  v  =  –10t + 27.78,  and hence 

x(t)  =  –5t2 + 27.78t.  The car stops when  v  =  0,  t  ≈  2.78,  and thus the distance 
traveled before stopping is  x(2.78)  ≈  38.59  meters. 

 
26. v  =  –9.8t + 100  and  y  =  –4.9t2 + 100t + 20. 
 
 (a) v  =  0  when  t = 100/9.8  so the projectile's maximum height is 
 y(100/9.8)  =  –4.9(100/9.8)2 + 100(100/9.8) + 20  ≈  530 meters. 
 
 (b) It passes the top of the building when  y(t)  =  –4.9t2 + 100t + 20  =  20, 
 and hence after  t = 100/4.9  ≈  20.41 seconds. 
 
 (c) The roots of the quadratic equation  y(t)  =  –4.9t2 + 100t + 20  =  0  are   
 t  =  –0.20,  20.61.  Hence the projectile is in the air  20.61 seconds. 
 
27. a  =  –9.8 m/s2  so  v  =  –9.8 t – 10  and 

y  =  –4.9 t2 – 10 t + y0. 
 
 The ball hits the ground when   y  =  0  and 

v  =  –9.8 t – 10  =  –60, 
 so  t ≈ 5.10 s.  Hence 
 
    y0  =  4.9(5.10)2 + 10(5.10) ≈ 178.57 m. 
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28. v  =  –32t – 40  and   y  =  –16t2 – 40t + 555.  The ball hits the ground  (y  =  0) 

when  t  ≈  4.77 sec,  with velocity  v  =  v(4.77)  ≈  –192.64 ft/sec,  an impact 
speed of about 131 mph. 

 
29. Integration of  dv/dt = 0.12 t3 + 0.6 t,  v(0) = 0  gives  v(t) = 0.3 t2 + 0.04 t3.  Hence 
 v(10) = 70.  Then integration of  dx/dt = 0.3 t2 + 0.04 t3,   x(0) = 0  gives 
 x(t) = 0.1 t3 + 0.04 t4,  so  x(10) = 200.  Thus after 10 seconds the car has gone 200 ft and 

is traveling at 70 ft/sec.  
            
30. Taking  x0  =  0  and  v0  =  60 mph  =  88 ft/sec,  we get   
 
     v  =   –at + 88,  
 
 and  v  =  0  yields  t  =  88/a.  Substituting this value of  t  and  x  =  176  in   
 
     x  =  –at2/2 + 88t,  
 
 we solve for  a  =  22 ft/sec2.  Hence the car skids for  t  =  88/22  =  4 sec. 
 
31. If  a  =  –20 m/sec2  and  x0  =  0  then the car's velocity and position at time  t  are given 

by 
          v  =  –20t + v0,     x  =  –10 t2 + v0t. 
 
 It stops when  v  =  0  (so  v0  =  20t),  and hence when 
         
    x  =  75  =  –10 t2 + (20t)t  =  10 t2. 
 
 Thus  t  =  7.5   sec  so 
 
    v0  =  20 7.5   ≈  54.77 m/sec  ≈  197 km/hr. 
           
32. Starting with  x0  =  0  and  v0  =  50 km/h  =  5×104 m/h,  we find by the method of 

Problem 30 that the car's deceleration is  a  =  (25/3)×107 m/h2.  Then, starting with  x0  =  
0  and  v0  =  100 km/h  =  105 m/h,  we substitute  t  =  v0/a  into   

 
     x  =   –at2/2 + v0t   
 
 and find that  x  =  60 m  when v  =  0.  Thus doubling the initial velocity quadruples the 

distance the car skids. 
 
33. If  v0  =  0  and   y0  =  20  then 
 
    v  =  –at  and   y  =  – 1

2 at2 + 20. 
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 Substitution of   t  =  2,   y  =  0  yields  a  =  10 ft/sec2.  If  v0  =  0  and    
 y0  =  200  then 
 
    v  =  –10t  and   y  =  –5t2 + 200. 
 
 Hence   y  =  0  when  t  =  40   =  2 10  sec  and  v  =  –20 10   ≈  –63.25 ft/sec. 
  
34. On Earth:    v  =  –32t + v0,  so  t  =  v0/32  at maximum height (when v  =  0).  

Substituting this value of  t  and   y  =  144  in 
  
     y  =  –16t2 + v0t,  
 
 we solve for  v0  =  96 ft/sec  as the initial speed with which the person can throw a ball 

straight upward.  
 
 On Planet Gzyx:    From Problem 27, the surface gravitational acceleration on planet 

Gzyx is  a  =  10 ft/sec2,  so  
 
    v  =   –10t + 96     and      y  =  –5t2 + 96t.   
 
 Therefore  v  =  0  yields  t  =  9.6 sec,  and thence   ymax  =   y(9.6)  =  460.8 ft  is the 

height a ball will reach if its initial velocity is  96 ft/sec. 
 
35. If  v0  =  0  and   y0  =  h  then the stone′s velocity and height are given by 
 
    v  =  –gt,      y = –0.5 gt2 + h. 
  
 Hence   y  =  0  when  t  =  2 /h g   so 
 
    v  =  –g 2 /h g   =  – 2gh .   
 
36. The method of solution is precisely the same as that in Problem 30.  We find first that, on 

Earth, the woman must jump straight upward with initial velocity  v0  =  12 ft/sec  to 
reach a maximum height of 2.25 ft.  Then we find that, on the Moon, this initial velocity 
yields a maximum height of about 13.58 ft.   

 
37. We use units of miles and hours.  If  x0  =  v0  =  0  then the car′s velocity and position 

after  t  hours are given by 
     v  =  at,      x  =  1

2 t2. 
 
 Since  v  =  60  when  t  =  5/6,  the velocity equation yields  a  =  72 mi/hr2.  Hence the 

distance traveled by  12:50 pm  is 
 
          x  =  (0.5)(72)(5/6)2  =  25  miles. 
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38. Again we have 
     v  =  at,      x  =  1

2 t2. 
 
 But now  v  =  60  when  x  =  35.  Substitution of  a  =  60/t  (from the velocity equation) 

into the position equation yields 
 
     35  =  (0.5)(60/t)(t2)  =  30t, 
 
 whence  t  =  7/6 hr, that is,  1:10 p.m. 
 
 
39. Integration of  y′  =  (9/vS)(1 – 4x2)  yields 
 
     y  =  (3/vS)(3x – 4x3) + C, 
 
 and the initial condition   y(–1/2)  =  0  gives  C  =  3/vS.  Hence the swimmer′s trajectory 

is 
     y(x)  =  (3/vS)(3x – 4x3 + 1). 
 
 Substitution of   y(1/2)  =  1  now gives  vS  =  6 mph. 
 
40. Integration of  y′  =  3(1 – 16x4)  yields 
 
     y  =  3x – (48/5)x5 + C, 
 
 and the initial condition   y(–1/2)  =  0  gives  C  =  6/5.  Hence the swimmer′s trajectory 

is 
     y(x)  =  (1/5)(15x – 48x5 + 6), 
 
 so his downstream drift is   y(1/2)  =  2.4 miles. 
 
41. The bomb equations are  232, 32, and 16 800,Ba v s s t= − = − = = − +  with  0t =  at the 
 instant  the bomb is dropped.  The projectile is fired at time  2,t =  so its corresponding 
 equations are  032, 32( 2) ,a v t v= − = − − +  and 
 
    2

016( 2) ( 2)Ps s t v t= = − − + −  
 
 for  2t ≥  (the arbitrary constant vanishing because  (2) 0Ps = ).  Now the condition  
 2( ) 16 800 400Bs t t= − + = gives  5,t =  and then the requirement that  (5) 400Ps =  also  
 yields  0 544 / 3 181.33v = ≈  ft/s  for the projectile's needed initial velocity. 
 
42. Let  ( )x t  be the (positive) altitude (in miles) of the spacecraft at time  t  (hours), with  
 0t = corresponding to the time at which the its retrorockets are fired; let  ( ) ( )v t x t′=   be 
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 the velocity of the spacecraft at time  t.  Then  0 1000v = −  and  0 (0)x x=  is unknown.  
 But the (constant) acceleration is  20000,a = +  so 
 
   2

0( ) 20000 1000 and ( ) 10000 1000 .v t t x t t t x= − = − +  
 
 Now  ( ) 20000 1000 0v t t= − =   (soft touchdown) when  1

20t =  hr (that is, after exactly 
 3 minutes of descent. Finally, the condition 
 
    21 1 1

020 20 200 ( ) 10000( ) 1000( )x x= = − +  
 
 yields  0 25x =  miles for the altitude at which the retrorockets should be fired. 
 
43. The velocity and position functions for the spacecraft are  ( ) 0.0098Sv t t=  and  
 2( ) 0.0049 ,Sx t t=   and the corresponding functions for the projectile are  
 71

10( ) 3 10Pv t c= = × and  7( ) 3 10 .Px t t= ×   The condition that  S Px x=  when the 
 spacecraft overtakes the projectile gives  2 70.0049 3 10 ,t t= ×  whence 
 

   

7
9

9

3 10 6.12245 10 sec
0.0049

6.12245 10 194 years.
(3600)(24)(365.25)

t ×= ≈ ×

×≈ ≈
 

 
 Since the projectile is traveling at 1

10  the speed of light, it has then traveled a distance of 
 about 19.4 light years, which is about 171.8367 10×  meters. 
 
44. Let  0a >   denote the constant deceleration of the car when braking, and take 0 0x =  for 

the cars position at time  0t =  when the brakes are applied.  In the police experiment 
with  0 25v =  ft/s, the distance the car travels in  t  seconds is given by  

 

    21 88( ) 25
2 60

x t at t= − + ⋅  

 
 (with the factor  88

60  used to convert the velocity units from mi/hr to ft/s).  When we solve 
simultaneously the equations  ( ) 45 and ( ) 0x t x t′= =  we find that  1210

81 14.94a = ≈  ft/s2.  
With this value of the deceleration and the (as yet) unknown velocity  0v  of the car 
involved in the accident, it position function is 

 

    2
0

1 1210( ) .
2 81

x t t v t= − ⋅ +  
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 The simultaneous equations  ( ) 210 and ( ) 0x t x t′= =  finally yield  110
0 9 42 79.21v = ≈  

ft/s, almost exactly 54 miles per hour. 
    
 
SECTION 1.3 
 
SLOPE FIELDS AND SOLUTION CURVES 
 
The instructor may choose to delay covering Section 1.3 until later in Chapter 1.  However, 
before proceeding to Chapter 2, it is important that students come to grips at some point with the 
question of the existence of a unique solution of a differential equation –– and realize that it 
makes no sense to look for the solution without knowing in advance that it exists.  It may help 
some students to simplify the statement of the existence-uniqueness theorem as follows: 
 
 Suppose that the function  ( , )f x y   and the partial derivative  /f y∂ ∂  are both 

continuous in some neighborhood of the point  (a, b).  Then the initial value 
problem 

    ( , ), ( )dy f x y y a b
dx

= =  

 
 has a unique solution in some neighborhood of the point  a. 
 
Slope fields and geometrical solution curves are introduced in this section as a concrete aid in 
visualizing solutions and existence-uniqueness questions.  Instead, we provide some details of 
the construction of the figure for the Problem 1 answer, and then include without further 
comment the similarly constructed figures for Problems 2 through 9. 
 
1.  The following sequence of Mathematica commands generates the slope field and the  
 solution curves through the given points.  Begin with the differential equation  
  / ( , )dy dx f x y= where 

f[x_, y_] := -y - Sin[x]

 Then set up the viewing window 
a = -3; b = 3; c = -3; d = 3;

 The components  ( , )u v  of unit vectors corresponding to the short slope field line  
 segments are given by 
 u[x_, y_] := 1/Sqrt[1 + f[x, y]^2] 

v[x_, y_] := f[x, y]/Sqrt[1 + f[x, y]^2]

The slope field is then constructed by the commands
Needs["Graphics`PlotField`"]
dfield = PlotVectorField[{u[x, y], v[x, y]}, {x, a, b}, {y, c, d},

HeadWidth -> 0, HeadLength -> 0, PlotPoints -> 19,
PlotRange -> {{a, b}, {c, d}}, Axes -> True, Frame -> True,
FrameLabel -> {"x", "y"}, AspectRatio -> 1];
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The original curve shown in Fig. 1.3.12 of the text (and its initial point not shown there)  
 are plotted by the commands 

x0 = -1.9; y0 = 0;
point0 = Graphics[{PointSize[0.025], Point[{x0, y0}]}];
soln = NDSolve[{Derivative[1][y][x] == f[x, y[x]], y[x0] == y0},

y[x], {x, a, b}];
soln[[1,1,2]];
curve0 = Plot[soln[[1,1,2]], {x, a, b},

PlotStyle -> {Thickness[0.0065], RGBColor[0, 0, 1]}];

 The Mathematica NDSolve command carries out an approximate numerical solution of 
 the given differential equation.  Numerical solution techniques are discussed in Sections 
 2.4–2.6 of the textbook. 
 
 The coordinates of the 12 points are marked in Fig. 1.3.12 in the textbook.  For instance 

 the 7th point is (–2.5, 1).  It and the corresponding solution curve are plotted by the 

 commands 
x0 = -2.5; y0 = 1;
point7 = Graphics[{PointSize[0.025], Point[{x0, y0}]}];
soln = NDSolve[{Derivative[1][y][x] == f[x, y[x]], y[x0] == y0},

y[x], {x, a, b}];
soln[[1,1,2]];
curve7 = Plot[soln[[1,1,2]], {x, a, b},

PlotStyle -> {Thickness[0.0065], RGBColor[0, 0, 1]}];

 Finally, the desired figure is assembled by the Mathematica command 
Show[ dfield, point0,curve0,

point1,curve1, point2,curve2, point3,curve3,
point4,curve4, point5,curve5, point6,curve6,
point7,curve7, point8,curve8, point9,curve9,
point10,curve10, point11,curve11, point12,curve12];
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10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11. Because both  ( , )f x y   =  2x2y2  and  /f y∂ ∂ =  4x2y  are continuous everywhere, the 

existence-uniqueness theorem of Section 1.3 in the textbook guarantees the existence of a 
unique solution in some neighborhood of  x  =  1. 

 
12. Both  ( , )f x y   =  x ln y  and  /f y∂ ∂ =   x/y  are continuous in a neighborhood of   
 (1, 1),  so the theorem guarantees the existence of a unique solution in some 
 neighborhood of  x  =  1. 
 
13. Both  ( , )f x y   =   y1/3  and  /f y∂ ∂ =   (1/3)y–2/3  are continuous near  (0, 1),  so the 

theorem guarantees the existence of a unique solution in some neighborhood of  x  =  0. 
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14. ( , )f x y   =   y1/3  is continuous in a neighborhood of  (0, 0),  but  /f y∂ ∂ =   (1/3)y–2/3  is 
not, so the theorem guarantees existence but not uniqueness in some neighborhood of   

 x  =  0. 
  
15. ( , )f x y   =  (x –  y)1/2  is not continuous at  (2, 2)  because it is not even defined if   y > x.  

Hence the theorem guarantees neither existence nor uniqueness in any neighborhood of 
the point  x  =  2. 

 
16. ( , )f x y   =  (x –  y)1/2  and  /f y∂ ∂ =   –(1/2)(x –  y)–1/2  are continuous in a neighborhood 

of  (2, 1),  so the theorem guarantees both existence and uniqueness of a solution in some 
neighborhood of  x  =  2. 

 
17. Both  ( , )f x y   =  (x – 1/y  and  /f y∂ ∂ =   –(x – 1)/y2  are continuous near (0, 1),  so the 

theorem guarantees both existence and uniqueness of a solution in some neighborhood of  
x  =  0. 

 
18. Neither  ( , )f x y   =  (x – 1)/y  nor  /f y∂ ∂ =   –(x – 1)/y2  is continuous near (1, 0),  so the 

existence-uniqueness theorem guarantees nothing. 
 
19. Both  ( , )f x y   =  ln(1 +  y2)  and  /f y∂ ∂ =   2y/(1 +  y2)  are continuous near (0, 0),  so 

the theorem guarantees the existence of a unique solution near  x  =  0. 
  
20. Both  ( , )f x y   =  x2 –  y2  and  /f y∂ ∂ =   –2y  are continuous near (0, 1),  so the theorem 

guarantees both existence and uniqueness of a solution in some neighborhood of  x  =  0.  
 
21. The curve in the figure on the left below can be constructed using the commands 
 illustrated in Problem 1 above.  Tracing this solution curve, we see that  ( 4) 3.y − ≈    
 An exact solution of the differential equation yields the more accurate approximation  
 ( 4) 3.0183.y − ≈  
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22. Tracing the curve in the figure on the right at the bottom of the preceding page , we see 
 that  ( 4) 3.y − ≈ −   An exact solution  of the differential equation yields the more accurate 
 approximation  ( 4) 3.0017.y − ≈ −  
 
23. Tracing the curve in figure on the left below, we see that  (2) 1.y ≈   A more accurate 
 approximation is  (2) 1.0044.y ≈  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24. Tracing the curve in the figure on the right above, we see that  (2) 1.5.y ≈  A more 
 accurate approximation is  (2) 1.4633.y ≈  
 
25. The figure below indicates a limiting velocity of 20 ft/sec — about the same as jumping 

off a 1
46 -foot wall, and hence quite survivable. Tracing the curve suggests that ( ) 19v t =  

ft/sec when  t  is a bit less than 2 seconds.  An exact solution gives  1.8723t ≈  then. 
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26. The figure below suggests that there are 40 deer after about 60 months; a more accurate 
value is 61.61.t ≈  And it's pretty clear that the limiting population is 75 deer. 
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27. If 0b <  then the initial value problem  2 , (0)y y y b′ = =   has no solution, because the 
 square root of a negative number would be involved.  If 0b >  we get a unique solution 
 curve through (0, )b  defined for all  x  by following a parabola — in the figure on the left 
 below — down (and leftward) to the  x-axis and then following the x-axis to the left.  But 
 starting at (0,0) we can follow the positive x-axis to the point ( ,0)c  and then branching 
 off on the parabola  2( ) .y x c= −   This gives infinitely many different solutions if  0.b =  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28. The figure on the right above makes it clear initial value problem  , ( )xy y y a b′ = =   has 
 a unique solution off the y-axis where  0;a ≠   infinitely many solutions through the 
 origin  where  0;a b= =  no solution if  0 but 0a b= ≠  (so the point ( , )a b lies on the 
 positive or negative y-axis).  

x

y

(0,0) 
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29. Looking at the figure on the left below, we see that we can  start at the point  ( , )a b  and 
 follow a branch of a cubic up or down to the x-axis, then follow the x-axis an arbitrary 
 distance before branching off (down or up) on another cubic.  This gives infinitely many 
 solutions of the initial value problem  2 / 33 , ( )y y y a b′ = =   that are defined for all  x.  
 However, if  0b ≠  there is only a single cubic 3( )y x c= −  passing through  ( , )a b , so 
 the solution is unique near  .x a=  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30. The function  ( ) cos( ),y x x c= −  with  ( ) sin( ),y x x c′ = − −   satisfies the differential 

 equation 21y y′ = − −  on the interval  c x c π< < +  where  sin( ) 0,x c− >  so it follows 
 that   
  2 2 21 1 cos ( ) sin ( ) sin( ) .y x c x c x c y− − = − − − = − − = − − =  
 
 If  1b >  then the initial value problem  21 , ( )y y y a b′ = − − =   has no solution because 

 the square root of a negative number would be involved.  If  1b <  then there is only one 
 curve of the form  cos( )y x c= −  through the point ( , );a b  this give a unique solution.  
 But if 1b = ±  then we can combine a left ray of the line 1,y = +  a cosine curve from the 
 line 1y = +  to the line  1y = − , and then a right ray of the line 1.y = −  Looking at the 
 figure on the right above, we see that this gives infinitely many solutions (defined for  
 all  x) through any point of the form ( , 1).a ±  
 
31. The function  ( ) sin( ),y x x c= −  with  ( ) cos( ),y x x c′ = −   satisfies the differential 

 equation 21y y′ = −  on the interval  / 2 / 2c x cπ π− < < +  where  cos( ) 0,x c− >  so it  
 follows that   

       2 2 21 1 sin ( ) cos ( ) sin( ) .y x c x c x c y− = − − = − = − − =  
  

x

y
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 If  1b >  then the initial value problem  21 , ( )y y y a b′ = − =   has no solution because 

 the square root of a negative number would be involved.  If  1b <  then there is only one 
 curve of the form  sin( )y x c= −  through the point ( , );a b  this give a unique solution.  
 But if 1b = ±  then we can combine a left ray of the line 1,y = −  a sine curve from the 
 line 1y = −  to the line  1y = + , and then a right ray of the line 1.y = +  Looking at the 
 figure on the left below, we see that this gives infinitely many solutions (defined for all x) 
 through any point of the form ( , 1).a ±  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32. Looking at the figure on the right above, we see that we can piece together a "left half" of 
 a quartic for x negative, an interval along the x-axis, and a "right half" of a quartic curve 
 for  x   positive. This makes it clear he initial value problem  4 , ( )y x y y a b′ = =   has 
 infinitely many solutions (defined for all x) if  0;b ≥   there is no solution if  0b <  
 because this would involve the square root of a negative number. 
 
33. Looking at the figure provided in the answers section of the textbook, it suffices to 

observe that, among the pictured curves /( 1)y x cx= −  for all possible values of  c,    
 

• there is a unique one of these curves through any point not on either coordinate axis;   
• there is no such curve through any point on the y-axis other than the origin; and 
• there are infinitely many such curves through the origin (0,0). 

 
 But in addition we have the constant-valued solution  ( ) 0y x ≡  that "covers" the x-axis.  
 It follows that the given differential equation has near ( , )a b  
 

• a unique solution if  0a ≠ ;   
• no solution if  0a =  but  0b ≠ ; 
• infinitely many different solutions if  0.a b= =  
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SECTION 1.4 
 
SEPARABLE EQUATIONS AND APPLICATIONS 
 
Of course it should be emphasized to students that the possibility of separating the variables is 
the first one you look for.  The general concept of natural growth and decay is important for all 
differential equations students, but the particular applications in this section are optional.  
Torricelli's law in the form of Equation (24) in the text leads to some nice concrete examples and 
problems. 
 

1. 
2 222 ; ln ; ( ) x c xdy x dx y x c y x e C e

y
− + −= − = − + = =⌠


⌡ ∫  

 

2. 2
2 2

1 12 ; ; ( )dy x dx x C y x
y y x C

= − − = − − =
+

⌠ ⌠

⌡⌡

 

 

3. cos cossin ; ln cos ; ( ) x c xdy x dx y x c y x e C e
y

− + −= = − + = =⌠

⌡ ∫  

 

4. 44 ; ln 4 ln(1 ) ln ; ( ) (1 )
1

dy dx y x C y x C x
y x

= = + + = +
+

⌠ ⌠
⌡⌡

 

 

5. ( )1

2
; sin ; ( ) sin

21
dy dx y x C y x x C

xy
−= = + = +

−
⌠ ⌠

 ⌡⌡
 

 

6. ( )23/ 2 3/ 23 ; 2 2 2 ; ( )dy x dx y x C y x x C
y

= = + = +⌠

⌡

∫  

 

7. ( )
3/ 2

1/ 3 2 / 3 4 / 3 4 / 33 3
2 21/ 3 4 ; 3 ; ( ) 2dy x dx y x C y x x C

y
= = + = +⌠


⌡ ∫  

 
8. ( )2 1 2cos 2 ; sin ; ( ) siny dy x dx y x C y x x C−= = + = +∫ ∫  
 

9. 2
2 1 1 (partial fractions)

1 1 1
dy dx dx
y x x x

 = = + − + − 

⌠ ⌠ ⌠
 
⌡ ⌡⌡

 

 1ln ln(1 ) ln(1 ) ln ; ( )
1

xy x x C y x C
x

+= + − − + =
−
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10. 2 2
1 1 1 (1 );

(1 ) (1 ) 1 1 1
dy dx C xC

y x y x x
+ += − = − − = −

+ + + + +
⌠ ⌠


⌡⌡

 

 1 1 (1 )1 ; ( ) 1
1 (1 ) 1 (1 ) 1 (1 )

x x x C xy y x
C x C x C x

+ + − ++ = = − =
+ + + + + +

 

 

11. ( )
2 1/ 22

3 2
1; ; ( )

2 2 2
dy x Cx dx y x C x
y y

−
= − = − = −⌠ ⌠


⌡⌡

 

 

12. ( ) 22 2 21 1 1
2 2 22 ; ln 1 ln ; 1

1
xy dy x dx y x C y C e

y
= + = + + =

+
⌠

⌡ ∫  

 

13. ( )
3

41
44 cos ; ln 1 sin

1
y dy x dx y x C
y

= + = +
+

⌠

⌡

∫  

 
14. ( ) ( ) 3/ 2 3/ 22 2

3 31 1 ;y dy x dx y y x x C+ = + + = + +∫ ∫  

 

15. 2 4 2 3
2 1 1 1 2 1 1; ln

3
dy dx x C

y y x x y y x
   − = − − + = + +  

  

⌠ ⌠

⌡⌡

 

 

16. ( )21
22

sin ; ln(cos ) ln 1 ln
cos 1

y dy x dx x x C
y x

= − = + +
+

⌠ ⌠
⌡⌡

 

 ( )2 1 2sec 1 ; ( ) sec 1y C x y x C x−= + = +  

 
17. 1 (1 )(1 )y x y xy x y′ = + + + = + +  

 21
2(1 ) ; ln 1

1
dy x dx y x x C

y
= + + = + +

+
⌠

⌡ ∫  

 
18. 2 2 2 2 2 2 21 (1 )(1 )x y x y x y x y′ = − + − = − +  

 1
2 2

1 1 11 ; tan ; ( ) tan
1

dy dx y x C y x C x
y x x x

−   = − = − − + = − −   +    

⌠ ⌠

⌡⌡

 

 

19. ; ln ln ; ( ) exp( )x x xdy e dx y e C y x C e
y

= = + =⌠

⌡ ∫  

 (0) 2 implies 2 so ( ) 2exp( )xy e C y x e= = = . 
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20. ( )2 1 3 3
2 3 ; tan ; ( ) tan

1
dy x dx y x C y x x C

y
−= = + = +

+
⌠

⌡ ∫  

 ( )1 3(0) 1 implies tan 1 / 4 so ( ) tan / 4y C y x xπ π−= = = = + . 
 

21. 2 2

2
2 ; 16

16
x dxy dy y x C

x
= = − +

−
⌠ ⌠


⌡⌡

 

 2 2(5) 2 implies 1 so 1 16y C y x= = = + − . 
 

22. ( )3 4 44 1 ; ln ln ; ( ) exp( )dy x dx y x x C y x C x x
y

= − = − + = −⌠

⌡ ∫  

 4(1) 3 implies 3 so ( ) 3exp( )y C y x x x= − = − = − − . 
 

23. 21 1
2 2; ln (2 1) ln ; 2 1

2 1
xdy dx y x C y C e

y
= − = + − =

−
⌠

⌡ ∫  

 ( )2 2 21
2(1) 1 implies so ( ) 1 xy C e y x e− −= = = + . 

 

24. cos ; ln ln(sin ) ln ; ( ) sin
sin

dy x dx y x C y x C x
y x

= = + =⌠ ⌠

⌡⌡

 

 2 2 2 2( ) implies so ( ) siny C y x xπ π π π= = = . 
 

25. 2 21 2 ; ln ln ln ; ( ) exp( )dy x y x x C y x C x x
y x

 = + = + + = 
 

⌠ ⌠

⌡⌡

 

 1 2(1) 1 implies so ( ) exp( 1)y C e y x x x−= = = − . 
 

26. ( )2 2 3
2 2 3

1 12 3 ; ; ( )dy x x x x C y x
y y x x C

−= + − = + + =
+ +

⌠ ⌠

⌡⌡

 

 2 3
1(1) 1 implies 1 so ( )

1
y C y x

x x
= − = − =

− −
. 

 
27. ( )2 2 26 ; 3 ; ( ) ln 3y x y x xe dy e dx e e C y x e C= = + = +∫ ∫  

 ( )2(0) 0 implies 2 so ( ) ln 3 2xy C y x e= = − = − . 
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28. ( )2 1sec ; tan ; ( ) tan
2
dxy dy y x C y x x C

x
−= = + = +⌠ ⌠


⌡⌡

 

 ( )1
4(4) implies 1 so ( ) tan 1y C y x xπ −= = − = − . 

 
29. (a) Separation of variables gives the general solution 

   2

1 1 1; ; ( ) .dy x dx x C y x
y y x C

 − = − = − + = −  − 

⌠ ⌠

⌡⌡

 

 (b) Inspection yields the singular solution  ( ) 0y x ≡  that corresponds to no value of  
  the constant  C. 
 
 (c) In the figure below we see that there is a unique solution curve through every  
  point in the xy-plane.   
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30. When we take square roots on both sides of the differential equation and separate  
 variables, we get 

   ( )2; ; ( ) .
2
dy dx y x C y x x C

y
= = − = −⌠ ⌠


⌡⌡

 

 This general solution provides the parabolas illustrated in Fig. 1.4.5 in the textbook.  
 Observe that  ( )y x  is always nonnegative, consistent with both the square root and the 
 original differential equation.  We spot also the singular solution  ( ) 0y x ≡  that 
 corresponds to no value of the constant  C.   
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 (a)   Looking at Fig. 1.4.5, we see immediately that the differential equation  
 2( ) 4y y′ =  has no solution curve through the point  ( , )a b   if  0.b <  
 
 (b) But if  0b ≥  we obviously can combine branches of parabolas with segments 
 along the x-axis to form infinitely many solution curves through  ( , )a b . 
 
 (c) Finally, if  0b >  then on a interval containing  ( , )a b  there are exactly  two 
 solution curves through this point, corresponding to the two indicated parabolas through 
 ( , )a b , one ascending and one descending from left to right.  
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Problem 31 Figure 

 
31. The formal separation-of-variables process is the same as in Problem 30 where, indeed, 

we started by taking square roots in  2( ) 4y y′ =  to get the differential equation  
2 .y y′ =  But whereas  y′  can be either positive or negative in the original equation, the 

latter equation requires that  y′  be nonnegative.  This means that only the right half of 

each parabola  ( )2y x C= −  qualifies as a solution curve.  Inspecting the figure above, we 
therefore see that through the point  ( , )a b  there passes   

 
 (a)   No solution curve if  0,b <     
 (b)  A unique solution curve if  0,b >    
 (c) Infinitely many solution curves if  0,b =  because in this case we can pick any   
  c a>  and define the solution  2( ) 0 if , ( ) ( ) if .y x x c y x x c x c= ≤ = − ≥  
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Problem 32 Figure (a) 
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32. Separation of variables gives 

    1

2
sec

1
dyx y C

y y
−= = +

−
⌠

⌡

 

 if  1,y >  so the general solution has the form  ( ) sec( ).y x x C= ± −  But the original 

differential equation  2 1y y y′ = −  implies that  0 if 1,y y′ > >  while  0 ify′ <   
1.y < −   Consequently, only the right halves of translated branches of the curve  

secy x=  (figure above) qualify as general solution curves.  This explains the plotted 
general solution curves we see in the figure at the top of the next page.  In addition, we 
spot the two singular solutions  ( ) 1 and ( ) 1.y x y x≡ ≡ −   It follows upon inspection of 

this figure that the initial value problem  2 1, ( )y y y y a b′ = − =  has a unique solution if  
1b >   and has no solution if  1.b <   But if  1b =  (and similarly if  1)b = −  then we can 

pick any  c a> and define the solution ( ) 1 if ,y x x c= ≤   ( ) sec( )y x x c= −   if  

2 .c x c π≤ < +   So we see that if  1,b = ±  then the initial value problem  
2 1, ( )y y y y a b′ = − =   has infinitely many solutions. 

 
 

33. The population growth rate is   ln(30000 / 25000) /10 0.01823,k = ≈   so the population 
of the city  t  years after 1960 is given by  0.01823( ) 25000 .tP t e=   The expected year 
2000 population is then  0.01823 40(40) 25000 51840.P e ×= ≈  
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Problem 32 Figure (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
34. The population growth rate is   ln(6) /10 0.17918,k = ≈   so the population after  t  

hours is given by  0.17918
0( ) .tP t P e=   To find how long it takes for the population to 

double, we therefore need only solve the equation  0.17918
02 tP P e=  for  

(ln 2) / 0.17918 3.87t = ≈  hours. 
 
35. As in the textbook discussion of radioactive decay, the number of  14C  atoms after  t  

years is given by  0.0001216
0( ) .tN t N e−=   Hence we need only solve the equation  

0.00012161
0 06

tN N e−=  for  (ln 6) / 0.0001216 14735t = ≈  years to find the age of the 
skull. 

 
36. As in Problem 35, the number of  14C  atoms after  t  years is given by  

10 0.0001216( ) 5.0 10 .tN t e−= ×   Hence we need only solve the equation  
10 10 0.00012164.6 10 5.0 10 te−× = ×  for the age  ( )ln (5.0 / 4.6) / 0.0001216 686t = ≈  years 

of the relic.   Thus it appears not to be a genuine relic of the time of Christ 2000 years 
ago. 

 
37. The amount in the account after  t  years is given by  0.08( ) 5000 .tA t e=   Hence the 

amount in the account after 18 years is given by  0.08 18(18) 5000 21,103.48A e ×= ≈  
dollars. 

 
38. When the book has been overdue for  t  years, the fine owed is given in dollars by  

0.05( ) 0.30 .tA t e=   Hence the amount owed after 100 years is given by  
0.05 100(100) 0.30 44.52A e ×= ≈  dollars. 
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39. To find the decay rate of this drug in the dog's blood stream, we solve the equation 
 51

2
ke−=  (half-life 5 hours) for  (ln 2) / 5 0.13863.k = ≈   Thus the amount in the dog's 

bloodstream after  t  hours is given by  0.13863
0( ) .tA t A e−=   We therefore solve the 

equation  0.13863
0(1) 50 45 2250A A e−= = × =  for  0 2585A ≈ mg, the amount to 

anesthetize the dog properly. 
 
40. To find the decay rate of radioactive cobalt, we solve the equation  5.271

2
ke−=  (half-life 

5.27 years) for  (ln 2) / 5.27 0.13153.k = ≈   Thus the amount of radioactive cobalt left 
after  t  years is given by  0.13153

0( ) .tA t A e−=   We therefore solve the equation  
0.13153

0 0( ) 0.01tA t A e A−= =  for  (ln100) / 0.13153 35.01t = ≈  and find that it will be 
about 35 years until the region is again inhabitable. 

 
41. Taking  t  =  0  when the body was formed and  t  =  T  now, the amount  Q(t)  of  238U in 

the body at time  t  (in  years) is given by  Q(t)  =  Q0e–kt,  where  k  =  (ln 2)/(4.51×109).  
The given information tells us that 

 

0

( ) 0.9
( )

Q T
Q Q T

=
−

. 

 
 After substituting  Q(T)  =  Q0e–kT,  we solve readily for  ekT  =  19/9,  so  

T  =  (1/k)ln(19/9) ≈ 4.86×109.  Thus the body was formed approximately 4.86 billion  
years ago. 

 
42. Taking  t  =  0  when the rock contained only potassium and  t  =  T  now, the amount  

Q(t)  of potassium in the rock at time  t  (in  years) is given by  Q(t)  =  Q0e–kt,  where   
 k  =  (ln 2)/(1.28×109).  The given information tells us that the amount  A(t)  of argon at 

time  t  is 
1

09( ) [ ( )]A t Q Q t= −  
 
 and also that  A(T)  =  Q(T).  Thus 
 

0 ( ) 9 ( )Q Q T Q T− = . 
 
 After substituting 0( ) kTQ T Q e−=  we readily solve for 
 
    9 9(ln10 / ln 2)(1.28 10 ) 4.25 10T = × ≈ × . 

 
 Thus the age of the rock is about 1.25 billion years. 
 
43. Because  A  =  0  the differential equation reduces to  T'  =  kT,  so  T(t)  =  25e–kt.  The 

fact that  T(20)  =  15  yields  k  =  (1/20)ln(5/3),  and finally we solve   
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          5  =  25e–kt for   t  =  (ln 5)/k  ≈  63 min. 
 
44. The amount of sugar remaining undissolved after  t  minutes is given by  0( ) ;ktA t A e−=   

we find the value of  k  by solving the equation  0 0(1) 0.75kA A e A−= =  for  
ln 0.75 0.28768.k = − ≈   To find how long it takes for half the sugar to dissolve, we solve 

the equation  1
0 02( ) ktA t A e A−= =   for  (ln 2) / 0.28768 2.41t = ≈  minutes. 

 
45. (a) The light intensity at a depth of  x  meters is given by  1.4

0( ) .xI x I e−=   We solve 
the equation  1.4 1

0 02( ) xI x I e I−= =  for  (ln 2) /1.4 0.495x = ≈  meters. 
 
 (b) At depth 10 meters the intensity is 1.4 10 7

0 0(10) (8.32 10 )I I e I− × −= ≈ × .  
 
 (c) We solve the equation  1.4

0 0( ) 0.01xI x I e I−= =  for  (ln100) /1.4 3.29x = ≈   
  meters.  
 
46. (a) The pressure at an altitude of  x  miles is given by  0.2( ) 29.92 .xp x e−=   Hence the 

pressure at altitude 10000 ft is  (10000 / 5280) 20.49p ≈  inches, and the pressure at 
altitude 30000 ft is  (30000 / 5280) 9.60p ≈  inches. 

 
 (b) To find the altitude where  p = 15 in., we solve the equation  0.229.92 15xe− =  for  
 (ln 29.92 /15) / 0.2 3.452 miles 18,200 ft.x = ≈ ≈  
    
47. If  N(t)  denotes the number of people (in thousands) who have heard the rumor after  t  

days, then the initial value problem is 
 
            N′  =  k(100 – N),     N(0)  =  0 
 
 and we are given that  N(7)  =  10.  When we separate variables ( /(100 )dN N k dt− = ) 

and integrate, we get  ln(100 ) ,N kt C− = − +  and the initial condition  (0) 0N =  gives  
ln 100.C =   Then  ( )100 100 , so ( ) 100 1 .kt ktN e N t e− −− = = −   We substitute t = 7,  

 N = 10  and solve for the value  ln(100 / 90) / 7 0.01505.k = ≈   Finally, 50 thousand 
people have heard the rumor after  (ln 2) / 46.05t k= ≈  days. 

  
48. Let  8( )N t  and  5( )N t  be the numbers of 238U and 235U atoms, respectively, at time  t  (in 

billions of years after the creation of the universe).  Then  8 0( ) k tN t N e−=  and  

5 0( ) c tN t N e−= , where  0N  is the initial number of atoms of each isotope.  Also,  
(ln 2) / 4.51k =   and  (ln 2) / 0.71c =  from the given half-lives.  We divide the equations 

for  8 5andN N  and find that when  t  has the value corresponding to "now", 
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    ( ) 8

5

137.7.c k t Ne
N

− = =  

 
 Finally we solve this last equation for  (ln137.7) /( ) 5.99.t c k= − ≈   Thus we get an 

estimate of about 6 billion years for the age of the universe. 
 
49. The cake's temperature will be 100° after 66 min 40 sec; this problem is just like Example 

6 in the text. 
 
50. (a)   15 / 215

2( ) 10 . Also 30 ( ) 10 , sokt kA t e A e= = = so 

     ( )15 / 2 2 /1523; ln 3 ln 3 .
15

ke k= = =  

 Therefore  2 /15( ) 10( ) 10 3 .k t tA t e= = ⋅  

 (b)   After 5 years we have  2 / 3(5) 10 3 20.80 pu.A = ⋅ ≈  

 (c)   ( ) 100A t =   when  2 /15 15 ln(10)( ) 10 3 ; 15.72 years.
2 ln(3)

tA t t= ⋅ = ⋅ ≈  

 
51. (a)   ( ) 15 ; 10 (5) 15 ,kt ktA t e A e− −= = = so 

     3 1 3; ln .
2 5 2

kte k= =  

 Therefore 

   
/5 /53 3 2( ) 15exp ln 15 15 .

5 2 2 3

t ttA t
−

     = − = ⋅ = ⋅     
     

 

 (b)   After 8 months we have 

    
8/ 52(8) 15 7.84 su.

3
A  = ⋅ ≈ 

 
 

 (c)   ( ) 1A t =   when 

   
/5 1

15
2
3

2 ln( )( ) 15 1; 5 33.3944.
3 ln( )

t

A t t = ⋅ = = ⋅ ≈ 
 

 

 Thus it will be safe to return after about 33.4 months. 
 
52. If  ( )L t  denotes the number of human language families at time  t  (in years), then  
 ( ) ktL t e= for some constant  k.  The condition that  6000(6000) 1.5kL e= =  gives   
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 1 3ln .
6000 2

k =   If  "now" corresponds to time  ,t T=  then we are given that  

 ( ) 3300,kTL T e= = so  1 6000ln 3300ln 3300 119887.18.
ln(3/ 2)

T
k

= = ≈   This result suggests 

 that the original human language was spoken about 120 thousand years ago. 
 
53. If  ( )L t  denotes the number of Native America language families at time  t  (in years), 
 then  ( ) ktL t e=  for some constant  k.  The condition that  6000(6000) 1.5kL e= =  gives   

 1 3ln .
6000 2

k =   If  "now" corresponds to time  ,t T=  then we are given that  

 ( ) 150,kTL T e= = so  1 6000ln150ln150 74146.48.
ln(3/ 2)

T
k

= = ≈   This result suggests  that the 

 ancestors of today's Native Americans first arrived in the western hemisphere about 74 
 thousand years ago.  
 
54. With  A(y)  constant, Equation (19) in the text takes the form 
 

dy k y
dt

=  

 
 We readily solve this equation for  2 y kt C= + .  The condition   y(0)  =  9  yields   
 C  =  6,  and then   y(1)  =  4  yields  k  =  2.  Thus the depth at time  t  (in hours) is    
 y(t)  =  (3 – t)2,  and hence it takes  3  hours for the tank to empty. 
 
55. With  2(3)A π=  and  2(1/12)a π= ,  and taking  g  =  32 ft/sec2,  Equation (20) 

reduces to  162 y′  =  – y .  The solution such that   y  =  9  when  t  =  0  is given by 

 324 y   =  –t + 972.  Hence   y  =  0  when  t  =  972 sec  =  16 min 12 sec. 
 
56. The radius of the cross-section of the cone at height   y  is proportional to   y,  so  A(y)  is 

proportional to   y2.  Therefore Equation (20) takes the form 
 

2y y k y′ = − , 
 
 and a general solution is given by 
 
     2y5/2  =  –5kt + C. 
 
 The initial condition   y(0)  =  16  yields  C  =  2048,  and then   y(1)  =  9  implies that   
 5k  =  1562.  Hence   y  =  0  when 
 
         t  =  C/5k  =  2048/1562  ≈  1.31 hr. 
 



38 Chapter 1 

57. The solution of   y′  =  –k y   is given by 
          
     2 y   =  –kt + C. 
 
 The initial condition  y(0) = h  (the height of the cylinder) yields  C = 2 h .  Then 

substitution of  t = T,  y = 0  gives  k = (2 h )/T.  It follows that 
 
          y  =  h(1 – t/T)2. 
 
 If  r  denotes the radius of the cylinder, then 
 
        2 2 2 2

0( ) (1 / ) (1 / ) .V y r y r h t T V t Tπ π= = − = −  
 
58. Since  x  =   y3/4,  the cross-sectional area is  2 3/ 2( ) .A y x yπ π= =   Hence the  

 general equation  ( ) 2A y y a gy′ = −   reduces to the differential equation  yy k′ = −   
with general solution 

     (1/2)y2  =  –kt + C. 
 
 The initial condition   y(0)  =  12  gives  C  =  72,  and then   y(1)  =  6  yields  k  =  54.  

Upon separating variables and integrating, we find that the the depth at time  t  is 
 
     ( ) 144 108y t t= − y(t). 
 
 Hence the tank is empty after  t  =  144/108 hr,  that is, at  1:20 p.m. 
 
59. (a) Since  x2  =  by,  the cross-sectional area is  2( ) .A y x byπ π= =   Hence the 

equation  ( ) 2A y y a gy′ = −   reduces to the differential equation 
 

1/ 2 ( / ) 2y y k a b gπ′ = − = −  
  
 with the general solution 
 
     (2/3)y3/2  =  –kt + C. 
 
 The initial condition   y(0)  =  4  gives  C  =  16/3,  and then   y(1)  =  1  yields  k  =  14/3. 

It follows that the depth at time  t  is 
 
     y(t)  =  (8 – 7t)2/3. 
 
 (b) The tank is empty after  t  =  8/7 hr,  that is, at  1:08:34 p.m. 
 
 (c) We see above that  k  =  (a/πb) 2g   =  14/3.  Substitution of  2, 1,a r bπ= =  
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 g  =  (32)(3600)2 ft/hr2  yields  r  =  (1/60) 7 /12  ft ≈ 0.15 in  for the radius of the 
bottom-hole. 

  
60. With  g  =  32 ft/sec2  and  2(1/12) ,a π=   Equation (24) simplifies to 
 

     ( )
18

dyA y y
dt

π= − . 

 
 If  z  denotes the distance from the center of the cylinder down to the fluid surface, then   

y  =  3 – z  and  A(y)   =   10(9 – z2)1/2.  Hence the equation above becomes 
 

2 1/ 2 1/ 2

1/ 2

10(9 ) (3 ) ,
18

180(3 ) ,

dzz z
dt

z dz dt

π

π

− = −

+ =
 

 
 and integration yields 
               1/ 2120(3 ) .z t Cπ+ = +  
 
 Now  z  =  0  when  t  =  0,  so  C  =  120(3)3/2.  The tank is empty when  z  =  3  (that is, 

when   y  =  0)  and thus after 
 
         t   =   (120/π)(63/2 – 33/2)  ≈  362.90 sec. 
 
 It therefore takes about  6 min 3 sec  for the fluid to drain completely. 
 
61. 2( ) (8 )A y y yπ= −   as in Example 7 in the text, but now  /144a π=   in Equation (24), 

so the initial value problem is 
 
    18(8y –  y2)y′  =  – y ,     y(0)  =  8. 
 
 We seek the value of  t  when   y  =  0.  The answer is  t ≈ 869 sec  =  14 min 29 sec. 
 
62. The cross-sectional area function for the tank is  2(1 )A yπ= −   and the area of the 

bottom-hole is  410 ,a π−=   so  Eq. (24) in the text gives the initial value problem 
 

2 4(1 ) 10 2 9.8 , (0) 1.dyy y y
dt

π π−− = − × =  

 
 Simplification gives 

( )1/ 2 3/ 2 41.4 10 10dyy y
dt

− −− = − ×  

 so integration yields 
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1/ 2 5/ 2 422 1.4 10 10 .

5
y y t C−− = − × +  

 
 The initial condition  y(0) = 1  implies that  C  =  2 - 2/5  =  8/5,  so  y = 0  after   
   4(8 / 5) /(1.4 10 10) 3614t −= × ≈   seconds.  Thus the tank is empty at about 14 

seconds after 2 pm. 
 
63. (a) As in Example 8, the initial value problem is 
 

2(8 ) , (0) 4dyy y k y y
dt

π π− = − =  

 
 where  2 20.6 2 4.8 .k r g r= =   Integrating and applying the initial condition just in 

the Example 8 solution in the text, we find that 
 

3/ 2 5/ 216 2 448.
3 5 15

y y kt− = − +  

 
 When we substitute  y  =  2 (ft)  and  t  =  1800  (sec, that is, 30 min), we find that   
 k  ≈  0.009469.  Finally,  y  =  0  when   
 

448 3154 sec 53 min 34 sec.
15

t
k

= ≈ =  

 
 Thus the tank is empty at  1:53:34 pm. 
 
 (b) The radius of the bottom-hole is  
 

 / 4.8 0.04442 ft 0.53 in, thus about a half inch.r k= ≈ ≈  
  

 64. The given rate of fall of the water level is  dy/dt  =  –4 in/hr  =  –(1/10800) ft/sec.  With  
2 2and ,A x a rπ π= =   Equation (24) is 

 
2 2 2( )(1/10800) ( ) 2 8 .x r gy r yπ π π= − = −  

 
 Hence the curve is of the form   y  =  kx4,  and in order that it pass through  (1, 4)  we 

must have  k  =  4.  Comparing  y   =  2x2  with the equation above, we see that   
 
               (8r2)(10800)  =  1/2,  
 
 so the radius of the bottom hole is  1/(240 3) ft 1/35 in.r = ≈  
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65. Let  t  =  0  at the time of death.  Then the solution of the initial value problem 
 
    T'  =  k(70 – T),    T(0)  =  98.6 
 is 

( ) 70 28.6 .ktT t e−= +  
 
 If  t  =  a  at 12 noon, then we know that 
 

( 1)

( ) 70 28.6 80,

( 1) 70 28.6 75.

ka

k a

T t e

T a e

−

− +

= + =

+ = + =
 

 
 Hence 

28.6 10 and 28.6 5.ka ka ke e e− − −= =  
 
 It follows that  e–k  =  1/2,  so  k  =  ln 2.  Finally the first of the previous two equations 

yields 
 
   a  =  (ln 2.86)/(ln 2)  ≈  1.516 hr  ≈  1 hr  31 min, 
 
 so the death occurred at 10:29 a.m. 
      
66. Let  t  =  0  when it began to snow, and  t  =  t0  at 7:00 a.m.  Let  x  denote distance along 

the road, with  x  =  0  where the snowplow begins at 7:00 a.m.  If   y  =  ct  is the snow 
depth at time  t,  w  is the width of the road, and  v  =  dx/dt  is the plow′s velocity, then 
"plowing at a constant rate" means that the product  wyv  is  constant.  Hence our 
differential equation is of the form 

 
1.dxk

dt t
=  

 
 The solution with  x  =  0  when  t  =  t0  is 
 
          t   =   t0 ekx. 
 
 We are given that  x  =  2  when  t  =  t0 + 1  and  x  =  4  when  t  =  t0 + 3,  so it follows 

that 
 
         t0 + 1  =  t0 e2k       and       t0 + 3  =  t0 e4k. 
 
 Elimination of  t0  yields the equation 
 
    e4k – 3e2k + 2  =  (e2k – 1)(e2k – 2)  =  0, 
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 so it follows (since  k > 0) that  e2k  =  2.  Hence  t0 + 1  =  2t0,  so  t0  =  1.  Thus it began 

to snow at 6 a.m. 
 
67. We still have  t  =  t0 ekx,  but now the given information yields the conditions 
 
   t0 + 1   =   t0 e4k       and       t0 + 2   =   t0 e7k 
 
 at 8 a.m. and 9 a.m., respectively.  Elimination of  t0  gives the equation 
 
    2e4k – e7k – 1   =   0, 
 
 which we solve numerically for  k  =  0.08276.  Using this value, we finally solve one of 

the preceding pair of equations for  t0  =  2.5483 hr  ≈  2 hr 33 min.  Thus it began to 
snow at 4:27 a.m. 

 
68. (a)   Note first that if  θ  denotes the angle between the tangent line and the horizontal, 
 then  2

πα θ= −   so  2cot cot( ) tan ( ).y xπα θ θ ′= − = =   It follows that 

   
2 2 2 2

sin 1 1sin .
sin cos 1 cot 1 ( )y x

αα
α α α

= = =
′+ + +

 

 Therefore the mechanical condition  (sin ) / constantvα = (positive) with  2v gy=  
translates to 

   
2

1 constant,
2 1 ( )gy y

=
′+

  so   2[1 ( ) ] 2y y a′+ =  

 for some positive constant  a.  We readily solve the latter equation for the differential  
 equation 

     2 .dy a yy
dx y

−′ = =  

 (b)   The substitution  22 sin , 4 sin cosy a t dy a t t dt= =   now gives 

   

2

2

2

2 2 sin cos4 sin cos ,
2 sin sin

4 sin .

a a t ta t t dt dx dx
a t t

dx a t dt

−= =

=
 

 Integration now gives 

   24 sin 2 (1 cos2 )x a t dt a t dt= = −∫ ∫  

   1
22 ( sin 2 ) (2 sin 2 ) ,a t t C a t t C= − + = − +  

 and we recall that  22 sin (1 cos2 ).y a t a t= = −  The requirement that  0x =  when  0t =  
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  implies that  0.C =   Finally, the substitution  2tθ =  (nothing to do with the previously  
  mentioned angle  θ  of inclination from the horizontal) yields the desired parametric  
  equations 
     ( sin ),x a θ θ= −        (1 cos )y a θ= −   
 
  of the cycloid that is generated by a point on the rim of a circular wheel of radius  a  as it  
  rolls along the x-axis. [See Example 5 in Section 10.4 of  Edwards and Penney, Calculus, 
  6th edition (Upper Saddle River, NJ: Prentice Hall, 2002).]   
 
69. Substitution of  /v dy dx=  in the differential equation for  ( )y y x=  gives    

     21 ,dva v
dx

= +  

 and separation of variables then yields 

  1
1 12

; sinh ; sinh .
1
dv dx x dy xv C C

a a dx av
−  = = + = + 

 +
⌠ ⌠ ⌡⌡

 

 The fact that  (0) 0y′ =  implies that  1 0,C =  so it follows that 

         sinh ; ( ) cosh .dy x xy x a C
dx a a

   = = +   
   

 

 Of course the (vertical) position of the x-axis can be adjusted so that  0,C =  and the units 
 in which  andT ρ  are measured may be adjusted so that  1.a =  In essence, then the 

shape of the hanging cable is the hyperbolic cosine graph  cosh .y x=  
 

 

SECTION 1.5 
 
LINEAR FIRST-ORDER EQUATIONS 
 
1. ( ) ( )exp 1 ; 2 ; 2 ; ( ) 2x x x x x x

xdx e D y e e y e e C y x Ceρ −= = ⋅ = ⋅ = + = +∫   

(0) 0 implies 2 so ( ) 2 2 xy C y x e−= = − = −  

 
2. ( ) ( )2 2 2 2exp ( 2) ; 3; 3 ; ( ) (3 )x x x x

xdx e D y e y e x C y x x C eρ − − −= − = ⋅ = ⋅ = + = +∫   

 2(0) 0 implies 0 so ( ) 3 xy C y x x e= = =  
 
3. ( ) ( )3 3 3 2 2 3exp 3 ; 2 ; ; ( ) ( )x x x x

xdx e D y e x y e x C y x x C eρ −= = ⋅ = ⋅ = + = +∫   
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4. ( ) ( )2 2 2 2

exp ( 2 ) ; 1; ; ( ) ( )x x x x
xx dx e D y e y e x C y x x C eρ − − −= − = ⋅ = ⋅ = + = +∫  

 
5. ( ) ( )2ln 2 2 2 2 3exp (2 / ) ; 3 ;x

xx dx e x D y x x y x x Cρ = = = ⋅ = ⋅ = +∫   

2 2( ) / ; (1) 5 implies 4 so ( ) 4 /y x x C x y C y x x x= + = = = +  
 
6. ( ) ( )5ln 5 5 6 5 7exp (5/ ) ; 7 ;x

xx dx e x D y x x y x x Cρ = = = ⋅ = ⋅ = +∫   

2 5 2 5( ) / ; (2) 5 implies 32 so ( ) 32 /y x x C x y C y x x x= + = = = +  
 
7. ( ) ( )(ln ) / 2exp (1/ 2 ) ; 5; 5x

xx dx e x D y x y x x Cρ = = = ⋅ = ⋅ = +∫  

 ( ) 5 /y x x C x= +  
 
8. ( ) ( )(ln ) / 3 4 / 33 3 3 3exp (1/ 3 ) ; 4 ; 3x

xx dx e x D y x x y x x Cρ = = = ⋅ = ⋅ = +∫  

 1/ 3( ) 3y x x Cx−= +  
 
9. ( ) ( )lnexp ( 1/ ) 1/ ; 1/ 1/ ; 1/ lnx

xx dx e x D y x x y x x Cρ −= − = = ⋅ = ⋅ = +∫   

( ) ln ; (1) 7 implies 7 so ( ) ln 7y x x x C x y C y x x x x= + = = = +  
 
10. ( ) ( 3ln ) / 2 3/ 2exp ( 3/ 2 ) ;xx dx e xρ − −= − = =∫  

 ( )3/ 2 1/ 2 3/ 2 3/ 29 / 2; 3 ;xD y x x y x x C− −⋅ = ⋅ = +  3 3/ 2( ) 3y x x Cx= +  
 
11. ( ) ( )ln 3 3 3 3exp (1/ 3) ; 0;x x x x x

xx dx e x e D y x e y x e Cρ − − − −= − = = ⋅ = ⋅ =∫  

 1 3( ) ; (1) 0 implies 0 so ( ) 0 (constant)xy x C x e y C y x−= = = ≡  
 
12. ( ) ( )3 ln 3 3 7 3 81

4exp (3/ ) ; 2 ;x
xx dx e x D y x x y x x Cρ = = = ⋅ = ⋅ = +∫   

5 3 5 31 1
4 4( ) ; (2) 1 implies 56 so ( ) 56y x x C x y C y x x x− −= + = = − = −  

 
13. ( ) ( ) 2 21

2exp 1 ; ;x x x x x
xdx e D y e e y e e Cρ = = ⋅ = ⋅ = +∫   

1 1 1 1
2 2 2 2( ) ; (0) 1 implies so ( )x x x xy x e C e y C y x e e− −= + = = = +  

 
14. ( ) ( )3ln 3 3 1 3exp ( 3/ ) ; ; lnx

xx dx e x D y x x y x x Cρ − − − − −= − = = ⋅ = ⋅ = +∫   
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3 3 3 3( ) ln ; (1) 10 implies 10 so ( ) ln 10y x x x C x y C y x x x x= + = = = +  
 
15. ( ) ( )2 2 2 2 21

2exp 2 ; ;x x x x x
xx dx e D y e x e y e e Cρ = = ⋅ = ⋅ = +∫   

2 25 51 1
2 2 2 2( ) ; (0) 2 implies so ( )x xy x C e y C y x e− −= + = − = − = −  

 
16. ( ) ( )sin sin sin sin sinexp cos ; cos ;x x x x x

xx dx e D y e e x y e e Cρ = = ⋅ = ⋅ = +∫   

sin sin( ) 1 ; ( ) 2 implies 1 so ( ) 1x xy x C e y C y x eπ− −= + = = = +  
 
17. ( ) ( )( ) ( )ln(1 )exp 1/(1 ) 1 ; 1 cos ; 1 sinx

xx dx e x D y x x y x x Cρ += + = = + ⋅ + = ⋅ + = +∫   

sin 1 sin( ) ; (0) 1 implies 1 so ( )
1 1

C x xy x y C y x
x x

+ += = = =
+ +

 

 
18. ( ) ( )2ln 2 2 2exp ( 2 / ) ; cos ; sinx

xx dx e x D y x x y x x Cρ − − − −= − = = ⋅ = ⋅ = +∫   

( )2( ) siny x x x C= +  
 
19. ( ) ( )ln(sin )exp cot sin ; sin sin cosx

xx dx e x D y x x xρ = = = ⋅ =∫   

21 1
2 2sin sin ; ( ) sin cscy x x C y x x C x⋅ = + = +  

 
20. ( ) ( )2 2 2/ 2 / 2 / 2exp ( 1 ) ; (1 )x x x x x x

xx dx e D y e x eρ − − − − − −= − − = ⋅ = +∫   

2 2 2/ 2 / 2 / 2; ( ) 1x x x x x xy e e C y x C e− − − − − −⋅ = − + = − +  
2 / 2(0) 0 implies 1 so ( ) 1 x xy C y x e− −= = = − +  

 
21. ( ) ( )3ln 3 3 3exp ( 3/ ) ; cos ; sinx

xx dx e x D y x x y x x Cρ − − − −= − = = ⋅ = ⋅ = +∫   

3 3 3( ) sin ; (2 ) 0 implies 0 so ( ) siny x x x C x y C y x x xπ= + = = =  
 
22. ( ) ( )2 2 22 3exp ( 2 ) ; 3 ;x x x

xx dx e D y e x y e x Cρ − − −= − = ⋅ = ⋅ = +∫   

( ) ( )2 23 3( ) ; (0) 5 implies 5 so ( ) 5x xy x x C e y C y x x e+ += + = = = +  
 
23. ( ) ( )2 3ln 3 2 3 2 2exp (2 3/ ) ; 4x x x x x

xx dx e x e D y x e eρ − − −= − = = ⋅ =∫   

3 2 2 3 3 22 ; ( ) 2x x xy x e e C y x x C x e− −⋅ = + = +  
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24. ( ) ( )22 3ln( 4) / 2 2 3/ 2 2 3/ 2 2 1/ 2exp 3 /( 4) ( 4) ; ( 4) ( 4)x

xx x dx e x D y x x xρ += + = = + ⋅ + = +∫   

2 3/ 2 2 3/ 2 2 3/ 21 1
3 3( 4) ( 4) ; ( ) ( 4)y x x C y x C x −⋅ + = + + = + +  

2 3/ 216 1
3 3(0) 1 implies so ( ) 1 16( 4)y C y x x − = = = + +   

 
25. First we calculate 
 

3
2 2

2 2
3 3 33 ln( 1)

1 1 2
x dx xx dx x x

x x
⌠⌠


 
⌡ ⌡

   = − = − +  + + 
. 

 
 It follows that  2 3/ 2 2( 1) exp(3 / 2)x xρ −= +  and thence that 
 

   

( )2 3/ 2 2 2 5/ 2

2 3/ 2 2 2 3/ 2

2 2 3/ 2 2

( 1) exp(3 / 2) 6 ( 4) ,

( 1) exp(3 / 2) 2( 4) ,
( ) 2exp(3 / 2) ( 1) exp( 3 / 2).

xD y x x x x

y x x x C
y x x C x x

− −

− −

⋅ + = +

⋅ + = − + +
= − + + −

 

 
 Finally,  y(0) = 1  implies that  C = 3  so the desired particular solution is 
 
      2 2 3/ 2 2( ) 2exp(3 / 2) 3( 1) exp( 3 / 2).y x x x x= − + + −  
 
26. With  /x dx dy′ = ,  the differential equation is  3 24 1.y x y x′ + =   Then with   y  as the 

independent variable we calculate 
 

( ) ( )4ln 4 4( ) exp (4 / ) ;y
yy y dy e y D x y yρ = = = ⋅ =∫  

  4 2
2 4

1 1; ( )
2 2

Cx y y C x y
y y

⋅ = + = +  

 
27. With  /x dx dy′ = ,  the differential equation is  .yx x y e′ − =   Then with   y  as the 

independent variable we calculate 
 

( ) ( )( ) exp ( 1) ;y y
yy dy e D x e yρ − −= − = ⋅ =∫  

  ( )2 21 1
2 2; ( )y yx e y C x y y C e−⋅ = + = +  

 
28. With  /x dx dy′ = ,  the differential equation is  2(1 ) 2 1.y x y x′+ − =   Then with   y  as the 

independent variable we calculate 
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( ) 22 ln( 1) 2 1( ) exp ( 2 /(1 ) (1 )yy y y dy e yρ − + −= − + = = +∫  

( )2 1 2 2(1 ) (1 )yD x y y− −⋅ + = +  
 
 An integral table (or trigonometric substitution) now yields 
 

  ( )
( ) ( )

1
22 22

2 11
2

1 tan
1 2 11

( ) 1 tan

x dy y y C
y yy

x y y y y C

−

−

 = = + + + + +

 = + + + 

⌠

⌡    

 
29. ( ) ( )2 2 2 2 2

0
exp ( 2 ) ; ;

xx x x x t
xx dx e D y e e y e C e dtρ − − − − −= − = ⋅ = ⋅ = +∫ ∫   

 ( )2 1
2( ) erf ( )xy x e C xπ= +   

 
30. After division of the given equation by  2x,  multiplication by the integrating factor   
 ρ = x–1/2  yields 
 

( )
1/ 2 3/ 2 1/ 21

2

1/ 2 1/ 2

1/ 2 1/ 2

1

cos ,

cos ,

cos .

x

x

x y x y x x

D x y x x

x y C t t dt

− − −

− −

− −

′ − =

=

= + ∫

 

 
 The initial condition   y(1)  =  0  implies that  C  =  0,  so the desired particular solution is 
 

1/ 2 1/ 2

1
( ) cos

x
y x x t t dt−= ∫ . 

 

31. (a) ( ) , so 0.
P dx

c c c cy C e P P y y P y−∫′ ′= − = − + =  
 

 (b) ( )
P dx P dx P dx P dx

p py P e Q e dx e Q e Py Q
− −  ∫ ∫ ∫ ∫′ = − ⋅ + ⋅ = − +    

⌠

⌡

 

 
32. (a) If  cos siny A x B x= +  then   
 
   ( )cos ( )sin 2siny y A B x B A x x′ + = + + − =  
 
 provided that  A = –1  and  B = 1.  These coefficient values give the particular solution   
 yp(x)  =  sin x – cos x. 
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 (b) The general solution of the equation  0y y′ + =  is  y(x)  =  Ce–x   so addition to the 
particular solution found in part (a) gives  y(x)  =  Ce–x + sin x – cos x.    

 
 (c) The initial condition  y(0) = 1  implies that  C = 2,  so the desired particular 

solution is  y(x)  =  2e–x + sin x – cos x.  
 
33. The amount  ( )x t  of salt (in kg) after  t  seconds satisfies the differential equation  

/ 200,x x′ = −   so  / 200( ) 100 .tx t e−=   Hence we need only solve the equation  
/ 20010 100 te−=   for  t  = 461 sec = 7 min 41 sec (approximately). 

 
34. Let ( )x t  denote the amount of pollutants in the lake after  t  days, measured in millions of 

cubic feet (mft3). The volume of the lake is 8000 mft3, and the initial amount  (0)x  of  
 pollutants is  0 (0.25%)(8000) 20x = =  mft3.  We want to know when  

( ) (0.10%)(8000) 8x t = =  mft3.  We set up the differential equation in infinitesimal form 
by writing 

       [in] [out] (0.0005)(500) 500 ,
8000

xdx dt dt= − = − ⋅  

 which simplifies to 

       1 1 1, or .
4 16 16 4

dx x dx x
dt dt

= − + =  

 Using the integrating factor  /16 ,teρ =  we readily derive the solution  /16( ) 4 16 tx t e−= +  
for which  (0) 20.x =   Finally, we find that  8 when 16ln 4 22.2x t= = ≈  days. 

  
35. The only difference from the Example 4 solution in the textbook is that  V = 1640 km3  

and  r = 410 km3/yr for Lake Ontario, so the time required is 
 

ln 4 4 ln 4 5.5452 years.Vt
r

= = ≈  

 
36. (a) The volume of brine in the tank after  t  min is  V(t)  =  60 – t gal,  so the initial 

value problem is 
 

32 , (0) 0.
60

dx x x
dt t

= − =
−

 

 The solution is 
3(60 )( ) (60 )

3600
tx t t −= − − . 

 
 (b) The maximum amount ever in the tank is  40 / 3 23.09 lb.≈   This occurs after  

60 20 3 25/ 36 min.t = − ≈  
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37. The volume of brine in the tank after  t  min is  V(t)  =  100 + 2t  gal, so the initial value 
problem is 

35 , (0) 50.
100 2

dx x x
dt t

= − =
+

 

 
 The integrating factor  ( )tρ = (100 + 2t)3/2  leads to the solution 
 

3/ 2
50000( ) (100 2 )

(100 2 )
x t t

t
= + −

+
. 

 
 such that  x(0)  =  50.  The tank is full after  t  =  150 min,  at which time   
 x(150)  =  393.75 lb. 
  
38. (a) / / 20 and (0) 50dx dt x x= − = so  / 20( ) 50 tx t e−= . 
  
 (b) The solution of the linear differential equation 
 

/ 205 5 5 1
100 200 2 40

tdy x y e y
dt

−= − = −  

 
 with   y(0)  =  50  is  

/ 40 / 20( ) 150 100 .t ty t e e− −= −  
 
 (c) The maximum value of  y  occurs when   
 

  ( )/ 40 / 20 / 40 / 4015 5( ) 5 3 4 0
4 4

t t t ty t e e e e− − − −′ = − + = − − = . 

 
 We find that  ymax =  56.25 lb  when  t  =  40 ln(4/3)  ≈  11.51 min. 
 
39. (a) The initial value problem 
 

, (0) 100
10

dx x x
dt

= − =  

 
 for Tank 1 has solution  /10( ) 100 .tx t e−=   Then the initial value problem 
 

/1010 , (0) 0
10 10 10

tdy x y ye y
dt

−= − = − =  

 
 for Tank 2 has solution  /10( ) 10 .ty t t e−=  
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 (b) The maximum value of  y  occurs when   
 
   /10 /10( ) 10 0t ty t e t e− −′ = − =  
  
 and thus when  t = 10.  We find that  ymax  =   y(10)  =  100e–1  ≈  36.79  gal. 
 
40. (b) Assuming inductively that  ( )/ 2 / !2n t n

nx t e n−= ,  the equation for  xn+1  is 
 

/ 2
1

1 11
1 1 1 .
2 2 ! 2 2

n t
n

n n nn
dx t ex x x

dt n

−
+

+ ++= − = −  

 
 We easily  solve this first–order equation with  1(0) 0nx + =   and find that   
 

1 / 2

1 1 ,
( 1)! 2

n t

n n
t ex

n

+ −

+ +=
+

 

 
 thereby completing the proof by induction. 
 
41. (a) A'(t)  =  0.06A + 0.12S  =  0.050.06 3.6 tA e+  
 
 (b) The solution with  A(0)  =  0  is 
 
             A(t)  =  360(e0.06 t – e0.05 t), 
           
 so  A(40)  ≈  1308.283  thousand dollars. 
 
42. The mass of the hailstone at time  t  is  3 3 3(4 / 3) (4 / 3) .m r k tπ π= =   Then the equation  

d(mv)/dt  =  mg  simplifies to 
 
     tv' + 3v  =  gt. 
 
 The solution satisfying the initial condition  v(0)  =  0  is  v(t)  =  gt/4,  so  v'(t)  =  g/4. 
 
43. The solution of the initial value problem  0, ( 5)y x y y y′ = − − =   is  
 

5
0( ) 1 ( 6) .xy x x y e− −= − + +  

 
 Substituting  x = 5,  we therefore solve the equation  10

0 14 ( 6)y e y−+ + =    
 with  y1  =  3.998,  3.999,  4,  4.001,  4.002  for the desired initial values   
 y0  =  –50.0529,   –28.0265,   –6.0000,  16.0265,  38.0529,  respectively. 
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44. The solution of the initial value problem  0, ( 5)y x y y y′ = + − =   is  
 

5
0( ) 1 ( 4) .xy x x y e += − − + −  

 
 Substituting  x = 5,  we therefore solve the equation  10

0 16 ( 4)y e y− + − =    
 with  y1  =  –10,  –5,  0,  5, 10  for the desired initial values   
 y0  =  3.99982,   4.00005,   4.00027,  4.00050,  4.00073,  respectively. 
 
45. With the pollutant measured in millions of liters and the reservoir water in millions of 

cubic meters, the inflow-outflow rate is  1
5 ,r =  the pollutant concentration in the inflow 

is  o 10,c =  and the volume of the reservoir is  2.V =  Substituting these values in the  
 equation  o ( / ) ,x rc r V x′ = −  we get the equation 

     12
10

dx x
dt

= −  

 for the amount  ( )x t  of pollutant in the lake after  t  months.  With the aid of the  
 integrating factor  /10 ,teρ =   we readily find that the solution with  (0) 0x =  is 

     ( )/10( ) 20 1 .tx t e−= −  

 Then we find that  10 when 10ln 2 6.93x t= = ≈  months, and observe finally that, as 
expected,  ( ) 20 as .x t t→ → ∞  

 
46. With the pollutant measured in millions of liters and the reservoir water in millions of 

cubic meters, the inflow-outflow rate is  1
5 ,r =  the pollutant concentration in the inflow 

is  o 10(1 cos ),c t= +  and the volume of the reservoir is  2.V =  Substituting these values  
 in the equation  o ( / ) ,x rc r V x′ = −  we get the equation 

       1 12(1 cos ) , that is, 2(1 cos )
10 10

dx dxt x x t
dt dt

= + − + = +  

 for the amount  ( )x t  of pollutant in the lake after  t  months.  With the aid of the  
 integrating factor  /10 ,teρ =   we get 
 
   /10 /10 /10(2 2 cos )t t tx e e e t dt⋅ = +∫  

         
/10

/10
2 21

10

20 2
( ) 1

t
t ee= + ⋅

+
1 cos sin .

10
t t C + + 

 
 

  

 When we impose the condition  (0) 0,x =  we get the desired particular solution 
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    ( )/1020( ) 101 102 cos 10sin .
101

tx t e t t−= − + +  

 In order to determine when  10,x =  we need to solve numerically.  For instance, we can  
 use the Mathematica commands 
 
  x = (20/101)(101 - 102 Exp[-t/10] + Cos[t] + 10 Sin[t]);

FindRoot[ x == 10, {t,7} ]

{t -> 6.474591767017537}

 and find that this occurs after about 6.47 months.  Finally, as  t → ∞  we observe that  
( )x t  approaches the function  20

10120 (cos 10sin )t t+ +   that does, indeed, oscillate about 
the equilibrium solution  ( ) 20.x t ≡  

 
 
SECTION 1.6 
 
SUBSTITUTION METHODS AND EXACT EQUATIONS 
 
It is traditional for every elementary differential equations text to include the particular types of 
equations that are found in this section.  However, no one of them is vitally important solely in 
its own right.  Their main purpose (at this point in the course) is to familiarize students with the 
technique of transforming a differential equation by substitution.  The subsection on airplane 
flight trajectories (together with Problems 56–59) is included as an application, but is optional 
material and may be omitted if the instructor desires. 
 
The differential equations in Problems 1–15 are homogeneous, so we make the substitutions 
 

   , , .y dy dvv y v x v x
x dx dx

= = = +     
 
For each problem we give the differential equation in  x,  ( ),v x and  /v dv dx′ =  that results, 
together with the principal steps in its solution. 
 

1. ( ) ( ) ( )2 2
2

2( 1)1 2 1 ; 2 ; ln 2 1 2ln ln
2 1

v dvx v v v v x dx v v x C
v v

+′+ = − + − = − + − = − +
+ −

⌠
⌡ ∫  

 ( )2 2 2 22 1 ; 2x v v C y xy x C+ − = + − =  
 

2. ( )2 2 22 1; 2 ; ln ; lndxx v v v dv v x C y x x C
x

′ = = = + = +⌠
⌡∫  

 

3. ( )22 ; ; ln ; ln
2
dv dxx v v v x C y x x C

xv
′ = = = + = +⌠ ⌠

⌡⌡
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4. ( ) ( )2 1 2
2

2(1 ) 21 1 ; ; 2 tan ln( 1) 2 ln
1

v dv dxx v v v v v x C
v x

−−′− = − + = − + = +
+

⌠ ⌠ 
⌡ ⌡

 

 ( )1 2 22 tan / ln( / 1) 2 lny x y x x C− − + = +  
 

5. ( ) 2
2

1 1 2 11 2 ; ; ln 2lndxx v v v dv v x C
v v x v

 ′+ = − + = − − = − + 
 

⌠ ⌠ ⌡⌡
 

 ln ln 2ln ; ln( )x xy x x C xy C
y y

− − = − + = +  

 

6. ( ) 2 2
2

2 1 2 12 1 2 ; ; ln 2 lndxx v v v dv v x C
v v x v

 ′+ = − + = − − = − + 
 

⌠ ⌠ ⌡⌡
 

 2 ln 2ln 2ln ; 2 lnxy x x C y y x C y
y

− − = − + = +  

 

7. ( )2 2 3 3 331; 3 ; 3ln ; 3lndxx v v v dv v x C y x x C
x

′ = = = + = +⌠
⌡∫  

 

8. ; ; ln ; ln( ln )v v vdxx v e e dv e x C v C x
x

− −′ = − = − = − + − = −⌠
⌡∫  

 ( )ln lny x C x= − −  
 

9. ( )2
2

1; ; ln ; lndv dxx v v x C x y C x
v x v

′ = − = − = − + = −⌠ ⌠ 
⌡ ⌡

 

 

10. ( )2 2
2

4 42 1; ; ln 2 1 4ln ln
2 1

v dv dxx v v v v x C
v x

′ = + = + = +
+

⌠ ⌠
⌡⌡

 

 2 2 4 2 2 62 / 1 ; 2y x C x x y C x+ = + =  
 

11. ( )
2

2 3
3 2

1 1 21 ; ;
1

v dx v dxx v v v v dv dv
v v x v v x

−  ′− = + = − = + + 

⌠⌠ ⌠ ⌠  ⌡ ⌡⌡ ⌡
 

 ( ) ( ) ( )2 2 2 2ln ln 1 ln ln ; 1 ;v v x C v C x v y C x y− + = + = + = +  
 

12. 2 2

2
4; ; 4 ln

4
v dv dxx v v v v x C

xv
′ = + = + = +

+
⌠ ⌠ ⌡⌡

 

 ( ) ( )2 22 2 2 24 ln ; 4 lnv x C x y x x C+ = + + = +  
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13. ( )2 2

2
1; ; ln 1 ln ln

1
dv dxx v v v v x C

xv
′ = + = + + = +

+
⌠ ⌠ ⌡⌡

 

 2 2 2 21 ;v v C x y x y C x+ + = + + =  
 
14. ( )2 21 1x v v v v′ = + − +  

 ( )

2 2

2

ln
1 (1 )

1 ( 1 )
2 1

ln ln

v dvx
v v

du u v
u u

dw w C
w

⌠


⌡

⌠



⌡

⌠


⌡

=
+ − +

= = +
−

= − = − +

 

 
 with   1w u= − .  Back-substitution and simplification finally yields the implicit 

solution  2 2 .x x y C− + =  
 

15. ( ) ( )2 2
2

2( 1) 4( 1) 2 2 ; ; ln 2 4ln ln
2

v dv dxx v v v v v v x C
v v x

+′+ = − + = − + = − +
+

⌠ ⌠ 
⌡ ⌡

 

 2 4 2 2 32 / ; 2v v C x x y x y C+ = + =  
 
16. The substitution  v  =  x +  y + 1  leads to 
 

22 ( )
11

2 2ln(1 )

2 1 2 ln(1 1)

dv u dux v u
uv

u u C

x x y x y C

⌠ ⌠
 


⌡⌡

= = =
++

= − + +

= + + − + + + +

 

 

 17. v  =  4x +  y;     2 1
2

14; tan
4 2 2 2

dv v Cv v x
v

−′ = + = = +
+

⌠
⌡

 

 2 tan(2 ); 2 tan(2 ) 4v x C y x C x= − = − −  
 

18. v  =  x +  y;     11; 1 ln( 1)
1 1

v dvv v v x dv v v C
v v

 ′ = + = = − = − + − + + 

⌠⌠ ⌡ ⌡
 

 y  =  ln(x +  y + 1) + C. 
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Problems 19–25 are Bernoulli equations.  For each, we indicate the appropriate substitution as 
specified in Equation (10) of this section, the resulting linear differential equation in  v,  its 
integrating factor  ρ,  and finally the resulting solution of the original Bernoulli equation. 
 
19. ( )2 2 4 2 5; 4 / 10 / ; 1/ ; / 2v y v v x x x y x Cxρ− ′= − = − = = +  
 
20. 

2 23 3 3 3; 6 18 ; ; 3x xv y v x v x e y C eρ −′= + = = = +  
 
21. ( )2 2 2 2; 2 2; ; 1/ 1x xv y v v e y Ceρ− −′= + = − = = −  
 
22. ( )3 2 6 3 7; 6 / 15/ ; ; 7 / 7 15v y v v x x x y x Cxρ− −′= − = − = = +  
 

23. ( ) 31/ 3 2 2; 2 / 1; ;v y v v x x y x C xρ
−− −′= − = − = = +  

 
24. 2 2 2 2 2; 2 / ; ; /( ln )x x xv y v v e x e y e C xρ− −′= + = = = +  
 

25. ( ) ( )3 4 3 3 4 3; 3 / 3/ 1 ; ; 3 1 / 2v y v v x x x y C x xρ′= + = + = = + +  

 
26. The substitution  v  =  y3  yields the linear equation  v' + v  =  e–x  with integrating  
 factor  ρ  =  ex.  Solution:   y3  =  e–x(x + C) 
 
27. The substitution  v  =  y3  yields the linear equation  x v' – v  =  3x4  with integrating 
 factor  ρ  =  1/x.  Solution:   y  =  (x4 +  C x)1/3 
  
28. The substitution  v  =  ey  yields the linear equation  x v' – 2v  =  2x3e2x  with integrating 
 factor  ρ  =  1/x2.  Solution:   y  =  ln(C x2 + x2e2x) 
 
29. The substitution  v  =  sin y  yields the homogeneous equation  2xv v'  =  4x2 + v2. 
 Solution:  sin2y  =  4x2 – C x 
 
30. First we multiply each side of the given equation by  ey.  Then the substitution  v  =  ey  

gives the homogeneous equation  (x + v) v'   =  x – v  of Problem 1 above. 
 Solution:  x2 – 2x ey – e2 y  =   C 
 
Each of the differential equations in Problems 31–42 is of the form  0,M dx N dy+ =  and the 
exactness condition  / /M y N x∂ ∂ = ∂ ∂  is routine to verify.  For each problem we give the 
principal steps in the calculation corresponding to the method of Example 9 in this section. 
 
31.  2(2 3 ) 3 ( ); 3 ( ) 3 2yF x y dx x xy g y F x g y x y N′= + = + + = + = + =∫  

 2 2 2( ) 2 ; ( ) ; 3g y y g y y x xy y C′ = = + + =  
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32.  2(4 ) 2 ( ); ( ) 6yF x y dx x xy g y F x g y y x N′= − = − + = − + = − =∫  

 2 2 2( ) 6 ; ( ) 3 ; 3g y y g y y x xy y C′ = = − + =  
 
33.  2 2 3 2 2(3 2 ) ( ); 4 ( ) 4 6yF x y dx x xy g y F xy g y xy y N′= + = + + = + = + =∫  

 2 3 3 2 3( ) 6 ; ( ) 2 ; 2 2g y y g y y x xy y C′ = = + + =  
 
34.  2 2 3 2 2 2 2 3(2 3 ) ( ); 2 ( ) 2 4yF xy x dx x x y g y F x y g y x y y N′= + = + + = + = + =∫  

 3 4 3 2 2 4( ) 4 ; ( ) ;g y y g y y x x y y C′ = = + + =  
 
35.  3 4 21

4( / ) ln ( ); ln ( ) lnyF x y x dx x y x g y F x g y y x N′= + = + + = + = + =∫  

 2 3 3 21 1 1
3 4 3( ) ; ( ) ; lng y y g y y x y y x C′ = = + + =  

 
36.  (1 ) ( ); ( ) 2x y x y x y x y

yF y e dx x e g y F x e g y y x e N′= + = + + = + = + =∫  

 2 2( ) 2 ; ( ) ; x yg y y g y y x e y C′ = = + + =  
 
37.  (cos ln ) sin ln ( ); / ( ) / y

yF x y dx x x y g y F x y g y x y e N′= + = + + = + = + =∫  

 ( ) ; ( ) ; sin lny y yg y e g y e x x y e C′ = = + + =  
 

38.  1 2 11
2 2 2( tan ) tan ( ); ( )

1 1y
x x yF x y dx x x y g y F g y N
y y

− − +′= + = + + = + = =
+ +∫  

 2 2 1 21 1 1
2 2 22( ) ; ( ) ln(1 ); tan ln(1 )

1
yg y g y y x x y y C
y

−′ = = + + + + =
+

 

 
39.  2 3 4 3 3 4(3 ) ( );F x y y dx x y x y g y= + = + +∫  

 3 2 3 3 2 4 33 4 ( ) 3 4yF x y xy g y x y y xy N′= + + = + + =  

 4 5 3 3 4 51 1
5 5( ) ; ( ) ;g y y g y y x y xy y C′ = = + + =  

 
40.  ( sin tan ) sin tan ( );x xF e y y dx e y x y g y= + = + +∫  

 2 2cos sec ( ) cos secx x
yF e y x y g y e y x y N′= + + = + =  

 ( ) 0; ( ) 0; sin tanxg y g y e y x y C′ = = + =  
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41.  
2 2 2

4 3
2 3 ( );x y x yF dx g y
y x y x

 
= − = + + 

 

⌠

⌡

 

 
2 2

2 3 2 3

2 2 1( )y
x y x yF g y N
y x y x y

′= − + + = − + + =  

 
2 2

3

1( ) ; ( ) 2 ; 2x yg y g y y y C
y xy

′ = = + + =  

 

42.  2 / 3 5/ 2 2 / 3 3/ 23 ( );
2

F y x y dx x y x y g y− − − − = − = + + 
 

⌠

⌡

 

 5/ 3 3/ 2 3/ 2 5/ 32 2( )
3 3yF x y x g y x x y N− − − −′= − + + = − =  

 2 / 3 3/ 2( ) 0; ( ) 0;g y g y x y x y C− −′ = = + =  
 
43. The substitution  ,y p y p′ ′′ ′= =  in  xy y′′ ′=  yields 

   

2 21
2

, (separable)

ln ln ln ,

,
( ) .

xp p
dp dx p x C
p x

y p Cx
y x Cx B Ax B

′ =

= ⇒ = +

′ = =
= + = +

⌠ ⌠
⌡⌡  

 
44. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  ( )2 0yy y′′ ′+ =  yields 

   

2

2
2

0 , (separable)

ln ln ln ,

1/

( ) .
2

ypp p yp p
dp dy p y C
p y

yp C y x dy dy
p C

yx y B Ay B
C

′ ′+ = ⇒ = −

= − ⇒ = − +

= ⇒ = =

= + = +

⌠ ⌠

⌡⌡

⌠ ⌠
⌡⌡

 

 
45. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  4 0y y′′ + =  yields 
 

   

( )
2 21

2

2 2 21
2

4 0, (separable)

4 2 ,

4 2 4 ,

pp y

p dp y dy p y C

p y C C y

′ + =

= − ⇒ = − +

= − + = −
∫ ∫  
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1

2 2

1 1 sin ,
22

( ) sin[2 2 ] (sin 2 cos2 cos2 sin 2 ),
( ) cos2 sin 2 .

dy yx dy D
p kk y

y x k x D k x D x D
y x A x B x

−= = = +
−

= − = −
= +

⌠⌠
 ⌡ ⌡

 

 
46. The substitution  ,y p y p′ ′′ ′= =  in  4xy y x′′ ′+ =  yields 

   

2

2

4 , (linear in )
[ ] 4 2 ,

2 ,

( ) ln .

x

xp p x p
D x p x x p x A

dy Ap x
dx x

y x x A x B

′ + =

⋅ = ⇒ ⋅ = +

= = +

= + +

 

 
47. The substitution  ,y p y p′ ′′ ′= =  in  ( )2y y′′ ′=  yields 

   

2

2

, (separable)
1 ,

1 ,

( ) ln .

p p
dp x dx x B
p p

dy
dx x B
y x A x A

′ =

= ⇒ − = +

= −
+

= − +

⌠

⌡ ∫

 

 
48. The substitution  ,y p y p′ ′′ ′= =  in  2 3 2x y xy′′ ′+ =  yields 

   

2
2

3 3 2

3

2

3 23 2 , (linear in )

[ ] 2 ,
1 ,

( ) ln .

x

x p xp p p p
p x

D x p x x p x C
dy C
dx x x

Ay x x B
x

′ ′+ = ⇒ + =

⋅ = ⇒ ⋅ = +

= +

= + +

 

49. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  ( )2yy y yy′′ ′ ′+ =  yields 
 

   

2

2
2

(linear in ),
[ ] ,

1 1 ,
2 2 2

y

yp p p yp y p p y p
D y p y

y Cyp y C p
y

′ ′+ = ⇒ + =
⋅ =

+= + ⇒ =
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( )

( )

2
2

1/ 22

1 2 ln ln ,

( ) .x x

y dyx dy y C B
p y C

y C Be y x A Be

= = = + −
+

+ = ⇒ = ± +

⌠ ⌠
 
⌡ ⌡  

 
50. The substitution  ,y p y p′ ′′ ′= =  in  ( )2y x y′′ ′= +  gives  2( ) ,p x p′ = +   and then the  
 substitution  , 1v x p p v′ ′= + = −   yields 

   

2 2

1
2

21
2

1 1 ,

tan ,
1

tan( ) tan( ) ,

( ) ln sec( ) .

dvv v v
dx

dv dx v x A
v

dyv x y x A x A x
dx

y x x A x B

−

′ − = ⇒ = +

= ⇒ = +
+

′= + = + ⇒ = + −

= + − +

⌠
⌡ ∫  

 
51. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  ( )32y y y′′ ′=  yields 

   

3 2
2

3

3

12 2 ,

1 1 ,
3

3 0

dpp p yp y dy y C
p p

x dy y Cx D
p

y x Ay B

′ = ⇒ = ⇒ − = +

= = − − +

+ + + =

⌠

⌡

⌠

⌡

∫

 

 
52. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  3 1y y′′ =  yields 

   

3 2
3 2

2
2

2 2

2 2

2 2

1 11 ,
2 2 2

1 1 ,
1

1 1 1,

( ) 1.

dy Ay p p p dp p
y y

Ay y dyp x dy
y p Ay

x Ay C Ax B Ay
A

Ay Ax B

′ = ⇒ = ⇒ = − +

−= ⇒ = =
−

= − + ⇒ + = −

− + =

⌠

⌡

⌠ ⌠
 

⌡⌡

∫

 

 
53. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  2y yy′′ ′=  yields 
 

   

2 2

1
2 2

2 2 ,

1 1 tan ,

p p yp dp y dy p y A

dy yx dy C
p y A A A

−

′ = ⇒ = ⇒ = +

= = = +
+

⌠ ⌠

⌡⌡

∫ ∫
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1tan ( ) tan( ),

( ) tan( ).

y yA x C Ax AC
A A

y x A Ax B

− = − ⇒ = −

= +
 

 
54. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  ( )23yy y′′ ′=  yields 

   

2

3

3 2

2

33

ln 3ln ln ,
1 1 ,

2
( ) 1.

dp dyyp p p
p y

p y C p Cy
dyx dy B

p Cy Cy
Ay B x

′ = ⇒ =

= + ⇒ =

= = = − +

− =

⌠ ⌠
 
⌡ ⌡

⌠ ⌠

⌡⌡

 

 
55. The substitution  , ( ) /v ax by c y v ax c b= + + = − −   in  ( )y F ax by c′ = + +  yields the 
 separable differential equation  ( / ) / ( ),dv dx a b F v− =   that is,  / ( ).dv dx a b F v= +  
 
56. If  1 nv y −=   then  1/(1 )ny v −=   so  /(1 ) /(1 )n ny v v n−′ ′= − .  Hence the given Bernoulli 

equation transforms to 
 

    
/(1 )

1/(1 ) /(1 ).( ) ( )
1

n n
n n nv dv P x v Q x v

n dx

−
− −+ =

−
 

 
 Multiplication by  /(1 )(1 ) / n nn v −−  then yields the linear differential equation  

(1 ) (1 ) .v n P v n Q v′ + − = −  
 
 
57. If  lnv y=   then  vy e=   so  .vy e v′ ′=   Hence the given equation transforms to  

( ) ( ) .v v ve v P x e Q x v e′ + =   Cancellation of the factor  ve  then yields the linear 
differential equation  ( ) ( ).v Q x v P x′ − =  

 
58. The substitution  v = ln y,  y = ev,  y' = ev v'  yields the linear equation  x v' + 2 v  =  4x2 
 with integrating factor  ρ  =  x2.  Solution:   y  =  exp(x2 + C/x2) 
 
59. The substitution  x  =  u – 1,   y  =  v – 2  yields the homogeneous equation 
 

     dv u v
du u v

−=
+

. 

  
 The substitution  v  =  pu  leads to 
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( )2
2

( 1) 1ln ln 2 1 ln .
( 2 1) 2

p dpu p p C
p p

⌠


⌡

+
 = − = − + − − + −

 

 
We thus obtain the implicit solution  
 

( )2 2

2
2 2 2

2

2 2

2 2

2 1

2 1 2

( 2) 2( 1)( 2) ( 1)
2 2 6 .

u p p C

v vu v uv u C
u u

y x y x C
y xy x x y C

+ − =

 
+ − = + − = 

 

+ + + + − + =
+ − + + =

 

 
60. The substitution  x  =  u – 3,   y  =  v – 2  yields the homogeneous equation 
 

     2
4 3

dv u v
du u v

− +=
−

. 

  
 The substitution  v  =  pu  leads to 
 

[ ]

(4 3 ) 1 1 15ln
(3 1)( 1) 4 1 3 1

1 ln( 1) 5ln(3 1) ln .
4

p dpu dp
p p p p

p p C

⌠


⌡

 −= = − + − − + 

= − − + +

⌠

⌡  

 
We thus obtain the implicit solution  
 

4
4

5 5 5

5

5

( 1) ( / 1) ( )
(3 1) (3 / 1) (3 )

(3 ) ( )
( 3 3) ( 5).

C p C v u C u v uu
p v u v u

v u C v u
x y C y x

− − −= = =
+ + +

+ = −
+ + = − −

 

 
61. The substitution  v  =  x – y  yields the separable equation  v'   =  1 – sin v.  With the aid 

of the identity 
2

2

1 1 sin sec sec tan
1 sin cos

v v v v
v v

+= = +
−

 

  
 we obtain the solution 
 
    x  =  tan(x –  y) + sec(x –  y) + C. 
 
62. The substitution  y vx=  in the given homogeneous differential equation yields the  
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 separable equation  ( ) ( )3 42 1x v v v v′− = − +  that we solve as follows: 
 

   

3

4

2

2

2

2 2

3 3

2 1

2 1 1 1 (partial fractions)
1 1

ln( 1) ln ln( 1) ln ln
( 1)( 1)

( )( )

v dxdv
v v x

v dxdv
v v v v x

v v v v x C
x v v v C v
y xy x x y C xy

x y C xy

− = −
+

− − + = − − + + 

− + − + + = − +

− + + =

− + + =
+ =

⌠ ⌠
⌡⌡

⌠ ⌠ ⌡⌡
 

 
63. If we substitute  2

1 11/ , /y y v y y v v′ ′ ′= + = −  (primes denoting differentiation with 
respect to  x) into the Riccati equation  2y Ay By C′ = + +  and use the fact that 

 2
1 1 1y Ay By C′ = + + ,  then we immediately get the linear differential equation 

 1( 2 )v B A y v A′ + + = − . 
 
In Problems 64 and 65 we outline the application of the method of Problem 63 to the given 
Riccati equation. 
 
64. The substitution  1/y x v= +  yields the linear equation  2 1v x v′ − =  with integrating 

factor  
2

.xeρ −=   In Problem 29 of Section 1.5 we saw that the general solution of this 

linear equation is  
2

2( ) erf ( )xv x e C xπ = +   in terms of the error function  erf(x) 

introduced there  Hence the general solution of our Riccati equation is given by 
2 1

2( ) erf ( ) .xy x x e C xπ
−−  = + +   

  
65. The substitution  1/y x v= +  yields the trivial linear equation  1v′ = −  with immediate 

solution  ( ) .v x C x= −   Hence the general solution of our Riccati equation is given by 
 ( ) 1/( ).y x x C x= + −  
 
66. The substitution  y'  =  C  in the Clairaut equation immediately yields the general solution  

y  =  Cx + g(C). 
 
67. Clearly the line  y  =  Cx – C2/4  and the tangent line at  (C/2, C2/4)  to the parabola   
 y  =  x2  both have slope  C. 
 

68. ( ) ( )2ln 1 ln ln ln / kv v k x k a x a −+ + = − + =  

 ( )21 / kv v x a −+ + =  
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 ( )
2

2/ 1kx a v v− − = +
 

 

 ( ) ( )2 2 2/ 2 / 1k kx a v x a v v− −− + = +  

 
21 11 /

2 2

k k k kx x x xv
a a a a

− − −          = − = −          
             

 

 
69. With  a  =  100  and  k  =  1/10,  Equation (19) in the text is 
 
    y  =  50[(x/100)9/10 – (x/100)11/10]. 
 
 The equation  y'(x)  =  0  then yields   
 
    (x/100)1/10  =  (9/11)1/2, 
 
 so it follows that 
 
   ymax  =  50[(9/11)9/2 – (9/11)11/2]  ≈  3.68 mi. 
 
70. With  0/ 10 / 500 1/10,k w v= = =  Eq. (16) in the text gives 

    ( )2 1ln 1 ln
10

v v x C+ + = − +  

 where  / .v y x=   Substitution of   200, 150, 3/ 4x y v= = =  yields  ( )1/10ln 2 200 ,C = ⋅  
 thence 

    ( )
2

1/10
2

1ln 1 ln ln 2 200 ,
10

y y x
x x

 
+ + = − + ⋅ 

 
 

 

 which — after exponentiation and then multiplication of the resulting equation by  x — 
 simplifies as desired to  ( )1/102 2 92 200 .y x y x+ + =   If  0x =   then this equation 
 yields   0,y = thereby  verifying that the airplane reaches the airport at the origin. 
 
71. (a) With  a = 100 and  0/ 2 / 4 1/ 2,k w v= = =  the solution given by equation (19) in 

the textbook is  y(x)  =  50[(x/100)1/2 – (x/100)3/2].  The fact that  y(0)  =  0  means that 
this trajectory goes through the origin where the tree is located. 

 
 (b) With  k = 4/4 = 1  the solution is  y(x)  =  50[1 – (x/100)2]  and we see that the 

swimmer hits the bank at a distance  y(0)  =  50  north of the tree. 
 
 (c) With  k = 6/4 = 1 the solution is  y(x)  =  50[(x/100)–1/2 – (x/100)5/2].  This 

trajectory is asymptotic to the positive x-axis, so we see that the swimmer never reaches 
the west bank of the river. 
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72. The substitution  ,y p y p′ ′′ ′= =  in  2 3/ 2[1 ( ) ]ry y′′ ′= +   yields 

   2 3/ 2
2 3/ 2(1 ) .

(1 )
rp dprp p dx

p
′ = + ⇒ =

+
⌠

⌡ ∫  

 Now integral formula #52 in the back of our favorite calculus textbook gives 

   2 2 2 2

2
(1 )( ) ,

1
rp x a r p p x a

p
= − ⇒ = + −

+
 

 and we solve readily for 

   
2

2
2 2 2 2

( ) ,
( ) ( )

x a dy x ap p
r x a dx r x a

− −= ⇒ = =
− − − −

 

 whence 

   2 2

2 2

( ) ( ) ,
( )

x a dxy r x a b
r x a

−= = − − − +
− −

⌠

⌡

 

 which finally gives  2 2 2( ) ( )x a y b r− + − =   as desired. 

 
 
CHAPTER 1 Review Problems 
 
The main objective of this set of review problems is practice in the identification of the different 
types of first-order differential equations discussed in this chapter.  In each of Problems 1–36 we 
identify the type of the given equation and indicate an appropriate method of solution. 
 
1. If we write the equation in the form  2(3/ )y x y x′ − =  we see that it is linear with 

integrating factor  3.xρ −=   The method of Section 1.5 then yields the general solution   
 y  =  x3(C + ln x). 
 
2. We write this equation in the separable form  2 2/ ( 3) / .y y x x′ = +   Then separation of 

variables and integration as in Section 1.4 yields the general solution   
 y  =  x / (3 –  Cx – x ln x). 
 
3. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the general solution y  =  x/(C – ln x). 
 
4. We note that  ( ) ( )3 2 2 22 3 sin 6 ,x

y xD xy e D x y y xy+ = + =   so the given equation is 
exact.   The method of Example 9 in Section 1.6 yields the implicit general solution 

 x2y3 + ex – cos  y  =  C. 
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5. We write this equation in the separable form  2 4/ (2 3) / .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution   
 y  =  C exp[(1 – x)/x3]. 
 
6. We write this equation in the separable form  2 2/ (1 2 ) / .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution   
 y  =  x / (1 + Cx + 2x ln x). 
 
7. If we write the equation in the form  3(2 / ) 1/y x y x′ + =  we see that it is linear with 

integrating factor  2.xρ =   The method of Section 1.5 then yields the general solution   
 y  =  x–2(C + ln x). 
 
8. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the general solution y  =  3Cx/(C – x3). 
 
9. If we write the equation in the form  (2 / ) 6y x y x y′ + =  we see that it is a Bernoulli 

equation with  n  =  1/2.  The substitution  1/ 2v y−=  of Eq. (10) in Section 1.6 then 
yields the general solution  y  =  (x2 + C/x)2. 

 
10. We write this equation in the separable form  ( )2 2/ 1 1 .y y x′ + = +   Then separation  
 of variables and integration as in Section 1.4 yields the general solution   
 y  =  tan(C + x + x3/3). 
 
11. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the general solution  y  =  x / (C – 3 ln x). 
 
12. We note that  ( ) ( )3 4 2 2 3 2 36 2 9 8 18 8 ,y xD xy y D x y xy xy y+ = + = +   so the given 

equation is exact.  The method of Example 9 in Section 1.6 yields the implicit general 
solution  3x2y3 + 2xy4  =   C. 

 
13. We write this equation in the separable form  2 4/ 5 4 .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution     
 y  =  1 / (C + 2x2 – x5). 
 
14. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the implicit general solution  y2  =  x2 / (C + 2 ln x). 
 
15. This is a linear differential equation with integrating factor  3 .xeρ =   The method of 

Section 1.5 yields the general solution   y  =  (x3 + C)e-3x. 
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16. The substitution  , , 1v y x y v x y v′ ′= − = + = +   gives the separable equation  
2 21 ( )v y x v′ + = − =  in the new dependent variable  v.  The resulting implicit general 

solution of the original equation is  y – x – 1  =  C e2x(y – x + 1).  
 
17. We note that  ( ) ( ) ,x x y y x y x y x y

y xD e y e D e x e e xy e+ = + = +   so the given equation is 
exact.  The method of Example 9 in Section 1.6 yields the implicit general solution   

 ex + ey + ex y  =   C. 
 
18. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the implicit general solution  y2  =   Cx2(x2 –  y2). 
 
19. We write this equation in the separable form  ( )2 5 3/ 2 3 / .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution 
 y  =  x2 / (x5 + Cx2 + 1). 
 
20. If we write the equation in the form  5/ 2(3/ ) 3y x y x−′ + =  we see that it is linear with 

integrating factor  3.xρ =   The method of Section 1.5 then yields the general solution   
 y  =  2x–3/2 +  Cx–3. 
 
21. If we write the equation in the form  ( ) 21/( 1) 1/( 1)y x y x′ + + = −  we see that it is linear 

with integrating factor  1.xρ = +   The method of Section then 1.5 yields the general 
solution  y  =  [C + ln(x – 1)] / (x + 1). 

 
22. If we write the equation in the form  3 2 / 3(6 / ) 12y x y x y′ − =  we see that it is a Bernoulli 

equation with  n  =  1/3.  The substitution  2 / 3v y−=  of Eq. (10) in Section 1.6 then 
yields the general solution  y  =  (2x4 +  Cx2)3. 

 
23. We note that  ( ) ( )cos sin cos ,y y y

y xD e y x D x e x e x+ = + = +   so the given equation  
 is exact.  The method of Example 9 in Section 1.6 yields the implicit general solution   
 x ey +  y sin x  =  C 
 
24. We write this equation in the separable form  ( )2 2 3/ 2/ 1 9 / .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution     
 y  =  x1/2 / (6x2 + Cx1/2 + 2). 
 
25. If we write the equation in the form  ( )2 /( 1) 3y x y′ + + =  we see that it is linear with 

integrating factor  ( )21 .xρ = +   The method of Section 1.5 then yields the general 
solution  y  =  x + 1 + C (x + 1)–2. 

 
26. We note that  ( ) ( )1/ 2 4 / 3 1/5 3/ 2 3/ 2 1/ 3 6 / 5 1/ 29 12 8 15y xD x y x y D x y x y− = − =    
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 1/ 2 1/ 3 1/5 1/ 212 18 ,x y x y− so the given equation is exact.  The method of Example 9 in 
Section 1.6 yields the implicit general solution  6x3/2y4/3 – 10x6/5y3/2  =  C. 

 
27. If we write the equation in the form  2 4(1/ ) / 3y x y x y′ + = −  we see that it is a Bernoulli 

equation with  n  =  4.  The substitution  3v y−=  of Eq. (10) in Section 1.6 then yields 
the general solution  y  =  x–1(C + ln x)–1/3. 

 
28. If we write the equation in the form  2(1/ ) 2 /xy x y e x′ + =  we see that it is linear with 

integrating factor  .xρ =   The method of Section 1.5 then yields the general solution   
 y  =  x–1(C + e2x). 
 
29. If we write the equation in the form  ( ) 1/ 21/(2 1) (2 1)y x y x′ + + = +  we see that it is 

linear with integrating factor  ( )1/ 22 1 .xρ = +   The method of Section 1.5 then yields  
 the general solution y  =  (x2 + x + C)(2x + 1)–1/2. 
 
30. The substitution  , , 1v x y y v x y v′ ′= + = − = −   gives the separable equation  

1v v′ − =  in the new dependent variable  v.  The resulting implicit general solution of 
the original equation is  x  =  2(x +  y)1/2 – 2 ln[1 + (x +  y)1/2] + C. 

 
31. 2/( 7) 3dy y x dx+ = is separable;  2 23 21y x y x′ + = is linear. 
 
32. 2/( 1)dy y x dx− = is separable;  3y x y x y′ + = is a Bernoulli equation with  n = 3. 
 
33. 2 2(3 2 ) 4 0x y dx xy dy+ + = is exact;  ( )1

4 3 / 2 /y x y y x′ = − + is homogeneous.   
 

34. ( 3 ) (3 ) 0x y dx x y dy+ + − = is exact;  1 3 /
/ 3

y xy
y x
+′ =

−
is homogeneous. 

 
35. ( )2/( 1) 2 / 1dy y x dx x+ = + is separable;  ( )2 22 /( 1) 2 /( 1)y x x y x x′ − + = + is linear.  
 
36. ( )/ cotdy y y x dx− = is separable;   (cot ) (cot )y x y x y′ + = is a Bernoulli equation  

with  n = 1/2. 
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CHAPTER 2 
  
MATHEMATICAL MODELS  
AND NUMERICAL METHODS 
 
SECTION 2.1 
 
POPULATION MODELS 
 
Section 2.1 introduces the first of the two major classes of mathematical models studied in the 
textbook, and is a prerequisite to the discussion of equilibrium solutions and stability in Section 2.2. 
 
In Problems 1–8 we outline the derivation of the desired particular solution, and then sketch some 
typical solution curves. 
 
1. Noting that  1 because (0) 2,x x> =  we write 
 

 1 11 ; 1
(1 ) 1
dx dt dx dt

x x x x
 = − = − − 

⌠⌠
 
⌡ ⌡∫ ∫  

 ln ln( 1) ln ;
1

txx x t C C e
x

− − = + =
−

 

 (0) 2 implies 2; 2( 1) tx C x x e= = = −  

 2 2( )
2 1 2

t

t t
ex t

e e−= =
− −

. 

 Typical solution curves are shown in the figure on the left below. 
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2. Noting that  10 because (0) 1,x x< =  we write 
 

 1 11 ; 10
(10 ) 10

dx dt dx dt
x x x x

 = + = − − 

⌠⌠
 
⌡ ⌡∫ ∫  

 10ln ln(10 ) 10 ln ;
10

txx x t C C e
x

− − = + =
−

 

 101(0) 1 implies ; 9 (10 )
9

tx C x x e= = = −  

 
10

10 10
10 10( )
9 1 9

t

t t
ex t
e e−= =

+ +
. 

 Typical solution curves are shown in the figure on the right at the bottom of the  
 preceding page. 
 
3. Noting that  1 because (0) 3,x x> =  we write 
 

 1 11 ; ( 2)
(1 )(1 ) 1 1

dx dt dx dt
x x x x

 = − = − + − − + 

⌠⌠
 
⌡ ⌡∫ ∫  

 21ln ( 1) ln( 1) 2 ln ;
1

txx x t C C e
x

−−− − + = − + =
+

 

 21(0) 3 implies ; 2( 1) ( 1)
2

tx C x x e −= = − = +  

 
2 2

2 2
2 2 1( )
2 2 1

t t

t t
e ex t
e e

−

−

+ += =
− −

. 

 Typical solution curves are shown in the figure on the left below. 
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4. Noting that  3

2 because (0) 0,x x< =  we write 
 

 1 11 ; 6
(3 2 )(3 2 ) 3 2 3 2

dx dt dx dt
x x x x

 = + = + − + − 

⌠⌠
 
⌡ ⌡∫ ∫  

 121 1 1 3 2ln (3 2 ) ln(3 2 ) 6 ln ;
2 2 2 3 2

txx x t C C e
x

++ − − = + =
−

 

 12(0) 0 implies 1; 3 2 (3 2 ) tx C x x e= = + = −  

 
( )
( )

1212

12 12

3 13 3( )
2 2 2 1

tt

t t

eex t
e e

−−= =
+ +

. 

 Typical solution curves are shown in the figure on the right at the bottom of the  
 preceding page. 
 
5. Noting that  5 because (0) 8,x x> =  we write 
 

 1 1( 3) ; 15
( 5) 5

dx dt dx dt
x x x x

 = − − = − − 

⌠⌠
 
⌡ ⌡∫ ∫  

 15ln ln( 5) 15 ln ;
5

txx x t C C e
x

− − = + =
−

 

 15(0) 8 implies 8 / 3; 3 8( 5) tx C x x e= = = −  

 
15

15 15
40 40( )

3 8 8 3

t

t t
ex t
e e−

−= =
− −

. 

 Typical solution curves are shown in the figure on the left below. 
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6. Noting that  5 because (0) 2,x x< =  we write 
 

 1 1( 3) ; ( 15)
(5 ) 5

dx dt dx dt
x x x x

 = − + = − − − 

⌠⌠
 
⌡ ⌡∫ ∫  

 15ln ln(5 ) 15 ln ;
5

txx x t C C e
x

−− − = − + =
−

 

 15(0) 2 implies 2 / 3; 3 2(5 ) tx C x x e−= = = −  

 
15

15 15
10 10( )

3 2 2 3

t

t t
ex t
e e

−

−= =
+ +

. 

 Typical solution curves are shown in the figure on the right at the bottom of the  
 preceding page. 
 
 
7. Noting that  7 because (0) 11,x x> =  we write 
 

 1 1( 4) ; 28
( 7) 7

dx dt dx dt
x x x x

 = − − = − − 

⌠⌠
 
⌡ ⌡∫ ∫  

 28ln ln( 7) 28 ln ;
7

txx x t C C e
x

− − = + =
−

 

 28(0) 11 implies 11/ 4; 4 11( 17) tx C x x e= = = −  

 
28

28 28
77 77( )

4 11 11 4

t

t t
ex t
e e−

−= =
− −

. 

 Typical solution curves are shown in the figure on the left below. 
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8. Noting that  13 because (0) 17,x x> =  we write 
 

 1 17 ; ( 91)
( 13) 13

dx dt dx dt
x x x x

 = − = − − − 

⌠⌠
 
⌡ ⌡∫ ∫  

 91ln ln( 13) 91 ln ;
13

txx x t C C e
x

−− − = − + =
−

 

 91(0) 17 implies 17 / 4; 4 17( 13) tx C x x e−= = = −  

 
91

91 91
221 221( )

4 17 17 4

t

t t
ex t
e e

−

−

−= =
− −

. 

 Typical solution curves are shown in the figure on the right at the bottom of the  
 preceding page. 
 
9. Substitution of  (0) 100 and (0) 20P P′= =  into  P k P′ =  yields  k = 2, so the 

differential equation is  2 .P P′ =   Separation of variables and integration,  

/ 2 ,dP P dt=∫ ∫  gives  .P t C= +   Then  P(0) = 100  implies  C = 10, so   

 P(t)  =  (t + 10)2.  Hence the number of rabbits after one year is  P(12)  =  484. 
 
10. Given  ( / ) ,P P k P P k Pδ′ = − = − = −  separation of variables and integration as in 

Problem 9 yields  2 .P kt C= − +   The initial condition  P(0)  =  900  gives  C = 60,  and 
then the condition  P(6)  =  441  implies that  k = 3.  Therefore  2 3 60,P t= − +   so   

 P  =  0  after  t  =  20  weeks. 
 
11. (a) Starting with  / ,dP dt k P=    dP/dt  =  k ,P   we separate the variables and 

integrate to get  P(t)  =  (kt/2 + C)2.  Clearly  P(0)  =   P0  implies  0 .C P=  
 
 (b) If  P(t)  =  (kt/2 + 10)2,  then  P(6)  =  169  implies that  k  =  1.  Hence   
 P(t)  =  (t/2 + 10)2,  so there are  256  fish after  12  months. 
 
12. Solution of the equation  2P k P′ =   by separation of variables and integration, 
 

    2
1; ,dP k dt kt C

P P
= − = −⌠

⌡ ∫  

 
  gives  P(t)  =  1/(C – kt).  Now  P(0) = 12  implies that  C = 1/12, so now  P(t)  =   
 12/(1 – 12kt).  Then  P(10) = 24  implies that  k = 1/240,  so finally   P(t)  =  240/(20 – t).   

Hence  P = 48  when t = 15, that is, in the year 2003.  And obviously  as 20.P t→ ∞ →  
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13. (a) If the birth and death rates both are proportional to  P2  and  ,β δ>   then Eq. (1) in 
this section gives  2P kP′ =   with  k  positive.  Separating variables and integrating as in 
Problem 12, we find that  ( ) 1/( ).P t C kt= −  The initial condition  0(0)P P=  then gives 

 01/ ,C P= so  0 0 0( ) 1/(1/ ) /(1 ).P t P kt P kP t= − = −  
 
 (b) If  0 6P =  then  ( ) 6 /(1 6 ).P t kt= −   Now the fact that  (10) 9P =  implies that 

k = 180,  so  ( ) 6 /(1 / 30) 180 /(30 ).P t t t= − = −   Hence it is clear that  
as 30P t→ ∞ →  (doomsday). 

 
14. Now  dP/dt  =  –kP2  with  k > 0,  and separation of variables yields  P(t)  =  1/(kt + C).   

Clearly  C  =  1/P0  as in Problem 13, so  P(t)  =  P0/(1 + kP0t) .  Therefore it is clear 
that ( ) 0 asP t t→ → ∞ , so the population dies out in the long run. 

 
15. If we write  ( / )P b P a b P′ = −   we see that  M = a/b.  Hence   
 

0 0 0 0
2

0 0

( ) .B P aP P a M
D bP b

= = =  

 
 Note also (for Problems 16 and 17) that  0 0/a B P=   and  2

0 0/ .b D P k= =  
 
16. The relations in Problem 15 give  k = 1/2400 and  M = 160.  The solution is 
 /15( ) 19200 /(120 40 ).tP t e−= +   We find that  P = 0.95M  after about 27.69 months. 
 
17. The relations in Problem 15 give  k = 1/2400 and  M = 180.  The solution is 
 3 /80( ) 43200 /(240 60 ).tP t e−= −   We find that  P = 1.05M  after about 44.22 months. 
 
18. If we write  ( / )P a P P b a′ = −   we see that  M = b/a.  Hence   
 

0 0 0 0
2

0 0

( ) .D P bP P b M
B aP a

= = =  

 
 Note also (for Problems 19 and 20) that  0 0/b D P=   and  2

0 0/ .a B P k= =  
 
19. The relations in Problem 18 give  k = 1/1000 and  M = 90.  The solution is 
 9 /100( ) 9000 /(100 10 ).tP t e= −   We find that  P = 10M  after about 24.41 months. 
 
20. The relations in Problem 18 give  k = 1/1100 and  M = 120.  The solution is 
 6 / 55( ) 13200 /(110 10 ).tP t e= +   We find that  P = 0.1M  after about 42.12 months. 
 
21. Starting with the differential equation  / (200 ),dP dt kP P= −  we separate variables and 
 integrate, noting that  200P <  because  0 100P = : 
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  1 1 200
(200 ) 200

dP k dt dP k dt
P P P P

 = ⇒ + = − − 

⌠ ⌠

⌡⌡

∫ ∫ ; 

  200ln 200 ln .
200 200

ktP Pkt C Ce
P P

= + ⇒ =
− −

 

 
 Now  (0) 100P =  gives  1,C =  and  (0) 1P′ =  implies that  1 100(200 100),k= ⋅ −  so 
 we find that  1/10000.k =   Substitution of these numerical values gives 
 

    200 /10000 /50 ,
200

t tP e e
P

= =
−

 

 
 and we solve readily for  ( )/ 50( ) 200 / 1 .tP t e−= +  Finally,  ( )6 / 5(60) 200 / 1 153.7P e−= + ≈  
 million.  
 
22. We work in thousands of persons, so  M  =  100  for the total fixed population.  We 
 substitute  M  =  100,  P′(0)  =  1,  and  P0  =  50  in the logistic equation, and thereby obtain 
 
   1  =  k(50)(100 – 50),  so k  =  0.0004. 
 
 If  t  denotes the number of days until 80 thousand people have heard the rumor, then Eq. (7) 

in the text gives 

0.04
50 10080

50 (100 50) te−

×=
+ −

, 

 
 and we solve this equation for  t ≈ 34.66.  Thus the rumor will have spread to 80% of the 

population in a little less than 35 days. 
 
23. (a) x′  =  0.8x – 0.004x2  =  0.004x(200 – x),  so the maximum amount that will dissolve 

is  M  =  200 g. 
 
 (b) With  M  =  200,  P0  =  50,  and  k  =  0.004,  Equation (4) in the text yields the 

solution 

     0.08
10000( ) .

50 150 tx t
e−=

+
 

 
 Substituting  x = 100 on the left, we solve for  t  =  1.25 ln 3  ≈  1.37  sec. 
  
24. The differential equation for  N(t)  is  N'(t)  =  kN (15 – N).  When we substitute  N(0)  =  5 

(thousands)  and  N'(0)  =  0.5 (thousands/day)  we find that  k  =  0.01.  With  N  in place of  
P,  this is the logistic equation in Eq. (3) of the text, so its solution is given by Equation (7): 
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0.15
15 5 15( ) .

5 10exp[ (0.01)(15) ] 1 2 tN t
t e−

×= =
+ − +

 

 
 Upon substituting  N  =  10  on the left, we solve for  t  =  (ln 4)/(0.15)  ≈  9.24  days. 
 
25. Proceeding as in Example 3 in the text, we solve the equations 
 
   25.00k(M – 25.00)  =  3/8, 47.54k(M – 47.54)  =  1/2 
 
 for  M  =  100  and  k  =  0.0002.  Then Equation (4) gives the population function 
           

     0.02
2500( )

25 75 tP t
e−=

+ . 

 
 We find that  P  =  75  when  t  =  50 ln 9  ≈  110,  that is, in 2035 A. D. 
   
26. The differential equation for  P(t)  is 
 
     P′(t)  =  0.001P2 – δ P. 
 
 When we substitute  P(0)  =  100  and  P′(0)  =  8  we find that  δ  =  0.02,  so 
 

   20.001 0.02 0.001 ( 20).dP P P P P
dt

= − = −  

 
 We separate variables and integrate, noting that  20P >  because  0 100P = : 
 

  1 10.001 0.02
( 20) 20

dP dt dP dt
P P P P

 = ⇒ − = − − 

⌠ ⌠

⌡⌡

∫ ∫ ; 

  /5020 1 20ln ln .
50

tP Pt C Ce
P P
− −= + ⇒ =  

 
 Now  (0) 100P =  gives  4 / 5,C =  hence 
 

  / 50
/50

1005( 20) 4 ( ) .
5 4

t
tP P e P t

e
− = ⇒ =

−
 

 
 It follows readily that  P  =  200  when  t  =  50 ln(9/8)  ≈  5.89 months. 
 
27. We are given that 
     P′  =  kP2 – 0.01P, 
 
 When we substitute  P(0)  =  200  and  P′(0)  =  2  we find that  k  =  0.0001,  so 
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   20.0001 0.01 0.0001 ( 100).dP P P P P
dt

= − = −  

 
 We separate variables and integrate, noting that  100P >  because  0 200P = : 
 

  1 10.0001 0.01
( 100) 100

dP dt dP dt
P P P P

 = ⇒ − = − − 

⌠ ⌠

⌡⌡

∫ ∫ ; 

  /100100 1 100ln ln .
100

tP Pt C Ce
P P

− −= + ⇒ =  

 
 Now  (0) 100P =  gives  1/ 2,C =  hence 
 

  /100
/100

2002( 100) ( ) .
2

t
tP P e P t

e
− = ⇒ =

−
 

 
 (a) P  =  1000  when  t  =  100 ln(9/5)  ≈  58.78. 
 
 (b) as 100 ln 2 69.31P t→ ∞ → ≈ . 
   
28. Our alligator population satisfies the equation 
 

   20.0001 0.01 0.0001 ( 100).dP x x x x
dt

= − = −  

 
 With  x  in place of  P,  this is the same differential equation as in Problem 27, but now we 
 use absolute values to allow both possibilities  100 and 100 :x x< >  
 

  1 10.0001 0.01
( 100) 100

dx dt dP dt
x x x x

 = ⇒ − = − − 

⌠ ⌠

⌡⌡

∫ ∫ ; 

  /100100 1001ln ln .
100

tx x
t C Ce

x x
− −

= + ⇒ =     (*) 

 
 (a) If  (0) 25x =   then  100 and 100 100x x x< − = − ,  so (*) gives  3C =  and hence 
 

   /100
/100

100100 3 ( ) .
1 3

t
tx x e x t

e
− = ⇒ =

+
 

 
 We therefore see that  ( ) 0x t →   as  .t → ∞  
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 (b) But if  (0) 150x =  then  100 and 100 100x x x> − = − ,  so (*) gives  1/ 3C =  
 and hence 

   /100
/100

3003( 100) ( ) .
3

t
tx x e x t

e
− = ⇒ =

−
 

 
 Now  ( )x t → +∞   as  (100ln 3) ,t −→  so doomsday occurs after about 109.86 months. 
 
29. Here we have the logistic equation 

  20.03135 0.0001489 0.0001489 (210.544 )dP P P P P
dt

= − = −  

 where  0.0001489 and 210.544.k P= =   With  0 3.9P =  also, Eq. (7) in the text gives  
 

  (0.0001489)(210.544) 0.03135

(210.544)(3.9) 821.122( ) .
(3.9) (210.544 3.9) 3.9 206.644t tP t

e e− −= =
+ − +

 

 
 (a)  This solution gives  (140) 127.008,P ≈  fairly close to the actual 1930 U.S. census  
 population of 123.2 million. 

 (b) The limiting population as  t → ∞  is  821.122/3.9 = 210.544 million. 

 (c) Since the actual U.S. population in 200 was about 281 million — already exceeding  
 the maximum population predicted by the logistic equation — we see that that this model 
 did not continue to hold throughout the 20th century. 
 
30. The equation is separable, so we have 
 

   0
0 , so ln .t tdP e dt P e C

P
α αββ

α
− −= = − +⌠ ⌠

⌡⌡
 

 
 The initial condition  0(0)P P=   gives  0 0ln / ,C P β α= +  so 
 

    ( )0
0( ) exp 1 .tP t P e αβ

α
− = −  

 

 
31. If we substitute  P(0)  =  106  and  P′(0)  =  3×105  into the differential equation   
 
     0( ) ,tP t e Pαβ −′ =   
 
 we find that  β0  =  0.3.  Hence the solution given in Problem 30 is 
 
    0( ) exp[(0.3/ )(1 )].tP t P e αα −= −  
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 The fact that  P(6)  =  2P0  now yields the equation 
 
    f (α)  =  (0.3)(1 – e–6α) – α ln 2  =  0 
 
 for  α.  We apply Newton′s iterative formula 
 

1
( )
( )

n
n n

n

f
f

αα α
α+ = −

′
 

  
 with  6( ) 1.8 ln 2f e αα −′ = − and initial guess  α0  =  1,  and find that  α  ≈   0.3915 .  

Therefore the limiting cell population as  t → ∞   is 
 

6 6
0 0exp( / ) 10 exp(0.3/0.3915) 2.15 10 .P β α = ≈ ×  

 
 Thus the tumor does not grow much further after  6  months. 
 
32. We separate the variables in the logistic equation and use absolute values to allow for both  
 possibilities  0 0and :P M P M< >  
 

  1 1
( )

dP k dt dP kM dt
P M P P M P

 = ⇒ + = − − 

⌠ ⌠

⌡⌡

∫ ∫ ; 

  ln ln .kMtP PkMt C Ce
M P M P

= + ⇒ =
− −

    (*) 

 
 If  0P M<   then  andP M M P M P< − = − ,  so substitution of  00,t P P= =  in  (*)  
 gives  0 0/( ).C P M P= −   It follows that 

     0

0

.kM tP P e
M P M P

=
− −

 

 But if  0P M>   then  andP M M P P M> − = − ,  so substitution of  00,t P P= =  in   
 (*) gives  0 0/( ),C P P M= −  and it follows that 

     0

0

.kM tP P e
P M P M

=
− −

 

 We see that the preceding two equations are equivalent, and either yields 
 

  0
0 0

0 0

( ) ( ) ( ) ,
( )

kM t
kM t

kM t
MP eM P P M P P e P t

M P P e
− = − ⇒ =

− +
 

 which gives the desired result upon division of numerator and denominator by  .kM te  
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33. (a) We separate the variables in the extinction-explosion equation and use absolute 
 values to allow for both possibilities  0 0and :P M P M< >  
 

  1 1
( )

dP k dt dP kM dt
P P M P M P

 = ⇒ − = − − 

⌠ ⌠

⌡⌡

∫ ∫ ; 

  ln ln .kMtP M P M
kMt C Ce

P P
− −

= + ⇒ =     (*) 

 
 If  0P M<   then  andP M P M M P< − = − ,  so substitution of  00,t P P= =  in  (*)  
 gives  0 0( ) / .C M P P= −   It follows that 

     0

0

.kM tM P M P e
P P
− −=  

 But if  0P M>   then  andP M P M P M> − = − ,  so substitution of  00,t P P= =  in   
 (*) gives  0 0( ) / ,C P M P= −  and it follows that 

     0

0

.kM tP M P M e
P P
− −=  

 We see that the preceding two equations are equivalent, and either yields 
 

  0
0 0

0 0

( ) ( ) ( ) .
( )

kM t
kM t

MPP M P P M P e P t
P M P e

− = − ⇒ =
+ −

 

 (b)  If  0P M<  then the coefficient  0M P−  is positive and the denominator increases 
 without bound, so  ( ) 0P t →  as  .t → ∞   But if  0 ,P M>  then the denominator  
 0 0( ) kM tP P M e− −  approaches zero — so  ( )P t → +∞  — as  t  approaches the value 
 0 0(1/ ) ln([ /( )] 0kM P P M− >  from the left. 
 
34. Differentiation of both sides of the logistic equation  ( )P kP M P′ = ⋅ −  yields 
 

  
2 1

2

[ ( ) ( 1)] ( )
[ 2 ] ( ) 2 ( )( )

dP dPP
dP dt
k M P kP kP M P

k M P kP M P k P M P M P

′′′ = ⋅

= ⋅ − + ⋅ − ⋅ −
= − ⋅ − = − −

 

 
as desired.  The conclusions that  1

20 if 0 ,P P M′′ > < <   that   1
20 if ,P P M′′ = =   and 

that   1
20 ifP M P M′′ < < <   are then immediate.  Thus it follows that each of the 

curves for which  0P M<  has an inflection point where it crosses the horizontal line  
1
2 .P M=  
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35. Any way you look at it, you should see that, the larger the parameter  k > 0  is, the faster the 
logistic population  P(t)  approaches its limiting population  M. 

 
36. With  50

0 1 2, 5.308, 23.192, and 76.212,kMx e P P P−= = = =  Eqs. (7) in the text take the 
form 

   0 0
1 22

0 0 0 0

,
( ) ( )
P M P MP P

P M P x P M P x
= =

+ − + −
 

 
 from which we get 
 
  2

0 0 0 1 0 0 0 2( ) / , ( ) /P M P x P M P P M P x P M P+ − = + − =  

  20 1 0 2

1 0 2 0

( ) ( ),
( ) ( )

P M P P M Px x
P M P P M P

− −= =
− −

    (i) 

  
2 2

0 1 0 2
2 2

1 0 2 0

( ) ( )
( ) ( )

P M P P M P
P M P P M P

− −=
− −

 

  2 2
0 2 1 1 0 2( ) ( )( )P P M P P M P M P− = − −  

  2 2 2 2 2 2
0 2 0 1 2 0 1 2 1 1 0 2 0 1 22 ( )P P M P PP M P P P P M P P P M P P P− + = − + +  

 
 We cancel the final terms on the two sides of this last equation and solve for 
 

   1 0 2 0 1 1 2
2

0 2 1

(2 ) .P P P P P PPM
P P P

− −=
−

    (ii) 

 
 Substitution of the given values  0 1 25.308, 23.192, and 76.212P P P= = =  now gives   
 M  =  188.121.  The first equation in (i) and  1exp( )x kMt= −  yield 
 

   0 1

1 1 0

1 ( )ln .
( )

P M Pk
Mt P M P

−= −
−

     (iii) 

 
 Now substitution of  t1 = 50  and our numerical values of  0 1 2, , ,M P P P  gives 

k  =  0.000167716.  Finally, substitution of these values of  k  and  M  (and  P0) in the 
logistic solution (4) gives the logistic model of Eq. (8) in the text. 

 
In Problems 37 and 38 we give just the values of  k  and  M  calculated using Eqs. (ii) and (iii) in 
Problem 36 above, the resulting logistic solution, and the predicted year 2000 population. 
 

37. 0.0226045
25761.70.0000668717 and = 338.027, so ( )

76.212 261.815 tk M P t
e−= =

+
, 

 predicting  P  =  192.525  in the year 2000. 
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38. 0.0305458
4829.730.000146679 and = 208.250, so ( )

23.192 185.058 tk M P t
e−= =

+
, 

 predicting  P  =  248.856  in the year 2000.  
 

1 2 3 4 5
t

105

110

115

120

P

 
 
 
39. We readily separate the variables and integrate: 
 

  ( cos2 ) ln sin 2 ln .
2

dP bk b t dt P kt t C
P

π π
π

= + ⇒ = + +⌠
⌡ ∫   

 Clearly  0,C P=  so we find that  0( ) exp sin 2 .
2
bP t P kt tπ
π

 = + 
 

  The colored curve in 

 the figure above shows the graph that results with the typical numerical values  
 0 100,P =  0.03,k =  and  0.06.b =   It oscillates about the black curve which represents 
 natural growth with  0 and 0.03.P k =  We see that the two agree at the end of each full 
 year. 
 
 
 
SECTION 2.2 
 
EQUILIBRIUM SOLUTIONS AND STABILITY 
 
In Problems 1–12 we identify the stable and unstable critical points as well as the funnels and spouts 
along the equilibrium solutions.  In each problem the indicated solution satisfying  x(0) = x0  is 
derived fairly routinely by separation of variables.  In some cases, various signs in the solution 
depend on the initial value, and we give a typical solution. For each problem we show typical 
solution curves corresponding to different values of  0.x  
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0 1 2 3 4 5
0

3

6

t

x

1. Unstable critical point:  x = 4 
 Spout:  Along the equilibrium solution  x(t) =  4 

 Solution:  If  0 4x >  then 

  0; ln( 4) ; ln( 4)
4

dx dt x t C C x
x

= − = + = −
−

⌠
⌡ ∫  

  ( )0 04 4 ; ( ) 4 ( 4)t tx x e x t x e− = − = + − . 

 Typical solution curves are shown in the figure on the left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Stable critical point:  x = 3 
 Funnel:  Along the equilibrium solution  x(t)  =  3 

 Solution:  If  0 3x >  then 

  0( 1) ; ln( 3) ; ln( 3)
3

dx dt x t C C x
x

= − − = − + = −
−

⌠
⌡ ∫  

  ( )0 03 3 ; ( ) 3 ( 3)t tx x e x t x e− −− = − = + − . 

 Typical solution curves are shown in the figure on the right above. 
 
3. Stable critical point:  x = 0 
 Unstable critical point:  x = 4 
 Funnel:  Along the equilibrium solution  x(t)  =  0 
 Spout:  Along the equilibrium solution  x(t)  =  4 

 Solution:  If  0 4x >  then  

  4 1 14
( 4) 4

dxdt dx
x x x x

 = = − − − 

⌠⌠
 
⌡ ⌡∫  

0 1 2 3 4 5
0

4

8

t

x
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0 1 2 3 4 5
−3

0

3

6

t

x

  0

0

4 44 ln ; lnx xt C C
x x
− −+ = =  

  40 0

0 0

( 4) ( 4)4 ln ;
( 4) ( 4)

tx x x xt e
x x x x

− −= =
− −

 

  0
4

0 0

4( )
(4 ) t

xx t
x x e

=
+ −

. 

 Typical solution curves are shown in the figure on the left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Stable critical point:  x = 3 
 Unstable critical point:  x = 0 
 Funnel:  Along the equilibrium solution  x(t)  =  3 
 Spout:  Along the equilibrium solution  x(t)  =  0 

 Solution:    If  0 3x >  then  

  3 1 1( 3)
( 3) 3

dxdt dx
x x x x

 − = = − − − 

⌠⌠
 
⌡ ⌡∫  

  0

0

3 33 ln ; lnx xt C C
x x
− −− + = =  

  30 0

0 0

( 3) ( 3)3 ln ;
( 3) ( 3)

tx x x xt e
x x x x

−− −− = =
− −

 

  0
3

0 0

3( )
(3 ) t

xx t
x x e−=

+ −
. 

 Typical solution curves are shown in the figure on the right above. 

0 1 2 3 4 5
−4

0

4

8

t

x
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5. Stable critical point:  x = −2 
 Unstable critical point:  x = 2 
 Funnel:  Along the equilibrium solution  x(t)  =  −2 
 Spout:  Along the equilibrium solution  x(t)  =  2 

 Solution:   If  0 2x >  then  

  2
4 1 14

4 2 2
dxdt dx

x x x
 = = − − − + 

⌠⌠ ⌡ ⌡∫  

  0

0

2 24 ln ; ln
2 2

x xt C C
x x

− −+ = =
+ +

 

  40 0

0 0

( 2)( 2) ( 2)( 2)4 ln ;
( 2)( 2) ( 2)( 2)

tx x x xt e
x x x x

− + − += =
+ − + −

 

  
4

0 0
4

0 0

2 ( 2) ( 2)
( )

( 2) ( 2)

t

t

x x e
x t

x x e
 + + − =

+ − −
. 

 
 Typical solution curves are shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Stable critical point:  x = 3 
 Unstable critical point:  x = −3 
 Funnel:  Along the equilibrium solution  x(t)  =  3 
 Spout:  Along the equilibrium solution  x(t)  =  −3 

 Solution:    If  0 3x >  then  

   

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

0

2

t

x
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  2
6 1 16

9 3 3
dxdt dx
x x x

 = = + − + − 

⌠⌠ ⌡ ⌡∫  

  0

0

3 36 ln ; ln
3 3

x xt C C
x x

+ ++ = =
− −

 

  60 0

0 0

( 3)( 3) ( 3)( 3)6 ln ;
( 3)( 3) ( 3)( 3)

tx x x xt e
x x x x

+ − + −= =
+ − + −

 

  
6

0 0
6

0 0

3 ( 3) ( 3)
( )

(3 ) ( 3)

t

t

x x e
x t

x x e
 − + + =

− + +
. 

  
Typical solution curves are shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. Critical point:   x  =  2 

 This single critical point is semi-stable, meaning that solutions with  x0 > 2  go to infinity 
 as  t  increases, while solutions with  x0 < 2  approach 2. 

 Solution:    If  0 2x >  then  

  2
0

1 1( 1) ; ;
( 2) 2 2

dx dt t C C
x x x
− = − = − + =
− − −

⌠ ⌠
⌡⌡

 

  0

0 0

1 1 1 ( 2)
2 2 2

t xt
x x x

− −= − + =
− − −

 

0 1 2 3 4 5

−3

0

3

t

x
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0 1 2 3 4 5

0

3

6

t

x

  0 0

0 0

2 (2 1) 4( ) 2
1 ( 2) 2 1

x x t tx t
t x t x t

− − −= + =
− − − −

. 

  
 Typical solution curves are shown in the figure on the left below. 
 
  
 

 

 

 

 

 

 

 

 

 

 

8. Critical point:   x  =  3 

This single critical point is semi-stable, meaning that solutions with  x0 < 3  go to minus  
infinity as  t  increases, while solutions with  x0 > 3  approach 3. 

 Solution:  If  0 3x >  then  

  2
0

1 1; ;
( 3) 3 3

dx dt t C C
x x x
− = = + =
− − −

⌠ ⌠
⌡⌡

 

  0

0 0

1 1 1 ( 3)
3 3 3

t xt
x x x

+ −= + =
− − −

 

  0 0

0 0

3 (3 1) 9( ) 3
1 ( 3) 3 1

x x t tx t
t x t x t

− + −= + =
+ − − +

. 

 
 Typical solution curves are shown in the figure on the right above. 
 
9. Stable critical point:  x = 1 
 Unstable critical point:  x = 4 
 Funnel:  Along the equilibrium solution  x(t)  =  1 
 Spout:  Along the equilibrium solution  x(t)  =  4 

 Solution:    If  0 4x >  then  

0 1 2 3 4 5

0

2

4

t

x
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  3 1 13
( 4)( 1) 4 1

dxdt dx
x x x x

 = = − − − − − 

⌠⌠
 
⌡ ⌡∫  

  0

0

4 43 ln ; ln
1 1

x xt C C
x x

− −+ = =
− −

 

  30 0

0 0

( 4)( 1) ( 4)( 1)3 ln ;
( 1)( 4) ( 1)( 4)

tx x x xt e
x x x x

− − − −= =
− − − −

 

  
3

0 0
3

0 0

4(1 ) ( 4)( )
(1 ) ( 4)

t

t
x x ex t

x x e
− + −=
− + −

. 

 
 Typical solution curves are shown in the figure on the left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10. Stable critical point:  x = 5 
 Unstable critical point:  x = 2 
 Funnel:  Along the equilibrium solution  x(t)  =  5 
 Spout:  Along the equilibrium solution  x(t)  =  2 

 Solution:    If  0 5x >  then  

  ( 3) 1 13
( 5)( 2) 2 5

dxdt dx
x x x x

−  = = − − − − − 

⌠⌠
 
⌡ ⌡∫  

  0

0

2 23 ln ; ln
5 5

x xt C C
x x

− −+ = =
− −

 

  30 0

0 0

( 2)( 5) ( 2)( 5)3 ln ;
( 5)( 2) ( 5)( 2)

tx x x xt e
x x x x

− − − −= =
− − − −

 

0 1 2 3 4 5
−2

1

4

7

t

x
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0 1 2 3 4 5
−2

0

2

4

t

x

  
3

0 0
3

0 0

2(5 ) 5( 2)( )
(5 ) ( 2)

t

t
x x ex t
x x e

− + −=
− + −

. 

 Typical solution curves are shown in the figure on the left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11. Unstable critical point:  x = 1 
 Spout:  Along the equilibrium solution  x(t) =  1 

 Solution:    3 2 2
0

2 1 1( 2) ; 2
( 1) ( 1) ( 1)

dx dt t
x x x
− = − = − +

− − −
⌠

⌡ ∫ . 

 
 Typical solution curves are shown in the figure on the right above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 2 3 4 5
−1

2

5

8

t

x

0 1 2 3 4 5
−2

0

2

4

6

t

x
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12. Stable critical point:  x = 2 

 Funnel:  Along the equilibrium solution  x(t) =  2 
 

 Solution:    3 2 2
0

2 1 12 ; 2
(2 ) (2 ) (2 )

dx dt t
x x x

= = +
− − −

⌠

⌡ ∫ . 

 
 Typical solution curves are shown in the figure at the bottom of the preceding page. 
 
 
 
 
 
In each of Problems 13 through 18 we present the figure showing slope field  and typical solution 
curves, and then record the visually apparent classification of critical points for the given differential 
equation. 
 
 
13. The critical points  2 and 2x x= = −  are both unstable.  A slope field and typical solution 
 curves of the differential equation are shown below. 
 
 

0 1 2 3 4

−4

−2

0

2

4

t

x

x ’ = (x + 2) (x − 2)2

x = 2

x = −2
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14. The critical points  2x = ±  are both unstable, while the critical point  0x =  is stable.  A 
 slope field and typical solution curves of the differential equation are shown below. 
 

0 1 2 3 4

−4

−2

0

2

4

t

x

x ’ = x (x2 − 4)

x = 2

x = 0

x = −2

 
 
 
15. The critical points  2 and 2x x= = −  are both unstable.  A  slope field and typical solution 
 curves of the differential equation are shown below. 
 

0 1 2 3 4

−4

−2

0

2

4

t

x

x ’ = (x2 − 4)2

x = 2

x = −2
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16. The critical point  2x =  is unstable, while the critical point  2x = −  is  stable.  A  slope 
 field and typical solution curves of the differential equation are shown below. 
 

0 1 2 3 4

−4

−2

0

2

4

t

x

x ’ = (x2 − 4)3

x = 2

x = −2

 
 
 
17. The critical points  2x =  and  0x =  are unstable, while the critical point  2x = −  is  stable.  
 A slope field and typical solution curves of the differential equation are shown below. 
 

0 1 2 3 4

−4

−2

0

2

4

t

x

x ’ = x2 (x2 − 4)

x = 2

x = 0

x = −2
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18. The critical points  2x =  and  2x = −  are unstable, while the critical point  0x =  is  stable. 
 A slope field and typical solution curves of the differential equation are shown below. 
 

0 1 2 3

−2

0

2

t

x

x ’ = x3 (x2 − 4)

x = 2

x = 0

x = −2

 
 
 
19. The critical points of the given differential equation are the roots of the quadratic equation 
 
   21

10 (10 ) 0, that is, 10 10 0.x x h x x h− − = − + =  
 
 Thus a critical point  c  is given in terms of  h  by   

    10 100 40 5 25 10 .
2

hc h± −= = ± −  

 It follows that there is no critical point if  1
22 ,h >  only the single critical point  0c =  if   

 1
22 ,h =  and two distinct critical points if  1

22h <  (so  10 25 0h− > ).  Hence the bifurcation 
 diagram in the hc-plane is the parabola with the 2( 5) 25 10c h− = −  that is obtained upon 
 squaring to eliminate the square root above. 
 
20. The critical points of the given differential equation are the roots of the quadratic equation 
 
   21

100 ( 5) 0, that is, 5 100 0.x x s x x s− + = − + =  
 
 Thus a critical point  c  is given in terms of  s  by   
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    5 25 400 5 5 1 16 .
2 2 2

sc s± −= = ± −  

 
 It follows that there is no critical point if  1

16 ,s >  only the single critical point  0c =  if   
 1

16 ,s =  and two distinct critical points if  1
16s <  (so  1 16 0s− > ).  Hence the bifurcation 

 diagram in the sc-plane is the parabola  2(2 5) 25(1 16 )c s− = −  that is obtained upon  
 elimination of the radical above. 
 
21. (a) If  k = -a2  where  0,a ≥   then  3 2 3 2 2( )kx x a x x x a x− = − − = − +   is 0 only if 
 x = 0,  so the only critical point is  0.c =   If  0a >  then we can solve the differential  
 equation by writing 

   
2

2

2

2
2

2 2 2 2

2 2 2

2 2 2
2 2

2 2 2

1 ,
( )

1 1ln ln( ) ln ,
2 2

.
1

a t
a t

a t

a dx x dx a dt
x a x x a x

x a x a t C

x a CeCe x
a x Ce

−
−

−

 = − = − + + 

− + = − +

= ⇒ =
+ −

⌠ ⌠

⌡⌡

∫

 

 It follows that  0 as 0,x t→ →  so the critical point  0c =  is stable. 
  
 (b) If  k = +a2  where  0a >   then  3 2 3 ( )( )kx x a x x x x a x a− = + − = − + −  is  
 0 if either  0 or .x x a k= = ± = ±  Thus we have the three critical points  0, ,c k= ±  

and this observation together with part (a) yields the pitchfork bifurcation diagram shown in 
Fig. 2.2.13 of the textbook. If  0x ≠  then we can solve the differential equation by writing 

 

       
2

2 2

2
2

2

2 2 2
2 2

2 2 2

2 2 1 1 2 ,
( )( )

2 ln ln( ) ln( ) 2 ln ,

.
1 1

a t
a t a t

a dx dx a dt
x x a x a x x a x a

x x a x a a t C

x a a kCe x x
x Ce Ce

−
− −

 = − + + = − − + − + 

− + − + − = − +

− ±= ⇒ = ⇒ =
− −

⌠ ⌠

⌡⌡

∫

 

 
 It follows that if  (0) 0x ≠  then  if 0,x k x→ >  if 0.x k x→ − <  This implies that 
 the critical point  0c =  is unstable, while the critical points  c k= ±  are stable. 
 
22.   If  0k =  then the only critical point  0c =  of the equation  x x′ =  is unstable, because the 

 solutions  0( ) tx t x e=  diverge to infinity if  0 0x ≠ .  If  2 0,k a= + >  then 

 2 3 2 2(1 ) 0x a x x a x+ = + =  only if  0,x =  so again  0c =  is the only critical point.  If  
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 2 0,k a= − <  then 2 3 2 2(1 ) (1 )(1 ) 0x a x x a x x ax ax− = − = − + =   if either 0x =  or  

 1/ 1/ .x a k= ± = ± −   Hence the bifurcation diagram of the differential equation  

 3x x kx′ = +  looks as pictured below: 

4
k

c

 
 
 
23. (a) If  h < kM  then the differential equation is  ( )( / )x k x M h k x′ = − − ,  which is a  
 logistic equation with the reduced limiting population  M - h / k. 

  (b) If  h > kM  then the differential equation can be rewritten in the form  
2x ax bx′ = − −   with  a  and  b  both positive.   The solution of this equation is 

 
0

0 0

( )
( ) a t

a xx t
a b x e bx

=
+ −

 

 
 so it is obvious that  ( ) 0 asx t t→ → ∞ . 
 
24. If  0x N>  then  

  ( ) 1 1( )
( )( )

N H dxk N H dt dx
x N x H x N x H

−  − − = = − − − − − 

⌠⌠
 
⌡ ⌡∫  

  0

0

( ) ln ; lnx N x Nk N H t C C
x H x H

− −− − + = =
− −

 

  ( )0 0

0 0

( )( ) ( )( )( ) ln ;
( )( ) ( )( )

k N H tx N x H x N x Hk N H t e
x H x M x H x M

− −− − − −− − = =
− − − −
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( )

0 0
( )

0 0

( ) ( )( )
( ) ( )

k N H t

k N H t
N x H H x N ex t

x H x N e

− −

− −
− − −=
− − −

 

 
25. (i) In the first alternative form that is given, all of the coefficients within parentheses are 
 positive if  H < x0 < N.  Hence it is obvious that  ( ) asx t N t→ → ∞ . 

 (ii) In the second alternative form that is given, all of the coefficients within parentheses 
are positive if  x0 < H.  Hence the denominator is initially equal to  N - H > 0,  but decreases 
as  t  increases, and reaches the value 0 when 

 
0

0

1 ln 0.N xt
N H H x

−= >
− −

 

 
26. If  4h = kM2  then  Eqs. (13) and (14)in the text show that the differential equation takes 
 the form  2( / 2 )x k M x′ = − −   with the single critical point  x = M / 2.  This equation is  
 readily solved by separation of variables, but clearly  x'  is negative whether  x  is less than 
 or greater than  M / 2. 
 
27. Separation of variables in the differential equation  ( )2 2( )x k x a b′ = − − +   yields 

1 0( ) tan tan a xx t a b bk t
b

− − = − + 
 

. 

 
 It therefore follows that  x(t)  goes to minus infinity in a finite period of time. 
 
28. Aside from a change in sign, this calculation is the same as that indicated in Eqs. (13) and 
 (14) in the text. 
 
29. This is simply a matter of analyzing the signs of  x'  in the cases  x < a,  a < x < b,  b < x < c, 
 and  c > x.  Alternatively, plot slope fields and typical solution curves for the two differential 
 equations using typical numerical values such as  1, 1, 2.a b c= − = =  
 
 
 
SECTION 2.3 
 
ACCELERATION-VELOCITY MODELS 
 
This section consists of three essentially independent subsections that can be studied separately: 
resistance proportional to velocity, resistance proportional to velocity-squared, and inverse-square 
gravitational acceleration.   
 
 



96 Chapter 2 

1. Equation: v'  =  k(250 − v),    v(0)  =  0,    v(10)  =  100 

 Solution: ( 1) ; ln(250 ) ln ,
250

dv k dt v kt C
v

− = − − = − +
−

⌠
⌡ ∫  

   (0) 0 implies 250; ( ) 250(1 )ktv C v t e−= = = −  

   1
10(10) 100 implies ln(250 /150) 0.0511;v k= = ≈  

 Answer: 200 when (ln50 / 250) / 31.5 secv t k= = − ≈   
 
2. Equation: 0 0, (0) ; , (0)v kv v v x v x x′ ′= − = = =  

 Solution: 0 0( ) ( ) ; ( ) ( / )k t k tx t v t v e x t v k e C− −′ = = = − +  

   ( )0 0 0 0( / ) ; ( ) ( / ) 1k t k tC x v k e x t x v k e− −= + = + −   

 Answer: ( )0 0 0 0lim ( ) lim ( / ) 1 ( / )k t

t t
x t x v k e x v k−

→∞ →∞
 = + − = +   

 
3. Equation: , (0) 40; (10) 20 , (0) 0v kv v v x v x′ ′= − = = = =  

 Solution: v(t)  =  40 e−k t  with  k  =  (1/10)ln 2 

   x(t)  =  (40/k)(1 − e−k t) 

 Answer: x(∞)  =  lim(40 / )(1 )k t

t
k e−

→∞
−  =  40/k  =  400/ln 2  ≈  577  ft 

 
4. Equation: 2

0 0, (0) ; , (0)v kv v v x v x x′ ′= − = = =  

 Solution: 2
0

1 1; ;dv k dt k t C C
v v v

− = = + =⌠
⌡ ∫  

   ( )0
0 0

0

1( ) ( ) ; ( ) ln 1
1

vx t v t x t v kt x
v kt k

′ = = = + +
+

 

   ( ) as ( )x t x t→ ∞ → ∞  
 
5. Equation: , (0) 40; (10) 20 , (0) 0v kv v v x v x′ ′= − = = = =  

 Solution: 40 (as in Problem 3)
1 40

v
kt

=
+

 

   400(10) 20 implies 40 1/10, so ( )
10

v k v t
t

= = =
+

 

   x(t)  =  400 ln[(10 + t)/10] 

 Answer: x(60)  =  400 ln 7  ≈  778  ft 



 Section 2.3 97 

 
6. Equation: 3/ 2

0 0, (0) ; , (0)v kv v v x v x x′ ′= − = = =  

 Solution: 3/ 2
0

1 1; ;
2 2 2
dv k dt kt C C
v v v

− = = + =⌠ ⌠
⌡⌡

 

   
( ) ( )

00
2

00

44( ) ( ) ; ( )
22

vvx t v t x t C
k kt vkt v

′ = = = − +
++

 

   0 0
0 0

0

2 2 2; ( ) 1
2

v v
C x x t x

k k kt v

 
= + = + −  + 

 

   0 0( ) 2 /x x v k∞ = +  
 
7. Equation: 10 0.1 , (0) (0) 0v v x v′ = − = =  

 (a)  0.1 ( 0.1) ; ln(10 0.1 ) /10 ln
10 0.1

dv dt v t C
v

− = − − = − +
−

⌠

⌡ ∫  

   [ ](0) 0 implies 10; ln (10 0.1 ) /10 /10v C v t= = − = −  

   /10( ) 100(1 )tv t e−= − ;     ( ) 100v ∞ =  ft/sec   (limiting velocity) 
 
 (b)  /10( ) 100 1000(1 )tx t t e−= − −  

   v  =  90 ft/sec  when  t  =  23.0259 sec  and  x  =  1402.59 ft 
 
8. Equation: 210 0.001 , (0) (0) 0v v x v′ = − = =  

 (a)  1
2

0.01 ; tanh
1 0.0001 10 100 10

dv dt v t C
v

−= = +
−

⌠

⌡ ∫  

   (0) 0 implies 0 sov C= = ( ) 100 tanh( /10)v t t=  

   
/10 /10

/10 /10( ) lim 100 tanh( /10) 100 lim 100 ft / sec
t t

t tt t

e ev t
e e

−

−→∞ →∞

−∞ = = =
+

 

 
 (b)  ( ) 1000 ln(cosh /10)x t t=   

   v  =  90 ft/sec  when  t  =  14.7222 sec  and  x  =  830.366 ft 
  
9. The solution of the initial value problem 
 
   1000 v'  =  5000 − 100 v, v(0)  =  0   
 is 
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    v(t)  =  50(1 − e−t /10). 
 
 Hence, as  ,t → ∞  we see that  v(t)  approaches  vmax  =  50 ft/sec  ≈  34 mph. 
 
10. Before opening parachute: 
 

  0.15

0.15

32 0.15 , (0) 0, (0) 10000
( ) 213.333( 1), (20) 202.712 ft/sec
( ) 11422.2 1422.22 213.333 , (20) 7084.75 ft

t

ty

v v v y
v t e v
y t e t y

−

−

′ = − − = =

= − = −
= − − =

 

 
 After opening parachute: 
 

  
1.5

1.5

32 1.5 , (0) 202.712, (0) 7084.75
( ) 21.3333 181.379
( ) 6964.83 120.919 21.3333 ,

0 when 326.476

t

t

v v v y
v t e
y t e t
y t

−

−

′ = − − = − =

= − −

= + −
= =

 

 
 Thus she opens her parachute after 20 sec at a height of 7085 feet, and the total  
 time of descent is  20 + 326.476 = 346.476 sec,  about 5 minutes and 46.5 seconds.  Her 
 impact speed is 21.33 ft/sec,  about 15 mph. 
 
11. If the paratrooper′s terminal velocity was  100 mph  =  440/3  ft/sec,  then Equation (7) in 

the text yields  ρ  =  12/55.  Then we find by solving Equation (9) numerically with   
 y0  =  1200  and  v0  =  0  that  y  =  0  when  t  ≈  12.5  sec.  Thus the newspaper account is 

inaccurate. 
 
12. With  m  =  640/32  =  20 slugs,  W  =  640 lb,  B  =  (8)(62.5)  =  500 lb, and  FR  =  −v  lb  

(FR is upward when  v < 0), the differential equation is 
 
   20 v'(t)  =  −640 + 500 − v  =  −140 − v . 
 
 Its solution with  v(0)  =  0  is 
 
    ( )0.05( ) 140 1 ,tv t e−= −  
 
 and integration with  y(0) = 0  yields 
 

    ( )0.05( ) 12800 140ty t e t−= − − . 
 
 Using these equations we find that  t  =  20 ln(28/13)  ≈  15.35 sec  when  v  =  −75 ft/sec,  

and that  y(15.35)  ≈  −648.31 ft.  Thus the maximum safe depth is just under 650 ft. 
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Given the hints and integrals provided in the text, Problems 13–16 are fairly straightforward (and 
fairly tedious) integration problems. 
 
17. To solve the initial value problem  29.8 0.0011 , (0) 49v v v′ = − − =   we write 
 

  
( )22

0.010595; 0.103827
9.8 0.0011 1 0.010595

dv dvdt dt
v v

= − = −
+ +

⌠⌠
 
⌡ ⌡

∫ ∫  

  1tan (0.010595 ) 0.103827 ; (0) 49 implies 0.478854v t C v C− = − + = =  

  ( ) 94.3841 tan(0.478854 0.103827 )v t t= −  
 
 Integration with  y(0) = 0  gives 
 
  ( ) 108.468 909.052 ln(cos(0.478854 0.103827 ))y t t= + − . 
 

We solve  v(0) = 0  for  t = 4.612,  and then calculate  y(4.612) = 108.468.   
 

18. We solve the initial value problem  2' 9.8 0.0011 , (0) 0v v v= − + =   much as in 
Problem 17, except using hyperbolic rather than ordinary trigonometric functions.  We first 
get 

 
    ( ) 94.3841 tanh(0.103827 )v t t= − , 
 
 and then integration with  y(0) = 108.47  gives 
 
   ( ) 108.47 909.052 ln(cosh(0.103827 ))y t t= − . 
 

We solve  y(0) = 0  for  1cosh (exp(108.47 / 909.052)) / 0.103.827 4.7992,t −= ≈   and then 
calculate  v(4.7992) = −43.489. 

 
19. Equation: 24 (1/ 400) , (0) 0v v v′ = − =  

 Solution: 2 2
(1/ 40) 1;

4 (1/ 400) 1 ( / 40) 10
dv dvdt dt

v v
= =

− −
⌠ ⌠ ⌠ 

⌡⌡ ⌡∫   

 1 ( ) 40 tanh( /10)tanh ( / 40) /10 ; 0; v t tv t C C− == + =  

 Answer: v(10)  ≈ 30.46  ft/sec,       v(∞)  =  40 ft/sec 
 
20. Equation: 232 (1/800) , (0) 160 (0) 0,v v v y′ = − − = =  

 Solution: 2 2
(1/160) 1; ;

32 (1/800) 1 ( /160) 5
dv dvdt dt

v v
= − = −

+ +
⌠ ⌠ ⌠ 

⌡⌡ ⌡∫  
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 1tan ( /160) / 5 ; (0) 160 implies / 4v t C v C π− = − + = =  

 ( ) 160 tan
4 5

tv t π = − 
 

 

 ( ) 800 ln cos 400ln 2
4 5

ty t π  = − +  
  

 

  
 We solve  v(t)  =  0  for  t = 3.92699  and then calculate  y(3.92699)  =  277.26 ft. 
 
21. Equation: 2

0, (0) , (0) 0g vv v v yρ′ = − − = =  

 Solution: 
( )22

/
; ;

1 /

g dvdv dt g dt
g v g v

ρ ρ
ρ ρ

= − = −
+ +

⌠⌠
 ⌡ ⌡

∫ ∫  

  ( ) ( )1 1
0 0tan / ; (0) implies tan /g v g t C v v C g vρ ρ ρ− −= − + = =  

   1
0

( ) tan tangv t t g v
g
ρρ

ρ
−  = − −   
  

 

 We solve  v(t)  =  0  for  1
0

1 tant v
gg
ρ

ρ
−  

=  
 

  and substitute in Eq. (17) for  y(t): 

 

  

( )
( )

( )( )

1 1
0 0

max 1
0

2
1 0

0

2
0

max

cos tan / tan /1 ln
cos tan /

1 1ln sec tan / ln 1

1 ln 1
2

v g v g
y

v g

vv g
g

vy
g

ρ ρ
ρ ρ

ρρ
ρ ρ

ρ
ρ

− −

−

−

−
=

= = +

 
= + 

 

 

 
22. By an integration similar to the one in Problem 19, the solution of the initial value problem  

232 0.075 , (0) 0v v v′ = − + =   is 
 
    ( ) 20.666 tanh(1.54919 )v t t= − , 
 
 so the terminal speed is 20.666 ft/sec.  Then a further integration with  y(0) = 0  gives 
 
   ( ) 10000 13.333 ln(cosh(1.54919 ))y t t= − . 
 
 We solve  y(0) = 0  for  t = 484.57.  Thus the descent takes about 8 min 5 sec. 
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23. Before opening parachute: 
 

  

232 0.00075 , (0) 0, (0) 10000
( ) 206.559 tanh(0.154919 ) (30) 206.521 ft/sec
( ) 10000 1333.33 ln(cosh(0.154919 )), (30) 4727.30 ft

v v v y
v t t v
y t t y

′ = − + = =
= − = −
= − =

 

 
 After opening parachute: 
 

  

232 0.075 , (0) 206.521, (0) 4727.30
( ) 20.6559 tanh(1.54919 0.00519595)
( ) 4727.30 13.3333ln(cosh(1.54919 0.00519595))

0 when 229.304

v v v y
v t t
y t t
y t

′ = − + = − =
= − +
= − +

= =

 

 
 Thus she opens her parachute after 30 sec at a height of 4727 feet, and the total  
 time of descent is  30 + 229.304 = 259.304 sec,  about 4 minutes and 19.3 seconds.   
 
24. Let  M  denote the mass of the Earth.  Then 

 (a) 2 /GM R c=   implies  R  =  0.884×10−3 meters, about  0.88 cm; 

 (b) )(3293202 /G M R c= implies  R  =  2.91×103 meters, about  2.91  kilometers.   
  
25. (a) The rocket's apex occurs when  0.v =   We get the desired formula when we set   
  v = 0  in Eq. (23), 

     2 2
0

1 12 ,v v GM
r R

 = + − 
 

 

  and solve for  r. 

 (b) We substitute  0v = ,  510r R= +  (100 km = 510  m) and the mks values  
  116.6726 10 ,G −= ×  24 65.975 10 , 6.378 10M R= × = ×  in Eq. (23) and solve for 
  0 1389.21 m/s 1.389 km/s.v = ≈  

 (c) When we substitute  0 (9 /10) 2 /v GM R=  in the formula derived in part (a), we 
 find that  max 100 /19.r R=   

 
26. By an elementary computation (as in Section 1.2) we find that an initial velocity of  0 16v =  

ft/sec is required to jump vertically 4 feet high on earth.  We must determine whether this 
initial velocity is adequate for escape from the asteroid.  Let  r  denote the ratio of the radius  

 of the asteroid to the radius 3960R =  miles of the earth, so that 

      1.5 1 .
3960 2640

r = =  
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 Then the mass and radius of the asteroid are given by 

    3 anda aM r M R rR= =  

 in terms of the mass  M  and radius  R  of the earth.  Hence the escape velocity from the  
 asteroid's surface is given by 

   
3

0
2 2 2a

a
a a

GM G r M GMv r r v
R rR R

⋅= = = =  

 in terms of the escape velocity  0v  from the earth's surface.  Hence  36680 / 2640av ≈  
 13.9≈  ft/sec.  Since the escape velocity from this asteroid is thus less than the initial 

velocity of 16 ft/sec that your legs can provide, you can indeed jump right off this asteroid 
into space. 

     
27. (a) Substitution of  2 2

0 2 / /v GM R k R= =  in Eq. (23) of the textbook gives 

    2 .dr GM kv
dt r r

= = =  

 We separate variables and proceed to integrate: 
 

   3/ 2 3/ 22 2
3 3

r dr k dt r kt R= ⇒ = +∫ ∫  

 (using the fact that  when 0r R t= = ).  We solve for  ( )2 / 33/ 22
3( )r t kt R= +   and note that 

 ( ) as .r t t→ ∞ → ∞  

 (b) If  0 2 /v GM R>  then Eq. (23) gives 

   
2

2
0

2 2 .dr GM GM k kv v
dt r R r r

α = = + − = + > 
 

 

 Therefore, at every instant in its ascent, the upward velocity of the projectile in this part is 
greater than the velocity at the same instant of the projectile of part (a).  It's as though the 
projectile of part (a) is the fox, and the projectile of this part is a rabbit that runs faster.  
Since the fox goes to infinity, so does the faster rabbit. 

 
28. (a) Integration of  gives 

           2

0

1 1 1
2

v GM
r r

 
= − 

 
 

 and we solve for 

           
0

1 12dr v GM
dt r r

 
= = − − 
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 taking the negative square root because  v < 0  in descent.  Hence 
 

    20
0

0

( cos )
2

r rt dr r r
GM r r

θ
⌠


⌡

= − =
−

 

    2
0 0/ 2 2 cosr GM r dθ θ= ∫  

    
3/ 2

0 ( sin cos )
2
r
GM

θ θ θ= +  

    2 10
0 0

0

cos
2

r rt rr r r
GM r

− 
= − + 

 
 

 
(b) Substitution of  11 24 66.6726 10 , 5.975 10 kg, 6.378 10 mG M r R−= × = × = = × , 

 and  6
0 10r R= +   yields  t = 510.504, that is, about 1

28  minutes for the descent to the  
surface of the earth.  (Recall that we are ignoring air resistance.) 

 (c) Substitution of the same numeral values along with  0 0v =  in the original  
 differential equation of part (a) yields  4116.42 m/s 4.116 km/sv = − ≈ −  for the velocity at 
 impact with the earth's surface where  .r R=  
 

29. Integration of  02 , (0) 0, (0)
( )

dv GMv y v v
dy y R

= − = =
+

  gives 

 

    2 2
0

1 1
2 2

GM GMv v
y R R

= − +
+  

 
 which simplifies to the desired formula for  v2.  Then substitution of 
 116.6726 10 ,G −= ×  24 65.975 10 kg, 6.378 10 mM R= × = ×   v = 0, and  v0 = 1 
 yields an equation that we easily solve for  y = 51427.3, that is, about  51.427 km. 
  
30. When we integrate  
 

   02 2 , (0) , (0)
( )

e mdv GM GMv r R r v
dr r S r

′= − + = =
−  

 
 in the usual way and solve for  v,  we get 
 

   2
0

2 2 2 2
.e e m mGM GM GM GMv v

r R r S R S
= − − + +

− −  

 
 The earth and moon attractions balance at the point where the right-hand side in the  
 acceleration equation vanishes, which is when 
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     .e

e m

M S
r

M M
=

−
 

If we substitute this value of  r,  22 67.35 10 kg, 384.4 10mM S= × = × , and the usual values 
of the other constants involved, then set  v = 0 (to just reach the balancing point), we can 
solve the resulting equation for  v0 = 11,109 m/s.   Note that this is only 71 m/s less  
than the earth escape velocity of 11,180 m/s, so the moon really doesn't help much. 

 
 
SECTION 2.4 
 
NUMERICAL APPROXIMATION:  EULER'S METHOD 
 
In each of Problems 1–10 we also give first the explicit form of Euler's iterative formula for the 
given differential equation  ( , )y f x y′ = .  As we illustrate in Problem 1, the desired iterations are 
readily implemented, either manually or with a computer system or graphing calculator.  Then we 
list the indicated values of  1

2( )y  rounded off accurate  to 3 decimal places. 
 
1. For the differential equation  ( , )y f x y′ =  with  ( , ) ,f x y y= −  the iterative formula of 

Euler's method is  yn+1 =  yn + h(−yn).  The TI-83 screen on the left  shows  a graphing 
calculator implementation of this iterative formula.   

 

  
 After the variables  are initialized (in the first line), and the formula is entered, each press of 

the enter key carries out an additional step.  The screen on the right shows the results of 5 
steps from  x = 0  to  x = 0.5  with step size  h = 0.1 — winding up with  (0.5) 1.181.y ≈   

 
 Approximate values 1.125 and 1.181;  true value 1

2( )y ≈ 1.213 
 
 The following Mathematica instructions produce precisely this line of data. 
 
  f[x_,y_] = -y;

g[x_] = 2 Exp[-x];
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h = 0.25; x = 0; y1 = y0;
Do[ k = f[x,y1]; (* the left-hand slope *)

y1 = y1 + h*k; (* Euler step to update y *)
x = x + h, (* update x *)
{i,1,2} ]

h = 0.1; x = 0; y2 = y0;
Do[ k = f[x,y2]; (* the left-hand slope *)

y2 = y2 + h*k; (* Euler step to update y *)
x = x + h, (* update x *)
{i,1,5} ]

Print[x," ",y1," ",y2," ",g[0.5]]     

0.5 1.125 1.18098 1.21306
 

2. Iterative formula: yn+1 =  yn + h(2yn) 

             Approximate values 1.125 and 1.244;  true value 1
2( )y ≈ 1.359 

 
3. Iterative formula:   yn+1 =  yn + h(yn + 1) 

 Approximate values 2.125 and 2.221;  true value 1
2( )y ≈ 2.297 

 
4. Iterative formula:   yn+1 = yn + h(xn − yn) 

 Approximate values 0.625 and 0.681;  true value 1
2( )y ≈ 0.713 

 
5. Iterative formula:   yn+1 =  yn + h(yn − xn − 1) 

 Approximate values 0.938 and 0.889;  true value 1
2( )y ≈ 0.851 

 
6. Iterative formula:   yn+1 =  yn + h(−2xnyn) 

 Approximate values 1.750 and 1.627;  true value 1
2( )y ≈ 1.558 

 
7. Iterative formula:   yn+1 =  yn + h(−3xn

2yn) 

 Approximate values 2.859 and 2.737;  true value 1
2( )y ≈ 2.647 

 
8. Iterative formula:   yn+1 =  yn + h exp(−yn) 

 Approximate values 0.445 and 0.420;  true value 1
2( )y ≈ 0.405 

 
9. Iterative formula:   yn+1 =  yn + h(1 + yn

2)/4 

 Approximate values 1.267 and 1.278;  true value 1
2( )y ≈ 1.287 
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10. Iterative formula:   yn+1 =  yn + h(2xnyn

2) 

 Approximate values 1.125 and 1.231;  true value 1
2( )y ≈ 1.333 

              
 
The tables of approximate and actual values called for in Problems 11–16 were produced using the 
following MATLAB script (appropriately altered for each problem). 
 

% Section 2.4, Problems 11-16
x0 = 0; y0 = 1;
% first run:
h = 0.01;
x = x0; y = y0; y1 = y0;
for n = 1:100

y = y + h*(y-2);
y1 = [y1,y];
x = x + h;
end

% second run:
h = 0.005;
x = x0; y = y0; y2 = y0;
for n = 1:200

y = y + h*(y-2);
y2 = [y2,y];
x = x + h;
end

% exact values
x = x0 : 0.2 : x0+1;
ye = 2 - exp(x);
% display table
ya = y2(1:40:201);
err = 100*(ye-ya)./ye;
[x; y1(1:20:101); ya; ye; err]

11.  The iterative formula of Euler's method is   yn+1 =  yn + h(yn − 2),  and the exact solution is  
y(x)  =  2 − ex.  The resulting table of approximate and actual values is 

 
x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h=0.01) 1.0000 0.7798 0.5111 0.1833 –0.2167 –0.7048 
y  (h=0.005) 1.0000 0.7792 0.5097 0.1806 –0.2211 –0.7115 

y actual 1.0000 0.7786 0.5082 0.1779 –0.2255 –0.7183 
error 0% –0.08% –0.29% –1.53% 1.97% 0.94% 

                             
12. Iterative formula:   yn+1  =  yn + h(yn − 1)2/2 

 Exact solution:   y(x)  =  1 + 2/(2 − x) 
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x 0.0 0.2 0.4 0.6 0.8 1.0 
y ( h=0.01) 2.0000 2.1105 2.2483 2.4250 2.6597 2.9864 
y  (h=0.005) 2.0000 2.1108 2.2491 2.4268 2.6597 2.9931 

y actual 2.0000 2.1111 2.2500 2.4286 2.6597 3.0000 
error 0% 0.02% 0.04% 0.07% 0.13% 0.23% 

                            
13. Iterative formula:   yn+1  =  yn + 2hxn

3/yn 

 Exact solution:   y(x)  =  (8 + x4)1/2 

 
x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h=0.01) 3.0000 3.1718 3.4368 3.8084 4.2924 4.8890 
y  (h=0.005) 3.0000 3.1729 3.4390 3.8117 4.2967 4.8940 

y actual 3.0000 3.1739 3.4412 3.8149 4.3009 4.8990 
error 0% 0.03% 0.06% 0.09% 0.10% 0.10% 

                            
14. Iterative formula:   yn+1  =  yn + hyn

2/xn 

 Exact solution:   y(x)  =  1/(1 − ln x) 
 

x 1.0 1.2 1.4 1.6 1.8 2.0 
y ( h=0.01) 1.0000 1.2215 1.5026 1.8761 2.4020 3.2031 
y  (h=0.005) 1.0000 1.2222 1.5048 1.8814 2.4138 3.2304 

y actual 1.0000 1.2230 1.5071 1.8868 2.4259 3.2589 
error 0% 0.06% 0.15% 0.29% 0.50% 0.87% 

 
15. Iterative formula:   yn+1  =  yn + h(3 − 2yn/xn) 

 Exact solution:   y(x)  =  x + 4/x2 

 
x 2.0 2.2 2.4 2.6 2.8 3.0 

y ( h=0.01) 3.0000 3.0253 3.0927 3.1897 3.3080 3.4422 
y  (h=0.005) 3.0000 3.0259 3.0936 3.1907 3.3091 3.4433 

y actual 3.0000 3.0264 3.0944 3.1917 3.3102 3.4444 
error 0% 0.019% 0.028% 0.032% 0.033% 0.032% 

 
16. Iterative formula:   yn+1  =  yn + 2hxn

5/yn
2 

 Exact solution:   y(x)  =  (x6 − 37)1/3 

 
x 2.0 2.2 2.4 2.6 2.8 3.0 

y ( h=0.01) 3.0000 4.2476 5.3650 6.4805 7.6343 8.8440 
y  (h=0.005) 3.0000 4.2452 5.3631 6.4795 7.6341 8.8445 

y actual 3.0000 4.2429 5.3613 6.4786 7.6340 8.8451 
error 0% –0.056% –0.034% –0.015% 0.002% 0.006% 
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The tables of approximate values called for in Problems 17–24 were produced using a MATLAB 
script similar to the one listed preceding the Problem 11 solution above. 
 
17.  

x 0.0 0.2 0.4 0.6 0.8 1.0 
y ( h=0.1) 0.0000 0.0010 0.0140 0.0551 0.1413 0.2925 
y  (h=0.02) 0.0000 0.0023 0.0198 0.0688 0.1672 0.3379 
y  (h=0.004) 0.0000 0.0026 0.0210 0.0717 0.1727 0.3477 
y  (h=0.0008) 0.0000 0.0027 0.0213 0.0723 0.1738 0.3497 

 
 These data indicate that  y(1)  ≈  0.35,  in contrast with Example 5 in the text, where the 

initial condition is  y(0)  =  1. 
 
In Problems 18−24 we give only the final approximate values of  y  obtained using Euler's method 
with step sizes  h  =  0.1,  h  =  0.02,  h  =  0.004, and  h  =  0.0008. 
 
18. With  x0  =  0  and  y0  =  1,  the approximate values of  y(2)  obtained are: 
 
   h    0.1         0.02    0.004      0.0008 
  y   1.6680   1.6771   1.6790   1.6794 
 
19. With  x0  =  0  and  y0  =  1,  the approximate values of  y(2)  obtained are: 
 
  h      0.1      0.02   0.004    0.0008 
  y      6.1831   6.3653   6.4022   6.4096 
 
20. With  x0  =  0  and  y0  =  −1,  the approximate values of  y(2)  obtained are: 
 
  h  0.1    0.02   0.004   0.0008 
  y  −1.3792  −1.2843  −1.2649  −1.2610   
 
21. With  x0  =  1  and  y0  =  2,  the approximate values of  y(2)  obtained are: 
 
  h  0.1     0.02    0.004         0.0008 
  y  2.8508   2.8681   2.8716    2.8723  
 
22. With  x0  =  0  and  y0  =  1,  the approximate values of  y(2)  obtained are: 
 
  h   0.1     0.02      0.004   0.0008 
  y 6.9879   7.2601   7.3154   7.3264 
 
23. With  x0  =  0  and  y0  =  0,  the approximate values of  y(1)  obtained are: 
 
  h    0.1         0.02   0.004     0.0008 
  y    1.2262   1.2300   1.2306   1.2307 
 



 Section 2.4 109 

24. With  x0  =  −1  and  y0  =  1,  the approximate values of  y(1)  obtained are: 
 
  h  0.1     0.02       0.004     0.0008 
  y  0.9585     0.9918  0.9984   0.9997 
 

25. Here  ( , ) 32 1.6f t v v= −   and  0 00, 0.t v= =    

 With  0.01,h =  100 iterations of  1 ( , )n n n nv v h f t v+ = +  yield  (1) 16.014,v ≈  and 200 
 iterations with 0.005h =  yield  (1) 15.998.v ≈  Thus we observe an approximate velocity of  
 16.0 ft/sec after 1 second — 80% of the limiting velocity of 20 ft/sec. 

 With  0.01,h =  200 iterations yield  (2) 19.2056,v ≈  and 400 iterations with 0.005h =  
 yield  (2) 19.1952.v ≈  Thus we observe an approximate velocity of 19.2 ft/sec after 2 
 seconds — 96% of the limiting velocity of 20 ft/sec. 
 

26. Here  2( , ) 0.0225 0.003f t P P P= −   and  0 00, 25.t P= =    

 With  1,h =  60 iterations of  1 ( , )n n n nP P h f t P+ = +  yield  (60) 49.3888,P ≈  and 120 
 iterations with 0.5h =  yield  (60) 49.3903.P ≈  Thus we observe a population of 49 deer  
 after 5 years — 65% of the limiting population of 75 deer. 

 With  1,h =  120 iterations yield  (120) 66.1803,P ≈  and 240 iterations with 0.5h =  yield  
 (60) 66.1469.P ≈  Thus we observe a population of 66 deer after 10 years — 88% of the 
 limiting population of 75 deer. 
 

27. Here  2 2( , ) 1f x y x y= + −   and  0 00, 0.x y= =   The following table gives the 
 approximate values for the successive step sizes  h  and corresponding numbers  n  of steps.  
 It appears likely that (2) 1.00y =  rounded off accurate to 2 decimal places. 
 

h 0.1 0.01 0.001 0.0001 0.00001 
n 20 200 2000 20000 200000 

y(2) 0.7772 0.9777 1.0017 1.0042 1.0044 
 

28. Here  21
2( , )f x y x y= +   and  0 02, 0.x y= − =   The following table gives the 

 approximate values for the successive step sizes  h  and corresponding numbers  n  of steps.  
 It appears likely that (2) 1.46y =  rounded off accurate to 2 decimal places. 
 

h 0.1 0.01 0.001 0.0001 0.00001 
n 40 400 4000 40000 400000 

y(2) 1.2900 1.4435 1.4613 1.4631 1.4633 
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29. With step sizes  h  =  0.15,  h  =  0.03,  and  h  =  0.006  we get the following results: 
 
    y with  y with  y with 
     x  h=0.15  h=0.03  h=0.006 
 
      −1.0  1.0000  1.0000  1.0000 
   −0.7  1.0472  1.0512   1.0521 
   −0.4  1.1213  1.1358  1.1390 
   −0.1  1.2826  1.3612  1.3835 
  +0.2  0.8900  1.4711  0.8210 
  +0.5  0.7460  1.2808  0.7192 
  
 While the values for  h  =  0.15  alone are not conclusive, a comparison of the values of  y  

for all three step sizes with  x > 0  suggests some anomaly in the transition from negative to 
positive values of  x. 

 
30. With step sizes  h  =  0.1  and  h  =  0.01  we get the following results: 
 
      y  with   y  with 
     x    h = 0.1  h = 0.01 
 
   0.0  0.0000   0.0000   
   0.1  0.0000   0.0003   
  0.2   0.0010   0.0025   
  0.3  0.0050   0.0086 
    ⋅           ⋅          ⋅  
    ⋅           ⋅          ⋅  
    ⋅           ⋅          ⋅  
  1.8  2.8200   4.3308 
  1.9  3.9393   7.9425   
  2.0   5.8521  28.3926   
 
 Clearly there is some difficulty near  x  =  2. 
 
31. With step sizes  h  =  0.1  and  h  =  0.01  we get the following results: 
 
    y  with  y  with 
    x   h = 0.1  h = 0.01 
 
  0.0  1.0000  1.0000   
  0.1  1.2000  1.2200   
  0.2  1.4428  1.4967   
    ⋅           ⋅          ⋅  
    ⋅           ⋅          ⋅  
    ⋅           ⋅          ⋅  
  0.7  4.3460   6.4643 
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  0.8  5.8670  11.8425   
  0.9  8.3349  39.5010   
 
 Clearly there is some difficulty near  x  =  0.9. 
 
 
 
SECTION 2.5 
 
A CLOSER LOOK AT THE EULER METHOD 
 
In each of Problems 1–10 we give first the predictor formula for  un+1  and then the improved Euler 
corrector for  yn+1.  These predictor-corrector iterations are readily implemented, either manually or 
with a computer system or graphing calculator (as we illustrate in Problem 1).  We give in each 
problem a table showing the approximate values obtained, as well as the corresponding values of 
the exact solution. 
 

 

1. un+1  =  yn + h(–yn) 

 yn+1  =  yn + (h/2)[−yn − un+1] 

 
 The TI-83 screen on the left above shows a graphing calculator implementation of this 

iteration.  After the variables are initialized (in the first line), and the formulas are entered, 
each press of the enter key carries out an additional step.  The screen on the right shows the 
results of 5 steps from  x = 0  to  x = 0.5  with step size  h = 0.1 — winding up with  

(0.5) 1.2142y ≈  — and we see the approximate values shown in the second row of the 
table below.   

 
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 2.0000 1.8100 1.6381 1.4824 1.3416 1.2142 
y actual 2.0000 1.8097 1.6375 1.4816 1.3406 1.2131 
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2. un+1  =  yn + 2hyn 

 yn+1  =  yn + (h/2)[2yn + 2un+1] 

  
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 0.5000 0.6100 0.7422 0.9079 1.1077 1.3514 
y actual 0.5000 0.6107 0.7459 0.9111 1.1128 1.3591 

              
3. un+1  =  yn + h(yn + 1) 

 yn+1  =  yn + (h/2)[(yn + 1) + (un+1 + 1)]  

 
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 1.0000 1.2100 1.4421 1.6985 1.9818 2.2949 
y actual 1.0000 1.2103 1.4428 1.6997 1.9837 2.2974 

              
4. un+1  =  yn + h(xn − yn) 

 yn+1  =  yn + (h/2)[(xn − yn) + (xn + h − un+1)] 

 
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 1.0000 0.9100 0.8381 0.7824 0.7416 0.7142 
y actual 1.0000 0.9097 0.8375 0.7816 0.7406 0.7131 

            
5. un+1  =  yn + h(yn − xn − 1) 

 yn+1  =  yn + (h/2)[(yn − xn − 1) + (un+1 − xn − h − 1)]  

  
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 1.0000 0.9950 0.9790 0.9508 0.9091 0.8526 
y actual 1.0000 0.9948 0.9786 0.9501 0.9082 0.8513 

 
6. un+1  =  yn − 2xnynh 

 yn+1  =  yn − (h/2)[2xnyn + 2(xn + h)un+1] 

  
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 2.0000 1.9800 1.9214 1.8276 1.7041 1.5575 
y actual 2.0000 1.9801 1.9216 1.8279 1.7043 1.5576 

 
7. un+1  =  yn − 3xn

2yn h 

 yn+1  =  yn − (h/2)[3xn
2yn + 3(xn + h)2un+1] 
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x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 3.0000 2.9955 2.9731 2.9156 2.8082 2.6405 
y actual 3.0000 2.9970 2.9761 2.9201 2.8140 2.6475 

 
8. un+1  =  yn + h exp(−yn) 

 yn+1  =  yn + (h/2)[exp(−yn) + exp(−un+1)] 

 
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 0.0000 0.0952 0.1822 0.2622 0.3363 0.4053 
y actual 0.0000 0.0953 0.1823 0.2624 0.3365 0.4055 

 
9. un+1  =  yn + h(1 + yn

2)/4 

 yn+1  =  yn + h[1 + yn
2 + 1 + (un+1)2]/8 

 
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 1.0000 1.0513 1.1053 1.1625 1.2230 1.2873 
y actual 1.0000 1.0513 1.1054 1.1625 1.2231 1.2874 

 
10. un+1  =  yn + 2xnyn

2 h 

 yn+1  =  yn + h[xnyn
2 + (xn + h)(un+1)2]  

 
x 0.0 0.1 0.2 0.3 0.4 0.5 

y with h=0.1 1.0000 1.0100 1.0414 1.0984 1.1895 1.3309 
y actual 1.0000 1.0101 1.0417 1.0989 1.1905 1.3333 

 
 
The results given below for Problems 11–16 were computed using the following MATLAB script. 
 

% Section 2.5, Problems 11-16
x0 = 0; y0 = 1;
% first run:
h = 0.01;
x = x0; y = y0; y1 = y0;
for n = 1:100

u = y + h*f(x,y); %predictor
y = y + (h/2)*(f(x,y)+f(x+h,u)); %corrector
y1 = [y1,y];
x = x + h;
end

% second run:
h = 0.005;
x = x0; y = y0; y2 = y0;
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for n = 1:200
u = y + h*f(x,y); %predictor
y = y + (h/2)*(f(x,y)+f(x+h,u)); %corrector
y2 = [y2,y];
x = x + h;

end

% exact values
x = x0 : 0.2 : x0+1;
ye = g(x);

% display table
ya = y2(1:40:201);
err = 100*(ye-ya)./ye;
x = sprintf('%10.5f',x), sprintf('\n');
y1 = sprintf('%10.5f',y1(1:20:101)), sprintf('\n');
ya = sprintf('%10.5f',ya), sprintf('\n');
ye = sprintf('%10.5f',ye), sprintf('\n');
err = sprintf('%10.5f',err), sprintf('\n');
table = [x; y1; ya; ye; err]

 
 
For each problem the differential equation  ( , )y f x y′ =   and the known exact solution  ( )y g x=  
are stored in the files  f.m  and  g.m — for instance, the files 
 

function yp = f(x,y)
yp = y-2;
 
function ye = g(x,y)
ye = 2-exp(x);

 
for Problem 11.  (The exact solutions for Problems 11–16 here are given in the solutions for 
Problems 11–16 in Section 2.4.) 
 
11.  

x 0.0 0.2 0.4 0.6 0.8 1.0 
y ( h=0.01) 1.00000 0.77860 0.50819 0.17790 –0.22551 –0.71824 
y  (h=0.005) 1.00000 0.77860 0.50818 0.17789 –0.22553 –0.71827 

y actual 1.00000 0.77860 0.50818 0.17788 –0.22554 –0.71828 
error 0.000% –0.000% –0.001% –0.003% 0.003% 0.002% 

                             
12.  

x 0.0 0.2 0.4 0.6 0.8 1.0 
y ( h=0.01) 2.00000 2.11111 2.25000 2.42856 2.66664 2.99995 
y  (h=0.005) 2.00000 2.11111 2.25000 2.42857 2.66666 2.99999 

y actual 2.00000 2.11111 2.25000 2.42857 2.66667 3.00000 
error 0.0000% 0.0000% 0.0001% 0.0001% 0.0002% 0.0004% 
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13.  
x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h=0.01) 3.00000 3.17390 3.44118 3.81494 4.30091 4.89901 
y  (h=0.005) 3.00000 3.17390 3.44117 3.81492 4.30089 4.89899 

y actual 3.00000 3.17389 3.44116 3.81492 4.30088 4.89898 
error 0.0000% –0.0001% –0.0001% 0.0001% –0.0002% –0.0002%

 
14.  

x 1.0 1.2 1.4 1.6 1.8 2.0 
y ( h=0.01) 1.00000 1.22296 1.50707 1.88673 2.42576 3.25847 
y  (h=0.005) 1.00000 1.22297 1.50709 1.88679 2.42589 3.25878 

y actual 1.00000 1.22297 1.50710 1.88681 2.42593 3.25889 
error 0.0000% 0.0002% 0.0005% 0.0010% 0.0018% 0.0033% 

 
15.  

x 2.0 2.2 2.4 2.6 2.8 3.0 
y ( h=0.01) 3.000000 3.026448 3.094447 3.191719 3.310207 3.444448 
y  (h=0.005) 3.000000 3.026447 3.094445 3.191717 3.310205 3.444445 

y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444 
error 0.00000% –0.00002% –0.00002% –0.00002% –0.00002% –0.00002% 

 
16.  

x 2.0 2.2 2.4 2.6 2.8 3.0 
y ( h=0.01) 3.000000 4.242859 5.361304 6.478567 7.633999 8.845112 
y  (h=0.005) 3.000000 4.242867 5.361303 6.478558 7.633984 8.845092 

y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085 
error 0.00000% 0.00006% –0.00001% –0.00005% –0.00007% –0.00007% 

 
17. With  h  =     0.1:   y(1)  ≈  0.35183 
 With  h  =    0.02:   y(1)  ≈  0.35030 
 With  h  =   0.004:   y(1)  ≈  0.35023 
 With  h  =  0.0008:   y(1)  ≈  0.35023 
 
      The table of numerical results is 
 
   y  with  y  with   y  with  y  with 
  x     h = 0.1  h = 0.02  h = 0.004 h = 0.0008 
 
 0.0  0.00000 0.00000  0.00000  0.00000 
 0.2  0.00300   0.00268 0.00267  0.00267 
 0.4   0.02202   0.02139  0.02136  0.02136 
 0.6  0.07344  0.07249   0.07245  0.07245 
 0.8   0.17540  0.17413  0.17408  0.17408 
 1.0  0.35183  0.35030  0.35023  0.35023 
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In Problems 18−24 we give only the final approximate values of  y  obtained using the improved 
Euler method with step sizes  h  =  0.1,  h  =  0.02,  h  =  0.004, and  h  =  0.0008. 
 
18. With  h  =     0.1:   y(2)  ≈  1.68043 
 With  h  =    0.02:   y(2)  ≈  1.67949 
 With  h  =   0.004:   y(2)  ≈  1.67946 
 With  h  =  0.0008:   y(2)  ≈  1.67946 
 
19. With  h  =     0.1:   y(2)  ≈  6.40834 
 With  h  =    0.02:   y(2)  ≈  6.41134 
 With  h  =   0.004:   y(2)  ≈  6.41147 
 With  h  =  0.0008:   y(2)  ≈  6.41147 
 
20. With  h  =     0.1:   y(2)  ≈  −1.26092 
 With  h  =    0.02:   y(2)  ≈  −1.26003 
 With  h  =   0.004:   y(2)  ≈  −1.25999 
 With  h  =  0.0008:   y(2)  ≈  −1.25999 
 
21. With  h  =     0.1:   y(2)  ≈  2.87204 
 With  h  =    0.02:   y(2)  ≈  2.87245 
 With  h  =   0.004:   y(2)  ≈  2.87247 
 With  h  =  0.0008:   y(2)  ≈  2.87247 
 
22. With  h  =     0.1:   y(2)  ≈  7.31578 
 With  h  =    0.02:   y(2)  ≈  7.32841 
 With  h  =   0.004:   y(2)  ≈  7.32916 
 With  h  =  0.0008:   y(2)  ≈  7.32920 
 
23. With  h  =     0.1:   y(1)  ≈  1.22967 
 With  h  =    0.02:   y(1)  ≈  1.23069 
 With  h  =   0.004:   y(1)  ≈  1.23073 
 With  h  =  0.0008:   y(1)  ≈  1.23073 
 
24. With  h  =     0.1:   y(1)  ≈  1.00006 
 With  h  =    0.02:   y(1)  ≈  1.00000 
 With  h  =   0.004:   y(1)  ≈  1.00000 
 With  h  =  0.0008:   y(1)  ≈  1.00000 
 
25. Here  ( , ) 32 1.6f t v v= −   and  0 00, 0.t v= =    

 With  0.01,h =  100 iterations of   

  1 2 1 1 1 2( , ), ( , ), ( )
2n n n n
hk f t v k f t h v hk v v k k+= = + + = + +  
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 yield  (1) 15.9618,v ≈  and 200 iterations with 0.005h =  yield  (1) 15.9620.v ≈  Thus we 
 observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting  
 velocity of 20 ft/sec. 

 With  0.01,h =  200 iterations yield  (2) 19.1846,v ≈  and 400 iterations with 0.005h =  
 yield  (2) 19.1847.v ≈  Thus we observe an approximate velocity of 19.185 ft/sec after 2 
 seconds — 96% of the limiting velocity of 20 ft/sec. 
 
26. Here  2( , ) 0.0225 0.003f t P P P= −   and  0 00, 25.t P= =    

 With  1,h =  60 iterations of   

  1 2 1 1 1 2( , ), ( , ), ( )
2n n n n
hk f t P k f t h P hk P P k k+= = + + = + +  

 yield  (60) 49.3909,P ≈  and 120 iterations with 0.5h =  yield  (60) 49.3913.P ≈  Thus we  
 observe an approximate population of 49.391 deer after 5 years — 65% of the limiting  
 population of 75 deer. 

 With  1,h =  120 iterations yield  (120) 66.1129,P ≈  and 240 iterations with 0.5h =  yield  
 (60) 66.1134.P ≈  Thus we observe an approximate population of 66.113 deer after 10 
 years — 88% of the  limiting population of 75 deer. 
 
27. Here  2 2( , ) 1f x y x y= + −   and  0 00, 0.x y= =   The following table gives the 
 approximate values for the successive step sizes  h  and corresponding numbers  n  of steps.  
 It appears likely that (2) 1.0045y =  rounded off accurate to 4 decimal places. 
 

h 0.1 0.01 0.001 0.0001 
n 20 200 2000 20000 

y(2) 1.01087 1.00452 1.00445 1.00445 
 

28. Here  21
2( , )f x y x y= +   and  0 02, 0.x y= − =   The following table gives the 

 approximate values for the successive step sizes  h  and corresponding numbers  n  of steps.  
 It appears likely that (2) 1.4633y =  rounded off accurate to 4 decimal places. 
 

h 0.1 0.01 0.001 0.0001 
n 40 400 4000 40000 

y(2) 1.46620 1.46335 1.46332 1.46331 
 
 
 
In the solutions for Problems 29 and 30 we illustrate the following general MATLAB ode solver. 
 

function [t,y] = ode(method, yp, t0,b, y0, n)
% [t,y] = ode(method, yp, t0,b, y0, n)
% calls the method described by 'method' for the
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% ODE 'yp' with function header
%
% y' = yp(t,y)
%
% on the interval [t0,b] with initial (column)
% vector y0. Choices for method are 'euler',
% 'impeuler', 'rk' (Runge-Kutta), 'ode23', 'ode45'.
% Results are saved at the endPoints of n subintervals,
% that is, in steps of length h = (b - t0)/n. The
% result t is an (n+1)-column vector from b to t1,
% while y is a matrix with n+1 rows (one for each
% t-value) and one column for each dependent variable.

h = (b - t0)/n; % step size
t = t0 : h : b;
t = t'; % col. vector of t-values
y = y0'; % 1st row of result matrix
for i = 2 : n+1 % for i=2 to i=n+1

t0 = t(i-1); % old t
t1 = t(i); % new t
y0 = y(i-1,:)'; % old y-row-vector
[T,Y] = feval(method, yp, t0,t1, y0);
y = [y;Y']; % adjoin new y-row-vector

end

To use the improved Euler method, we call as 'method' the following function. 
 

function [t,y] = impeuler(yp, t0,t1, y0)
%
% [t,y] = impeuler(yp, t0,t1, y0)
% Takes one improved Euler step for
%
% y' = yprime( t,y ),
%
% from t0 to t1 with initial value the
% column vector y0.

h = t1 - t0;
k1 = feval( yp, t0, y0 );
k2 = feval( yp, t1, y0 + h*k1 );
k = (k1 + k2)/2;
t = t1;
y = y0 + h*k;
 

29. Here our differential equation is described by the MATLAB function 
 

function vp = vpbolt1(t,v)
vp = -0.04*v - 9.8;

 
 Then the commands 
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n = 50;
[t1,v1] = ode('impeuler','vpbolt1',0,10,49,n);
n = 100;
[t2,v2] = ode('impeuler','vpbolt1',0,10,49,n);
t = (0:10)';
ve = 294*exp(-t/25)-245;
[t, v1(1:5:51), v2(1:10:101), ve]

 
 generate the table 
 
  t  with n = 50 with n = 100   actual v 

0 49.0000 49.0000 49.0000
1 37.4722 37.4721 37.4721
2 26.3964 26.3963 26.3962
3 15.7549 15.7547 15.7546
4 5.5307 5.5304 5.5303
5 -4.2926 -4.2930 -4.2932
6 -13.7308 -13.7313 -13.7314
7 -22.7989 -22.7994 -22.7996
8 -31.5115 -31.5120 -31.5122
9 -39.8824 -39.8830 -39.8832
10 -47.9251 -47.9257 -47.9259

 
 We notice first that the final two columns agree to 3 decimal places (each difference being  
 than 0.0005).  Scanning the  n = 100 column for sign changes, we suspect that  v = 0  (at the  

bolt's apex) occurs just after  t = 4.5 sec.  Then interpolation between  t = 4.5  and  t = 4.6  
in the table 

 
[t2(40:51),v2(40:51)]

3.9000 6.5345
4.0000 5.5304
4.1000 4.5303
4.2000 3.5341
4.3000 2.5420
4.4000 1.5538
4.5000 0.5696
4.6000 -0.4108
4.7000 -1.3872
4.8000 -2.3597
4.9000 -3.3283
5.0000 -4.2930

 
 indicates that  t = 4.56  at the bolt's apex.  Finally, interpolation in 
 

[t2(95:96),v2(95:96)]

9.4000 -43.1387
9.5000 -43.9445
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 gives the impact velocity  v(9.41)  ≈  -43.22 m/s. 
 
30. Now our differential equation is described by the MATLAB function 
 

function vp = vpbolt2(t,v)
vp = -0.0011*v.*abs(v) - 9.8;

 
 Then the commands 
 

n = 100;
[t1,v1] = ode('impeuler','vpbolt2',0,10,49,n);
n = 200;
[t2,v2] = ode('impeuler','vpbolt2',0,10,49,n);
t = (0:10)';
[t, v1(1:10:101), v2(1:20:201)]

 
 generate the table 
 
  t with n = 100  with n = 200 
   

0 49.0000 49.0000
1 37.1547 37.1547
2 26.2428 26.2429
3. 15.9453 15.9455
4 6.0041 6.0044
5 -3.8020 -3.8016
6 -13.5105 -13.5102
7 -22.9356 -22.9355
8 -31.8984 -31.8985
9 -40.2557 -40.2559
10 -47.9066 -47.9070

 
 We notice first that the final two columns agree to 2 decimal places (each difference being  

less than 0.005).  Scanning the  n = 200 column for sign changes, we suspect that  v = 0  (at 
the bolt's apex) occurs just after  t = 4.6 sec.  Then interpolation between  t = 4.60 and   
t = 4.65 in the table 

 
[t2(91:101),v2(91:101)]

4.5000 1.0964
4.5500 0.6063
4.6000 0.1163
4.6500 -0.3737
4.7000 -0.8636
4.7500 -1.3536
4.8000 -1.8434
4.8500 -2.3332
4.9000 -2.8228
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4.9500 -3.3123
5.0000 -3.8016

 
 indicates that  t = 4.61  at the bolt's apex.  Finally, interpolation in 
 

[t2(189:190),v2(189:190)]

9.4000 -43.4052
9.4500 -43.7907

  
 gives the impact velocity  v(9.41)  ≈  −43.48 m/s. 
 
 
 
SECTION 2.6 
 
THE RUNGE-KUTTA METHOD 
 
Each problem can be solved with a "template" of computations like those listed in Problem 1.  We 
include a table showing the slope values  1 2 3 4, , ,k k k k  and the xy-values at the ends of two 
successive steps of size  h = 0.25. 
 
1. To make the first step of size  h = 0.25  we start with the function defined by 
  f[x_, y_] := -y 

 and the initial values 
  x = 0; y = 2; h = 0.25; 

 and then perform the calculations  

 k1 = f[x, y]
k2 = f[x + h/2, y + h*k1/2]
k3 = f[x + h/2, y + h*k2/2]
k4 = f[x + h, y + h*k3]
y = y + h/6*(k1 + 2*k2 + 2*k3 + k4)
x = x + h

in turn.  Here we are using Mathematica notation that translates transparently to standard 
mathematical notation describing the corresponding manual computations.  A repetition 
of this same block of calculations carries out a second step of size  h = 0.25.  The 
following table lists the intermediate and final results obtained in these two steps. 

 
k1 k2 k3 k4 x Approx. y Actual y 
–2 –1/75 –1.78125 –1.55469 0.25 1.55762 1.55760 

–1.55762 –1.36292 –1.38725 –1.2108 0.5 1.21309 1.21306 
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2.  
k1 k2 k3 k4 x Approx. y Actual y 
1 1.25 1.3125 1.65625 0.25 0.82422 0.82436 

1.64844 2.06055 2.16357 2.73022 0.5 1.35867 1.35914 
 
3.  

k1 k2 k3 k4 x Approx. y Actual y 
2 2.25 2.28125 2.57031 0.25 1.56803 1.56805 

2.56803 2.88904 2.92916 3.30032 0.5 2.29740 2.29744 
4. 

k1 k2 k3 k4 x Approx. y Actual y 
–1 –0.75 –0.78128 –55469 0.25 0.80762 0.80760 

–0.55762 –0.36292 –0.38725 –0.21080 0.5 0.71309 0.71306 
 
5.  

k1 k2 k3 k4 x Approx. y Actual y 
0 –0.125 –0.14063 –0.28516 0.25 0.96598 0.96597 

–28402 –0.44452 –0.46458 –0.65016 0.5 0.85130 0.85128 
      
6.  

k1 k2 k3 k4 x Approx. y Actual y 
0 –0.5 –0.48438 –0.93945 0.25 1.87882 1.87883 

–0.93941 –1.32105 –1.28527 –1.55751 0.5 1.55759 1.55760 
 
7.  

k1 k2 k3 k4 x Approx. y Actual y 
0 –0.14063 –0.13980 –0.55595 0.25 2.95347 2.95349 

–0.55378 –1.21679 –1.18183 –1.99351 0.5 2.6475 2.64749 
 
8.  

k1 k2 k3 k4 x Approx. y Actual y 
1 0.88250 0.89556 0.79940 0.25 0.22315 0.22314 

0.80000 0.72387 0.73079 0.66641 0.5 0.40547 0.40547 
 
9.  

k1 k2 k3 k4 x Approx. y Actual y 
0.5 0.53223 0.53437 0.57126 0.25 1.13352 1.13352 

0.57122 0.61296 0.61611 0.66444 0.5 1.28743 1.28743 
 
10.  

k1 k2 k3 k4 x Approx. y Actual y 
0 0.25 0.26587 0.56868 0.25 1.06668 1.06667 

0.56891 0.97094 1.05860 1.77245 0.5 1.33337 1.33333 
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The results given below for Problems 11–16 were computed using the following MATLAB script. 
 

% Section 2.6, Problems 11-16
x0 = 0; y0 = 1;

% first run:
h = 0.2;
x = x0; y = y0; y1 = y0;
for n = 1:5

k1 = f(x,y);
k2 = f(x+h/2,y+h*k1/2);
k3 = f(x+h/2,y+h*k2/2);
k4 = f(x+h,y+h*k3);
y = y +(h/6)*(k1+2*k2+2*k3+k4);
y1 = [y1,y];
x = x + h;
end

% second run:
h = 0.1;
x = x0; y = y0; y2 = y0;
for n = 1:10

k1 = f(x,y);
k2 = f(x+h/2,y+h*k1/2);
k3 = f(x+h/2,y+h*k2/2);
k4 = f(x+h,y+h*k3);
y = y +(h/6)*(k1+2*k2+2*k3+k4);
y2 = [y2,y];
x = x + h;

end

% exact values
x = x0 : 0.2 : x0+1;
ye = g(x);

% display table
y2 = y2(1:2:11);
err = 100*(ye-y2)./ye;
x = sprintf('%10.6f',x), sprintf('\n');
y1 = sprintf('%10.6f',y1), sprintf('\n');
y2 = sprintf('%10.6f',y2), sprintf('\n');
ye = sprintf('%10.6f',ye), sprintf('\n');
err = sprintf('%10.6f',err), sprintf('\n');
table = [x;y1;y2;ye;err]

 
For each problem the differential equation  ( , )y f x y′ =   and the known exact solution  ( )y g x=  
are stored in the files  f.m  and  g.m — for instance, the files 
 

function yp = f(x,y)
yp = y-2;

 



124 Chapter 2 

and 
function ye = g(x,y)
ye = 2-exp(x);

 
for Problem 11.   
 

11.  
x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h=0.2) 1.000000 0.778600 0.508182 0.177894 –0.225521 –0.718251 
y  (h=0.1) 1.000000 0.778597 0.508176 0.177882 –0.225540 –0.718280 
y actual 1.000000 0.778597 0.508175 0.177881 –0.225541 –0.718282 

error 0.00000% –0.00002% –0.00009% –0.00047% –0.00061% –0.00029% 
 

12.  
x 0.0 0.2 0.4 0.6 0.8 1.0 

y ( h=0.2) 2.000000 2.111110 2.249998 2.428566 2.666653 2.999963 
y  (h=0.1) 2.000000 2.111111 2.250000 2.428571 2.666666 2.999998 
y actual 2.000000 2.111111 2.250000 2.428571 2.666667 3.000000 

error 0.000000% 0.000002% 0.000006% 0.000014% 0.000032% 0.000080% 
 

13.  
x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h=0.2) 3.000000 3.173896 3.441170 3.814932 4.300904 4.899004 
y  (h=0.1) 3.000000 3.173894 3.441163 3.814919 4.300885 4.898981 
y actual 3.000000 3.173894 3.441163 3.814918 4.300884 4.898979 

error 0.00000% –0.00001% –0.00001% –0.00002% –0.00003% –0.00003% 
 

14.  
x 1.0 1.2 1.4 1.6 1.8 2.0 

y ( h=0.2) 1.000000 1.222957 1.507040 1.886667 2.425586 3.257946 
y  (h=0.1) 1.000000 1.222973 1.507092 1.886795 2.425903 3.258821 
y actual 1.000000 1.222975 1.507096 1.886805 2.425928 3.258891 

error 0.0000% 0.0001% 0.0003% 0.0005% 0.0010% 0.0021% 
 

15.  
x 2.0 2.2 2.4 2.6 2.9 3.0 

y ( h=0.2) 3.000000 3.026448 3.094447 3.191719 3.310207 3.444447 
y  (h=0.1) 3.000000 3.026446 3.094445 3.191716 3.310204 3.444445 
y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444 

error 0.000000% –0.000004% –0.000005% –0.000005% –0.000005% –0.000004% 
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16.  
x 2.0 2.2 2.4 2.6 2.9 3.0 

y ( h=0.2) 3.000000 4.243067 5.361409 6.478634 7.634049 8.845150 
y  (h=0.1) 3.000000 4.242879 5.361308 6.478559 7.633983 8.845089 
y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085 

error 0.000000% –0.000221% –0.000094% –0.000061% –0.000047% –0.000039% 
 
17. With  h  =    0.2: y(1)  ≈  0.350258 
 With  h  =    0.1:   y(1)  ≈  0.350234 
 With  h  =   0.05:  y(1)  ≈  0.350232 
 With  h  =  0.025:   y(1)  ≈  0.350232  
 
 The table of numerical results is 
 
      y with        y with        y with        y with 
  x       h = 0.2       h = 0.1       h = 0.05      h = 0.025 
         
  0.0  0.000000  0.000000  0.000000  0.000000 
  0.2     0.002667      0.002667      0.002667      0.002667 
  0.4     0.021360      0.021359      0.021359      0.021359 
  0.6     0.072451      0.072448      0.072448      0.072448 
  0.8     0.174090      0.174081      0.174080      0.174080 
  1.0     0.350258      0.350234      0.350232      0.350232 
 
 
In Problems 18−24 we give only the final approximate values of  y  obtained using the Runge-Kutta  
method with step sizes  h  =  0.2,  h  =  0.1,  h  =  0.05, and  h  =  0.025. 
 
18. With  h  =    0.2:   y(2)  ≈  1.679513 
 With  h  =    0.1:   y(2)  ≈  1.679461 
 With  h  =   0.05:   y(2)  ≈  1.679459 
 With  h  =  0.025:   y(2)  ≈  1.679459 
 
19. With  h  =    0.2:   y(2)  ≈  6.411464 
 With  h  =    0.1:   y(2)  ≈  6.411474 
 With  h  =   0.05:   y(2)  ≈  6.411474 
 With  h  =  0.025:   y(2)  ≈  6.411474 
 
20. With  h  =    0.2:   y(2)  ≈  −1.259990 
 With  h  =    0.1:   y(2)  ≈  −1.259992 
 With  h  =   0.05:   y(2)  ≈  −1.259993 
 With  h  =  0.025:   y(2)  ≈  −1.259993 
 
21. With  h  =    0.2:   y(2)  ≈  2.872467 
 With  h  =    0.1:   y(2)  ≈  2.872468 
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 With  h  =   0.05:   y(2)  ≈  2.872468 
 With  h  =  0.025:   y(2)  ≈  2.872468 
 
22. With  h  =    0.2:   y(2)  ≈  7.326761 
 With  h  =    0.1:   y(2)  ≈  7.328452 
 With  h  =   0.05:   y(2)  ≈  7.328971 
 With  h  =  0.025:   y(2)  ≈  7.329134 
 
23. With  h  =    0.2:   y(1)  ≈  1.230735 
 With  h  =    0.1:   y(1)  ≈  1.230731 
 With  h  =   0.05:   y(1)  ≈  1.230731 
 With  h  =  0.025:   y(1)  ≈  1.230731 
 
24. With  h  =    0.2:   y(1)  ≈  1.000000 
 With  h  =    0.1:   y(1)  ≈  1.000000 
 With  h  =   0.05:   y(1)  ≈  1.000000 
 With  h  =  0.025:   y(1)  ≈  1.000000 
 
25. Here  ( , ) 32 1.6f t v v= −   and  0 00, 0.t v= =    

 With  0.1,h =  10 iterations of  

  

1 1
1 2 12 2

1 1
3 2 4 32 2

1
1 2 3 4 16

( , ), ( , ),
( , ), ( , ),

( 2 2 ),

n n n n

n n n n

n n

k f t v k f t h v hk
k f t h v hk k f t h v hk
k k k k k v v hk+

= = + +
= + + = + +

= + + + = +
 

 
 yield  (1) 15.9620,v ≈  and 20 iterations with 0.05h =  yield  (1) 15.9621.v ≈  Thus we 
 observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting  
 velocity of 20 ft/sec. 

 With  0.1,h =  20 iterations yield  (2) 19.1847,v ≈  and 40 iterations with 0.05h =   yield  
 (2) 19.1848.v ≈  Thus we observe an approximate velocity of 19.185 ft/sec after 2 
 seconds — 96% of the limiting velocity of 20 ft/sec. 
 
26. Here  2( , ) 0.0225 0.003f t P P P= −   and  0 00, 25.t P= =    

 With  6,h =  10 iterations of   

  

1 1
1 2 12 2

1 1
3 2 4 32 2

1
1 2 3 4 16

( , ), ( , ),
( , ), ( , ),

( 2 2 ),

n n n n

n n n n

n n

k f t P k f t h P hk
k f t h v hk k f t h P hk
k k k k k P P hk+

= = + +
= + + = + +

= + + + = +
 

 yield  (60) 49.3915,P ≈  as do 20 iterations with 3.h =  Thus we observe an approximate 
  population of 49.3915 deer after 5 years — 65% of the limiting population of 75 deer. 
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 With  6,h =  20 iterations yield  (120) 66.1136,P ≈  as do 40 iterations with 3.h =  Thus we 
 observe an approximate population of 66.1136 deer after 10 years — 88% of the limiting 
 population of 75 deer. 
 
 
27. Here  2 2( , ) 1f x y x y= + −   and  0 00, 0.x y= =   The following table gives the 
 approximate values for the successive step sizes  h  and corresponding numbers  n  of steps.  
 It appears likely that (2) 1.00445y =  rounded off accurate to 5 decimal places. 
 

h 1 0.1 0.01 0.001 
n 2 20 200 2000 

y(2) 1.05722 1.00447 1.00445 1.00445 
 
 
28. Here  21

2( , )f x y x y= +   and  0 02, 0.x y= − =   The following table gives the 
 approximate values for the successive step sizes  h  and corresponding numbers  n  of steps.  
 It appears likely that (2) 1.46331y =  rounded off accurate to 5 decimal places. 
 

h 1 0.1 0.01 0.001 
n 4 40 00 40000 

y(2) 1.48990 1.46332 1.46331 1.46331 
 
 
In the solutions for Problems 29 and 30 we use the general MATLAB solver ode that was listed 
prior to the Problem 29 solution in Section 2.5.  To use the Runge-Kutta method, we call as 
'method' the following function. 
 

function [t,y] = rk(yp, t0,t1, y0)

% [t, y] = rk(yp, t0, t1, y0)
% Takes one Runge-Kutta step for
%
% y' = yp( t,y ),
%
% from t0 to t1 with initial value the
% column vector y0.

h = t1 - t0;
k1 = feval(yp, t0 , y0 );
k2 = feval(yp, t0 + h/2, y0 + (h/2)*k1 );
k3 = feval(yp, t0 + h/2, y0 + (h/2)*k2 );
k4 = feval(yp, t0 + h ,y0 + h *k3 );
k = (1/6)*(k1 + 2*k2 + 2*k3 + k4);
t = t1;
y = y0 + h*k; 
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29. Here our differential equation is described by the MATLAB function 
 

function vp = vpbolt1(t,v)
vp = -0.04*v - 9.8;

 
 Then the commands 
 

n = 100;
[t1,v1] = ode('rk','vpbolt1',0,10,49,n);
n = 200;
[t2,v] = ode('rk','vpbolt1',0,10,49,n);
t = (0:10)';
ve = 294*exp(-t/25)-245;
[t, v1(1:n/20:1+n/2), v(1:n/10:n+1), ve]

 
 generate the table 
 
  t with n = 100 with n = 200   actual v 

0 49.0000 49.0000 49.0000
1 37.4721 37.4721 37.4721
2 26.3962 26.3962 26.3962
3 15.7546 15.7546 15.7546
4 5.5303 5.5303 5.5303
5 -4.2932 -4.2932 -4.2932
6 -13.7314 -13.7314 -13.7314
7 -22.7996 -22.7996 -22.7996

8 -31.5122 -31.5122 -31.5122
9 -39.8832 -39.8832 -39.8832
10 -47.9259 -47.9259 -47.9259

 
We notice first that the final three columns agree to the 4 displayed decimal places.  
Scanning the last column for sign changes in  v, we suspect that  v = 0  (at the bolt's apex) 
occurs just after  t = 4.5 sec.  Then interpolation between  t = 4.55  and  t = 4.60  in the table 

 
[t2(91:95),v(91:95)]

4.5000 0.5694
4.5500 0.0788
4.6000 -0.4109
4.6500 -0.8996
4.7000 -1.3873 

  
 indicates that  t = 4.56  at the bolt's apex.  Now the commands 
 

y = zeros(n+1,1);
h = 10/n;
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for j = 2:n+1
y(j) = y(j-1) + v(j-1)*h +

0.5*(-.04*v(j-1) - 9.8)*h^2;
end
ye = 7350*(1 - exp(-t/25)) - 245*t;
[t, y(1:n/10:n+1), ye]

 
 generate the table 
 
  t Approx  y Actual  y 
 
        0 0 0

1 43.1974 43.1976
2 75.0945 75.0949
3 96.1342 96.1348
4 106.7424 106.7432
5 107.3281 107.3290
6 98.2842 98.2852
7 79.9883 79.9895
8 52.8032 52.8046
9 17.0775 17.0790
10 -26.8540 -26.8523

 
We see at least 2-decimal place agreement between approximate and actual values of  y.  
Finally, interpolation between  t = 9  and  t = 10  here suggests that  y = 0  just after  t = 9.4. 
Then interpolation between  t = 9.40  and  t = 9.45  in  the table 
 

[t2(187:191),y(187:191)]

9.3000 4.7448
9.3500 2.6182
9.4000 0.4713
9.4500 -1.6957
9.5000 -3.8829

indicates that the bolt is aloft for about 9.41 seconds. 
 
 
30. Now our differential equation is described by the MATLAB function 
 

function vp = vpbolt2(t,v)
vp = -0.0011*v.*abs(v) - 9.8;

 
 Then the commands 
 

n = 200;
[t1,v1] = ode('rk','vpbolt2',0,10,49,n);
n = 2*n;
[t2,v] = ode('rk','vpbolt2',0,10,49,n);
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t = (0:10)';
ve = zeros(size(t));
ve(1:5)= 94.388*tan(0.478837 - 0.103827*t(1:5));
ve(6:11)= -94.388*tanh(0.103827*(t(6:11)-4.6119));

[t, v1(1:n/20:1+n/2), v(1:n/10:n+1), ve]
 
 generate the table 
 
  t with n = 200 with n = 400   actual v 

0 49.0000 49.0000 49.0000
1 37.1548 37.1548 37.1547
2 26.2430 26.2430 26.2429
3 15.9456 15.9456 15.9455
4 6.0046 6.0046 6.0045
5 -3.8015 -3.8015 -3.8013
6 13.5101 -13.5101 -13.5100
7 -22.9354 -22.9354 -22.9353
8 -31.8985 -31.8985 -31.8984
9 -40.2559 -40.2559 -40.2559
10 -47.9071 -47.9071 -47.9071

 
We notice first that the final three columns almost agree to the 4 displayed decimal places.  
Scanning the last colmun for sign changes in  v, we suspect that  v = 0  (at the bolt's apex) 
occurs just after  t = 4.6 sec.  Then interpolation between  t = 4.600  and  t = 4.625  in the 
table 

 
[t2(185:189),v(185:189)]

4.6000 0.1165
4.6250 -0.1285
4.6500 -0.3735
4.6750 -0.6185
4.7000 -0.8635 

  
 indicates that  t = 4.61  at the bolt's apex.  Now the commands 
 

y = zeros(n+1,1);
h = 10/n;
for j = 2:n+1

y(j) = y(j-1) + v(j-1)*h + 0.5*(-.04*v(j-1) - 9.8)*h^2;
end
ye = zeros(size(t));
ye(1:5)= 108.465+909.091*log(cos(0.478837 -
0.103827*t(1:5)));
ye(6:11)= 108.465-909.091*log(cosh(0.103827

*(t(6:11)-4.6119)));
[t, y(1:n/10:n+1), ye]
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 generate the table 
 
  t Approx  y Actual  y 
 
        0 0 0.0001

1 42.9881 42.9841
2 74.6217 74.6197
3 95.6719 95.6742
4 106.6232 106.6292
5 107.7206 107.7272
6 99.0526 99.0560
7 80.8027 80.8018
8 53.3439 53.3398
9 17.2113 17.2072
10 -26.9369 -26.9363

 
We see almost 2-decimal place agreement between approximate and actual values of  y.  
Finally, interpolation between  t = 9  and  t = 10  here suggests that  y = 0  just after  t = 9.4. 
Then interpolation between  t = 9.400  and  t = 9.425  in  the table 
 

[t2(377:381),y(377:381)]

9.4000 0.4740
9.4250 -0.6137
9.4500 -1.7062
9.4750 -2.8035
9.5000 -3.9055

indicates that the bolt is aloft for about 9.41 seconds. 
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CHAPTER 3 
  
LINEAR SYSTEMS AND MATRICES  
 
 
SECTION 3.1 
 
INTRODUCTION TO LINEAR SYSTEMS 
 
This initial section takes account of the fact that some students remember only hazily the method of 
elimination for 2 2× and 3 3×  systems.  Moreover, high school algebra courses generally 
emphasize only the case in which a unique solution exists.  Here we treat on an equal footing the 
other two cases — in which either no solution exists or infinitely many solutions exist.   
 
1. Subtraction of twice the first equation from the second equation gives  5 10,y− = −  so 
 y = 2,  and it follows that  x = 3. 
 
2. Subtraction of three times the second equation from the first equation gives  5 15,y = −  so 
 y = –3,  and it follows that  x = 5. 
 

3. Subtraction of  3/2  times the first equation from the second equation gives  1 3 ,
2 2

y =  so 

 y = 3,  and it follows that  x = –4. 
 

4. Subtraction of  6/5  times the first equation from the second equation gives  11 44 ,
5 5

y =  

so  y = 4, and it follows that  x = 5. 
 
5. Subtraction of twice the first equation from the second equation gives  0 1,=  so no 

solution exists. 
 
6. Subtraction of  3/2  times the first equation from the second equation gives  0 1,=  so no 

solution exists. 
 
7. The second equation is  –2 times the first equation, so we can choose  y = t  arbitrarily.  

The first equation then gives  10 4 .x t= − +  
 
8. The second equation is  2/3  times the first equation, so we can choose  y = t  arbitrarily.  

The first equation then gives  4 2 .x t= +  
 
9. Subtraction of twice the first equation from the second equation gives  9 4 3.y z− − = −   

Subtraction of the first equation from the third equation gives  2 1.y z+ =   Solution of 
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these latter two equations gives  1, 3.y z= − =   Finally substitution in the first equation 
gives  x = 4. 

 
10. Subtraction of twice the first equation from the second equation gives  3 5.y z+ = −   

Subtraction of twice the first equation from the third equation gives  2 3.y z− − =   
Solution of these latter two equations gives  1, 2.y z= = −   Finally substitution in the 
first equation gives  x = 3. 

 
11. First we interchange the first and second equations.  Then subtraction of twice the new 

first equation from the new second equation gives  7,y z− =   and subtraction of three 
times the new first equation from the third equation gives  2 3 18.y z− + = −   Solution of 
these latter two equations gives  3, 4.y z= = −   Finally substitution in the (new) first 
equation gives  x = 1. 

 
12. First we interchange the first and third equations.  Then subtraction of twice the new first 

equation from the second equation gives  7 3 36,y z− − = −   and subtraction of twice the 
new first equation from the new third equation gives  16 7 83.y z− − = −   Solution of these 
latter two equations gives  3, 5.y z= =   Finally substitution in the (new) first equation 
gives  x = 1. 

 
13. First we subtract the second equation from the first equation to get the new first equation 

2 3 0.x y z+ + =   Then subtraction of twice the new first equation from the second 
equation gives  3 2 0,y z− =   and subtraction of twice the new first equation from the 
third equation gives  2 0.y z− =   Solution of these latter two equations gives  

0, 0.y z= =   Finally substitution in the (new) first equation gives  x = 0  also. 
 
14. First we subtract the second equation from the first equation to get the new first equation 

8 4 45.x y z+ − =   Then subtraction of twice the new first equation from the second 
equation gives  23 28 181,y z− + = −   and subtraction of twice the new first equation from 
the third equation gives  9 11 71.y z− + = −   Solution of these latter two equations gives  

3, 4.y z= = −   Finally substitution in the (new) first equation gives  x = 5. 
 
15. Subtraction of the first equation from the second equation gives  4 2.y z− + = −   

Subtraction of three times the first equation from the third equation gives (after division 
by 2)  4 5 / 2.y z− + = −   These latter two equations obviously are inconsistent, so the 
original system has no solution. 

 
16. Subtraction of the first equation from the second equation gives  7 3 2.y z− = −   

Subtraction of three times the first equation from the third equation gives (after division 
by 3)  7 3 10 / 3.y z− = −   These latter two equations obviously are inconsistent, so the 
original system has no solution. 
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17. First we subtract the first equation from the second equation to get the new first equation 
3 6 4.x y z+ − = −   Then subtraction of three times the new first equation from the second 

equation gives  7 16 15,y z− + =   and subtraction of five times the new first equation from 
the third equation gives (after division by 2)  7 16 35 / 2.y z− + =   These latter two 
equations obviously are inconsistent, so the original system has no solution. 

 
18. Subtraction of the five times the first equation from the second equation gives  

23 40 14.y z− − = −   Subtraction of eight times the first equation from the third equation 
gives  23 40 19.y z− − = −   These latter two equations obviously are inconsistent, so the 
original system has no solution. 

 
19. Subtraction of twice the first equation from the second equation gives  3 6 9.y z− =   

Subtraction of the first equation from the third equation gives  2 3.y z− =  Obviously 
these latter two equations are scalar multiples of each other, so we can choose  z = t  
arbitrarily.  It follows first that  3 2y t= +  and then that  8 3 .x t= +  

 
20. First we subtract the second equation from the first equation to get the new first equation 

6 5.x y z− + = −   Then subtraction of the new first equation from the second equation 
gives  5 5 25,y z− =   and subtraction of the new first equation from the third equation 
gives 3 3 15.y z− =   Obviously these latter two equations are both scalar multiples of the 
equation  5,y z− =  so we can choose  z = t  arbitrarily.  It follows first that  5y t= +  and 
then that  5 .x t= −  

 
21. Subtraction of three times the first equation from the second equation gives  3 6 9.y z− =   

Subtraction of four times the first equation from the third equation gives  3 9 6.y z− + = −  
Obviously these latter two equations are both scalar multiples of the equation  3 2,y z− =  
so we can choose  z = t  arbitrarily.  It follows first that  2 3y t= +  and then that  

3 2 .x t= −  
 
22. Subtraction of four times the second equation from the first equation gives  2 10 0.y z+ =   

Subtraction of twice the second equation from the third equation gives  5 0.y z+ =  
Obviously the first of these latter two equations is twice the second one, so we can 
choose  z = t  arbitrarily.  It follows first that  5y t= −  and then that  4 .x t= −  

 
23. The initial conditions  (0) 3 and (0) 8y y′= =  yield the equations  3 and 2 8,A B= =  so  

3 and 4.A B= =   It follows that  ( ) 3cos 2 4sin 2 .y x x x= +  
 
24. The initial conditions  (0) 5 and (0) 12y y′= =  yield the equations  5 and 3 12,A B= =  

so  5 and 4.A B= =   It follows that  ( ) 5cosh 3 4sinh 3 .y x x x= +  
 
25. The initial conditions  (0) 10 and (0) 20y y′= =  yield the equations  10 andA B+ =  

5 5 20A B− =   with  solution  7, 3.A B= =   Thus  5 5( ) 7 3 .x xy x e e−= +  
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26. The initial conditions  (0) 44 and (0) 22y y′= =  yield the equations  44 andA B+ =  

11 11 22A B− =   with  solution  23, 21.A B= =   Thus  11 11( ) 23 21 .x xy x e e−= +  
 
27. The initial conditions  (0) 40 and (0) 16y y′= = −  yield the equations  40 andA B+ =  

3 5 16A B− = −   with  solution  23, 17.A B= =   Thus  3 5( ) 23 17 .x xy x e e−= +  
 
28. The initial conditions  (0) 15 and (0) 13y y′= =  yield the equations  15 andA B+ =  

3 7 13A B+ = −   with  solution  23, 8.A B= = −   Thus  3 7( ) 23 8 .x xy x e e= −  
 
29. The initial conditions  (0) 7 and (0) 11y y′= =  yield the equations  7 andA B+ =  

1 1
2 3 11A B+ =   with  solution  52, 45.A B= = −   Thus  / 2 /3( ) 52 45 .x xy x e e= −  

 
30. The initial conditions  (0) 41 and (0) 164y y′= =  yield the equations  41 andA B+ =  

4 7 164
3 5

A B− =   with  solution  81, 40.A B= = −   Thus  4 /3 7 /5( ) 81 40 .x xy x e e−= −  

 
31. The graph of each of these linear equations in  x  and  y  is a straight line through the 

origin (0, 0) in the xy-plane.  If these two lines are distinct then they intersect only at the 
origin, so the two equations have the unique solution  0.x y= =   If the two lines 
coincide, then each of the infinitely many different points  ( , )x y  on this common line 
provides a solution of the system. 

 
32. The graph of each of these linear equations in  x, y, and z  is a plane in xyz-space.  If these 

two planes are parallel — that is, do not intersect — then the equations have no solution.  
Otherwise, they intersect in a straight line, and each of the infinitely many different 
points  ( , , )x y z  on this line provides a solution of the system. 

 
33. (a) The three lines have no common point of intersection, so the system has no  

solution. 

 (b) The three lines have a single point of intersection, so the system has a unique   
solution. 

 (c) The three lines — two of them parallel — have no common point of intersection,  
so the system has no solution. 

 (d) The three distinct parallel lines have no common point of intersection, so the  
system has no solution. 

 (e) Two of the lines coincide and intersect the third line in a single point, so the  
system has a unique solution. 

 (f) The three lines coincide, and each of the infinitely many different points  ( , , )x y z  
on this common line provides a solution of the system. 
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34. (a) If the three planes are parallel and distinct, then they have no common point of  
intersection, so the system has no solution. 

 (b) If the three planes coincide, then each of the infinitely many different points   
( , , )x y z  of this common plane provides a solution of the system. 

 (c) If two of the planes coincide and are parallel to the third plane, then the three  
planes have no common point of intersection, so the system has no solution. 

 (d) If two of the planes intersect in a line that is parallel to the third plane, then the  
three planes have no common point of intersection, so the system has no solution. 

 (e) If two of the planes intersect in a line that lies in the third plane, then each of the  
infinitely many different points ( , , )x y z  of this line provides a solution of the system. 

 (f) If two of the planes intersect in a line that intersects the third plane in a single 
point, then this point ( , , )x y z  provides the unique solution of the system. 

 
 
 
SECTION 3.2 
 
MATRICES AND GAUSSIAN ELIMINATION 
 
Because the linear systems in Problems 1–10 are already in echelon form, we need only start at the 
end of the list of unknowns and work backwards. 
 
1. Starting with  3 2x =   from the third equation, the second equation gives  2 0,x =  and then 

the first equation gives  1 1.x =   
 
2. Starting with  3 3x = −   from the third equation, the second equation gives  2 1,x =  and 

then the first equation gives  1 5.x =   
 
3. If we set  3x t=  then the second equation gives  2 2 5 ,x t= +  and next the first equation 

gives  1 13 11 .x t= +   
 
4. If we set  3x t=  then the second equation gives  2 5 7 ,x t= +  and next the first equation 

gives  1 35 33 .x t= +   
 
5. If we set  4x t=  then the third equation gives  3 5 3 ,x t= +  next the second equation gives  

2 6 ,x t= +  and finally the first equation gives  1 13 4 .x t= +  
 
6. If we set  3x t=  and  4 4x = −  from the third equation, then the second equation gives  

2 11 3 ,x t= +  and next the first equation gives  1 17 .x t= +  
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7. If we set  3x s=  and  4 ,x t=  then the second equation gives  2 7 2 7 ,x s t= + −  and next 
the first equation gives  1 3 8 19 .x s t= − +  

 
8. If we set  2x s=  and  4 ,x t=  then the second equation gives  3 10 3 ,x t= −  and next the 

first equation gives  1 25 10 22 .x s t= − + +  
 
9. Starting with  4 6x =  from the fourth equation, the third equation gives  3 5,x = −  next the 

second equation gives  2 3,x =  and finally the first equation gives  1 1.x =  
 
10. If we set  3x s=  and  5 ,x t=  then the third equation gives  4 5 ,x t=  next the second 

equation gives  2 13 8 ,x s t= −  and finally the first equation gives  1 63 16 .x s t= −  
 
In each of Problems 11–22, we give just the first two or three steps in the reduction.  Then we 
display a resulting echelon form  E  of the augmented coefficient matrix  A  of the given linear 
system, and finally list the resulting solution (if any).  The student should understand that the 
echelon matrix  E  is not unique, so a different sequence of elementary row operations may 
produce a different echelon matrix. 
 
11. Begin by interchanging rows 1 and 2 of  A.  Then subtract twice row 1 both from row 2 

and from row 3. 
 

1 2 3

1 3 2 5
0 1 0 2 ; 3, 2, 4
0 0 1 4

x x x
 
 = − = = − = 
  

E  

 
12. Begin by subtracting row 2 of  A  from row 1.  Then subtract twice row 1 both from row 

2 and from row 3. 
 

1 2 3

1 6 4 15
0 1 0 3 ; 5, 3, 2
0 0 1 2

x x x
− − 

 = − = = − = 
  

E  

 
13. Begin by subtracting twice row 1 of  A  both from row 2 and from row 3.  Then add row 

2 to row 3. 
 

1 2 3

1 3 3 13
0 1 2 3 ; 4 3 , 3 2 ,
0 0 0 0

x t x t x t
 
 = = + = − = 
  

E  

 
14. Begin by interchanging rows 1 and 3 of  A.  Then subtract twice row 1 from row 2, and 

three times row 1 from row 3. 
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1 2 3

1 2 2 9
0 0 1 7 ; 5 2 , , 7
0 0 0 0

x t x t x
− − − 

 = = + = = 
  

E  

 

15. Begin by interchanging rows 1 and 2 of  A.  Then subtract three times row 1 from row 2, 
and five times row 1 from row 3. 

 
1 1 1 1
0 1 3 3 .
0 0 0 1

 
 =  
  

E   The system has no solution. 

 

16. Begin by subtracting row 1 from row 2 of  A.  Then interchange rows 1 and 2. Next 
subtract twice row 1 from row 2, and five times row 1 from row 3. 

 
1 4 7 6
0 1 2 0 .
0 0 0 1

− − 
 =  
  

E  The system has no solution. 

 

17. 1 2 3 44 3 3 4x x x x− − − =   
 1 2 3 42 6 5 5 5x x x x− − − =   
 1 2 3 43 4 5 7x x x x− − − = −  

 Begin by subtracting twice row 1 from row 2 of  A, and three times row 1 from row 3. 
 

1 2 3 4

1 4 3 3 4
0 1 0 1 4 ; 3 2 , 4 , 5 3 ,
0 0 1 3 5

x t x t x t x t
− − − 

 = − − = − = − + = − = 
  

E  

 

18. Begin by subtracting row 3 from row 1 of  A.  Then subtract 3 times row 1 from row 2, 
and twice row 1 from row 3. 

 

1 2 3 4

1 2 4 13 8
0 0 1 4 3 ; 4 2 3 , , 3 4 ,
0 0 0 0 0

x s t x s x t x t
− − − − 

 = = + − = = − = 
  

E  

 

19. Begin by interchanging rows 1 and 2 of  A.  Then subtract three times row 1 from row 2, 
and four times row 1 from row 3. 
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1 2 3 4

1 2 5 5 7
0 1 2 3 5 ; 3 , 5 2 3 , ,
0 0 0 0 0

x s t x s t x s x t
− − − 

 = − = − − = + − = = 
  

E  

 
20. Begin by interchanging rows 1 and 2 of  A.  Then subtract twice row 1 from row 2, and 

five times row 1 from row 3. 
 

1 2 3 4 5

1 3 2 7 3 9
0 1 3 7 2 7 ; 2 3 , 1 2 , 2 2 , ,
0 0 1 2 0 2

x t x s t x s x s x t
− 

 = − = + = + − = + = = 
 − 

E  

 
21. Begin by subtracting twice row 1 from row 2, three times row 1 from row 3, and four 

times row 1 from row 4. 
 

1 2 3 4

1 1 1 0 6
0 1 5 1 20

; 2, 1, 3, 4
0 0 1 0 3
0 0 0 1 4

x x x x

 
 
 = = = = =
 
 
 

E  

 
22. Begin by subtracting row 4 from row 1.  Then subtracting twice row 1 from row 2, four 

times row 1 from row 3, and three times row 1 from row 4. 
 

1 2 3 4

1 2 4 0 9
0 1 6 1 21

; 3, 2, 4, 1
0 0 1 0 4
0 0 0 1 1

x x x x

− − − 
 
 = = = − = = −
 
 − 

E  

 
23. If we subtract twice the first row from the second row, we obtain the echelon form  
 

3 2 1
0 0 2k
 

=  − 
E  

 
of the augmented coefficient matrix.  It follows that the given system has no solutions unless  
k = 2, in which case it has infinitely many solutions given by  1

1 23 (1 2 ), .x t x t= − =  
 
24. If we subtract twice the first row from the second row, we obtain the echelon form  
 

3 2 0
0 4 0k
 

=  − 
E  
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of the augmented coefficient matrix.  It follows that the given system has only the trivial 
solution  1 2 0x x= =    unless  k = 4, in which case it has infinitely many solutions given by  

2
1 23 , .x t x t= − =  

 
25. If we subtract twice the first row from the second row, we obtain the echelon form  
 

3 2 11
0 4 1k
 

=  − − 
E  

 
of the augmented coefficient matrix.  It follows that the given system has a unique solution 
if  4,k ≠  but no solution if  k = 4. 
 

26. If we first subtract twice the first row from the second row, then interchange the two rows, 
and finally subtract 3 times the first row from the second row, then we obtain the echelon 
form  

1 1 2
0 1 3 7

k
k
− 

=  − 
E  

 
of the augmented coefficient matrix.  It follows that the given system has a unique solution 
whatever the value of  k. 

 
27. If we first subtract twice the first row from the second row, then subtract 4 times the first 

row from the third row, and finally subtract the second row from the third row , we obtain 
the echelon form  

1 2 1 3
0 5 5 1
0 0 0 11k

 
 =  
 − 

E  

 
of the augmented coefficient matrix.  It follows that the given system has no solution unless 
k = 11, in which case it has infinitely many solutions with  3x  arbitrary. 

 
28. If we first interchange rows 1 and 2, then subtract twice the first row from the second row, 

next subtract 7 times the first row from the third row, and finally subtract twice the second 
row from the third row , we obtain the echelon form  

 
1 2 1
0 5 1 2
0 0 0 2 3

b
a b

c a b

 
 = − − 
 − − 

E  

 
of the augmented coefficient matrix.  It follows that the given system has no solution unless 

2 3 ,c a b= +  in which case it has infinitely many solutions with  3x  arbitrary. 
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29. In each of parts (a)-(c), we start with a typical 2 2×  matrix  A  and carry out two row  

successive operations as indicated, observing that we wind up with the original matrix  A. 
 

 (a) 
(1/ ) 22 c Rc Rs t s t s t

u v cu cv u v
     

= → =     
     

→A A   

 

 (b) 
, ,( 1 2) ( 1 2)SWAP R R SWAP R Rs t u v s t

u v s t u v
     

= → → =     
     

A A  

 

 (c) 
( ) 1 21 2 c R Rc R Rs t u v s t

u v cu s cv t u v

++ −     
= → → =     + +     

A A  

 
 Since we therefore can "reverse" any single elementary row operation, it follows that we can 

reverse any finite sequence of such operations — on at a time — so part (d) follows. 
 
 
30. (a) This part is essentially obvious, because a multiple of an equation that is satisfied is  
 also satisfied, and the sum of two equations that are satisfied is one that is also satisfied. 

 (b) Let us write  1 1 2 1 2, , , ,n n+= =A B B B B A�  where each matrix  1k+B  is obtained  
 from  kB  by a single elementary row operation (for  1, 2, ,k n= � ).  Then it follows by  n   

applications of part (a) that every solution of the system  LS1  associated with the matrix  A1  
is also a solution of the system  LS2  associated with the matrix  A2.  But part (d) of Problem 
29 implies that  A1  also can be obtained by  A2  by elementary row operations, so by the 
same token every solution of  LS2  is also a solution of  LS1. 

 
 
 
 
SECTION 3.3 
 
REDUCED ROW-ECHELON MATRICES 
 
Each of the matrices in Problems 1-20 can be transformed to reduced echelon form without the 
appearance of any fractions.  The main thing is to get started right.  Generally our first goal is to get 
a 1 in the upper left corner of  A,  then clear out the rest of the first column.  In each problem we 
first give at least the initial steps, and then the final result  E.  The particular sequence of elementary 
row operations used is not unique; you might find  E  in a quite different way. 
 

1. 
2 3 1 1 2 21 2 1 2 1 0

3 7 0 1 0 1

R R R R− −     
     
     

→ →  
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2. 
1 2 2 2 1 1 2 23 7 1 2 1 2 1 0

2 5 2 5 0 1 0 1

R R R R R R− − −       
       
       

→ → →  

 

3. 
1 2 2 2 1 1 2 23 7 15 1 2 4 1 2 4 1 0 2

2 5 11 2 5 11 0 1 3 0 1 3

R R R R R R− − −       
       
       

→ → →  

 

4. 
2 1 1 23 7 1 3 7 1 1 12 10

5 2 8 2 5 9 2 5 9

R R R R− −− − −     
     − −     

→ →  

 
( 1/29) 2 1 12 22 2 1 1 12 10 1 12 10 1 0 2

0 29 29 0 1 1 0 1 1

R R RR R − −− − −     
     − − −     

→ → →  

 

5. 
( 1) 22 2 1 1 2 21 2 11 1 2 11 1 2 11 1 0 5

2 3 19 0 1 3 0 1 3 0 1 3

RR R R R−− −− − − −       
       − − − −       

→ → →  

 

6. 
2 4 1 1 2 21 2 19 1 2 19 1 0 7

4 7 70 0 1 6 0 1 6

R R R R− +− −     
     − − −     

→ →  

 

7. 
2 1 3 2 1

1 2 3 1 2 3 1 2 3
1 4 1 0 2 2 0 2 2
2 1 9 2 1 9 0 3 3

R R R R− −
     
     − −     
     −     

→ →  

 
(1/2) 2 3 3 2 1 2 2

1 2 3 1 2 3 1 0 5
0 1 1 0 1 1 0 1 1
0 3 3 0 0 0 0 0 0

R R R R R+ −
     
     − − −     
     −     

→ → →  

 

8. 
2 3 1 3 1

1 4 5 1 4 5 1 4 5
3 9 3 0 3 18 0 3 18
1 2 3 1 2 3 0 2 8

R R R R− −
− − − − − −     

     −     
     − −     

→ →  

 
( 1/12) 32 3 3 2 2

1 4 5 1 4 5 1 0 0
0 1 10 0 1 10 0 1 0
0 2 8 0 0 12 0 0 1

RR R R R −− −
− − − −     

     →     
     −     

→ → → �  
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9. 
1 3 3 4 1

5 2 18 1 1 6 1 1 6
0 1 4 0 1 4 0 1 4
4 1 12 4 1 12 0 3 12

R R R R− −
     
     
     
     − −     

→ →  

 
3 3 2 1 2

1 1 6 1 0 2
0 1 4 0 1 4
0 0 0 0 0 0

R R R R+ −
   
   
   
      

→ →  

 

10. 
1 3 2 9 1

5 2 5 1 1 2 1 1 2
9 4 7 9 4 7 0 5 25
4 1 7 4 1 7 4 1 7

R R R R− −
−     

     − − − −     
     − − −     

→ →  

 
( 1/5) 23 4 1 3 3 2

1 1 2 1 1 2 1 0 3
0 5 25 0 1 5 0 1 5
0 3 15 0 3 15 0 0 0

RR R R R−− +
−     

     − − →     
     − − − −     

→ → → �  

 

11. 
( 1, 3) 2 2 1

3 9 1 1 3 6 1 3 6
2 6 7 2 6 7 0 0 19
1 3 6 3 9 1 3 9 1

SWAP R R R R−
− −     

     
     
     −     

→ →  

 
(1/19) 23 3 1 3 19 2

1 3 6 1 3 6 1 3 0
0 0 19 0 0 1 0 0 1
0 0 19 0 0 19 0 0 0

RR R R R− −
− −     

     
     
          

→ → → �  

 

12. 
2 3 1 3 2 1

1 4 2 1 4 2 1 4 2
3 12 1 0 0 7 0 0 7
2 8 5 2 8 5 0 0 9

R R R R− −
− − − − − −     

     −     
     − −     

→ →  

 
(1/7) 2

1 4 0
0 0 1
0 0 0

R
− 

 →  
  

→ �  

 

13. 
( 1, 2) 2 2 1

2 7 4 0 1 3 2 1 1 3 2 1
1 3 2 1 2 7 4 0 0 1 0 2
2 6 5 4 2 6 5 4 2 6 5 4

SWAP R R R R−     
     −     
          

→ →  
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2 2 1 1 3 2

1 3 2 1 1 0 0 3
0 1 0 2 0 1 0 2
0 0 1 2 0 0 1 2

R R R R− −   
   − → −   
      

→ → �  

 

14. 
2 2 1 3 2 1

1 3 2 5 1 3 2 5 1 3 2 5
2 5 2 3 0 1 2 7 0 1 2 7
2 7 7 22 2 7 7 22 0 1 3 12

R R R R− −     
     − − − − − −     
          

→ →  

 
( 1) 23 2

1 3 2 5 1 0 0 4
0 1 2 7 0 1 0 3
0 0 1 5 0 0 1 5

RR R −+    
   − − − → −   
      

→ → �  

 

15. 
( 1, 2) 2 2 1

2 2 4 2 1 1 4 3 1 1 4 3
1 1 4 3 2 2 4 2 0 4 12 4
2 7 19 3 2 7 19 3 2 7 19 3

SWAP R R R R−
− − − −     

     − − −     
     − − −     

→ →  

 
(1/4) 23 2 1

1 1 4 3 1 1 4 3
0 4 12 4 0 1 3 1
0 9 27 9 0 9 27 9

RR R−
− − − −   

   − −   
   − −   

→ →  

 
3 9 2 1 2

1 1 4 3 1 0 1 2
0 1 3 1 0 1 3 1
0 0 0 0 0 0 0 0

R R R R− +
− − −   

   − −   
      

→ →  

 

16. 
2 2 1 3 2 1

1 3 15 7 1 3 15 7 1 3 15 7
2 4 22 8 0 2 8 6 0 2 8 6
2 7 34 17 2 7 34 17 0 1 4 3

R R R R− −     
     − − − − − −     
          

→ →  

 
( 1/2) 2 3 2

1 3 15 7 1 0 3 2
0 1 4 3 0 1 4 3
0 1 4 3 0 0 0 0

R R R− −
−   

   →   
      

→ → �  

 

17. 
3 2 12 1

1 1 1 1 4 1 1 1 1 4 1 1 1 1 4
1 2 2 8 1 0 3 3 9 3 0 3 3 9 3
2 3 1 3 11 2 3 1 3 11 0 1 3 5 19

R RR R −−
− − − − − −     

     − − − − − − −     
     − − −     

→ →  
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( 1/3) 2 3 2

1 1 1 1 4 1 1 1 1 4
0 1 1 3 1 0 1 1 3 1
0 1 3 5 19 0 0 4 8 20

R R R− −
− − − −   

   − − − −   
   − −   

→ →  

 
( 1/4) 3 1 2

1 1 1 1 4 1 0 0 2 3
0 1 1 3 1 0 1 0 1 4
0 0 1 2 5 0 0 1 2 5

R R R− −
− − −   

   − − → −   
   − − − −   

→ → �  

 

18. 
3 2 12 2 1

1 2 5 12 1 1 2 5 12 1 1 2 5 12 1
2 3 18 11 9 0 7 28 35 7 0 7 28 35 7
2 5 26 21 11 2 5 26 21 11 0 9 36 45 9

R RR R −−
− − − − − − − − −     

     
     
          

→ →  

 
(1/7) 2 (1/7) 2

1 2 5 12 1 1 2 5 12 1
0 1 4 5 1 0 1 4 5 1
0 9 36 45 9 0 9 36 45 9

R R
− − − − − −   

   
   
      

→ →  

 
(1/9) 3 3 2

1 2 5 12 1 1 0 3 2 3
0 1 4 5 1 0 1 4 5 1
0 1 4 5 1 0 0 0 0 0

R R R−
− − − −   

   →   
      

→ → �  

 

19. 
( 1, 3)

2 7 10 19 13 1 0 2 1 3
1 3 4 8 6 1 3 4 8 6
1 0 2 1 3 2 7 10 19 13

SWAP R R
− −   

   − − − −   
   − −   

→  

 
3 2 12 1

1 0 2 1 3 1 0 2 1 3
0 3 6 9 3 0 3 6 9 3
2 7 10 19 13 0 7 14 21 7

R RR R −−
   
   − − − −   
   − − − −   

→ →  

 
(1/3) 2 3 7 2

1 0 2 1 3 1 0 2 1 3
0 1 2 3 1 0 1 2 3 1
0 7 14 21 7 0 0 0 0 0

R R R−   
   − − − −   
   − −   

→ →  

 

20. 
1 3

3 6 1 7 13 1 2 4 2 13
5 10 8 18 47 5 10 8 18 47
2 4 5 9 26 2 4 5 9 26

R R−
− − −   

   
   
      

→  
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2 5 1 3 2 1

1 2 4 2 13 1 2 4 2 13
0 0 28 28 112 0 0 28 28 112
2 4 5 9 26 0 0 13 13 52

R R R R− −
− − − − − −   

   
   
      

→ →  

 
(1/28) 2 3 13 2

1 2 4 2 13 1 2 0 2 3
0 0 1 1 4 0 0 1 1 4
0 0 13 13 52 0 0 0 0 0

R R R−
− − −   

   →   
      

→ → �  

 
In each of Problems 21–30, we give just the first two or three steps in the reduction.  Then we 
display the resulting reduced echelon form  E  of the augmented coefficient matrix  A  of the 
given linear system, and finally list the resulting solution (if any).   
 
21. Begin by interchanging rows 1 and 2 of  A.  Then subtract twice row 1 both from row 2 

and from row 3. 
 

1 2 3

1 0 0 3
0 1 0 2 ; 3, 2, 4
0 0 1 4

x x x
 
 = − = = − = 
  

E  

 
22. Begin by subtracting row 2 of  A  from row 1.  Then subtract twice row 1 both from row 

2 and from row 3. 
 

1 2 3

1 0 0 5
0 1 0 3 ; 5, 3, 2
0 0 1 2

x x x
 
 = − = = − = 
  

E  

 
23. Begin by subtracting twice row 1 of  A  both from row 2 and from row 3.  Then add row 

2 to row 3. 
 

1 2 3

1 0 3 14
0 1 2 3 ; 4 3 , 3 2 ,
0 0 0 0

x t x t x t
− 

 = = + = − = 
  

E  

 
24. Begin by interchanging rows 1 and 3 of  A.  Then subtract twice row 1 from row 2, and 

three times row 1 from row 3. 
 

1 2 3

1 2 0 5
0 0 1 7 ; 5 2 , , 7
0 0 0 0

x t x t x
− 

 = = + = = 
  

E  
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25. Begin by interchanging rows 1 and 2 of  A.  Then subtract three times row 1 from row 2, 
and five times row 1 from row 3. 

 
1 0 2 0
0 1 3 0 .
0 0 0 1

− 
 =  
  

E  The system has no solution. 

 

26. Begin by subtracting row 1 from row 2 of  A.  Then interchange rows 1 and 2. Next 
subtract twice row 1 from row 2, and five times row 1 from row 3. 

 
1 0 1 0
0 1 2 0 .
0 0 0 1

 
 =  
  

E   The system has no solution. 

 

27. 1 2 3 44 3 3 4x x x x− − − =   
 1 2 3 42 6 5 5 5x x x x− − − =   
 1 2 3 43 4 5 7x x x x− − − = −  

 Begin by subtracting twice row 1 from row 2 of  A, and three times row 1 from row 3. 
 

1 2 3 4

1 0 0 2 3
0 1 0 1 4 ; 3 2 , 4 , 5 3 ,
0 0 1 3 5

x t x t x t x t
 
 = − − = − = − + = − = 
  

E  

 

28. Begin by subtracting row 3 from row 1 of  A.  Then subtract 3 times row 1 from row 2, 
and twice row 1 from row 3. 

 

1 2 3 4

1 2 0 3 4
0 0 1 4 3 ; 4 2 3 , , 3 4 ,
0 0 0 0 0

x s t x s x t x t
− 

 = = + − = = − = 
  

E  

 

29. Begin by interchanging rows 1 and 2 of  A.  Then subtract three times row 1 from row 2, 
and four times row 1 from row 3. 

 

1 2 3 4

1 0 1 1 3
0 1 2 3 5 ; 3 , 5 2 3 , ,
0 0 0 0 0

x s t x s t x s x t
 
 = − = − − = + − = = 
  

E  
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30. Begin by interchanging rows 1 and 2 of  A.  Then subtract twice row 1 from row 2, and 
five times row 1 from row 3. 

 

1 2 3 4 5

1 0 0 0 3 2
0 1 0 1 2 1 ; 2 3 , 1 2 , 2 2 , ,
0 0 1 2 0 2

x t x s t x s x s x t
− 

 = − = + = + − = + = = 
 − 

E  

 

31. 
(1/6) 3 (1/4) 22 5 3

1 2 3 1 2 3 1 2 3 1 2 3
0 4 5 0 4 5 0 4 0 0 1 0
0 0 6 0 0 1 0 0 1 0 0 1

R RR R−       
       
       
              

→ → →  

 
1 2 2 1 3 3

1 0 3 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

R R R R− −
   
   
   
      

→ →  

 
32. If  0,ad bc− ≠  then not both  a  and  b  can be zero.  If, for instance,  0,a ≠  then 
 

 
(1/ ) 1 2 1 21 / 1 / 1 /

0 / 0

a R R cR aRa b b a b a b a
c d c d d bc a ad bc

−       
       − −       

→ → →  

 
(1/( )) 2 1 ( / ) 21 / 1 0

0 1 0 1

ad bc R R b a Rb a− −   
   
   

→ → . 

 

33. If the upper left element of a 2 2×  reduced echelon matrix is  1,  then the possibilities are  
1 0 1 *

and ,
0 1 0 0
   
   
   

  depending on whether there is a nonzero element in the second 

row.  If the upper left element is zero — so both elements of the second row are also 0, 

then the possibilities are  
0 1 0 0

and .
0 0 0 0
   
   
   

 

 
34. If the upper left element of a 3 3×  reduced echelon matrix is  1,  then the possibilities are 
 

  
1 0 0 1 0 * 1 * 0 1 * *
0 1 0 , 0 1 * , 0 0 1 , and 0 0 0 ,
0 0 1 0 0 0 0 0 0 0 0 0

       
       
       
              

 

 
 depending on whether the second and third row contain any nonzero elements.  If the 

upper left element is zero — so the first column and third row contain no nonzero 
elements — then use of the four 2 2×  reduced echelon matrices of Problem 33 (for the 
upper right 2 2×  submatrix of our reduced 3 3×  matrix) gives the additional possibilities 
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0 1 0 0 1 * 0 0 1 0 0 0
0 0 1 , 0 0 0 , 0 0 0 , and 0 0 0 .
0 0 0 0 0 0 0 0 0 0 0 0

       
       
       
              

 

 

35. (a) If  0 0( , )x y   is a solution, then it follows that 
 

   0 0 0 0

0 0 0 0

( ) ( ) ( ) 0 0,
( ) ( ) ( ) 0 0

a kx b ky k ax by k
c kx d ky k cx dy k

+ = + = ⋅ =
+ = + = ⋅ =

 

 
 so   0 0( , )kx ky  is also a solution. 

 (b) If  1 1( , )x y  and  2 2( , )x y  are solutions, then it follows that 
 

   1 2 1 2 1 1 2 2

1 2 1 2 1 1 2 2

( ) ( ) ( ) ( ) 0 0 0,
( ) ( ) ( ) ( ) 0 0 0

a x x b y y ax by ax by
c x x d y y cx dy cx dy

+ + + = + + + = + =
+ + + = + + + = + =

 

 
 so   1 2 1 2( , )x x y y+ +  is also a solution. 
 
36. By Problem 32, the coefficient matrix of the given homogeneous 2 2×  system is row-

equivalent to the 2 2×  identity matrix.  Therefore, Theorem 4 implies that the given 
system has only the trivial solution. 

 
37. If  0ad bc− =  then, much as in Problem 32, we see that the second row of the reduced 

echelon form of the coefficient matrix is allzero.  Hence there is a free variable, and thus 
the given homogeneous system has a nontrivial solution involving a parameter  t. 

 
38. By Problem 37, there is a nontrivial solution if and only if 
 
  2( 2)( 3) (2)(3) 12 ( 4)( 3) 0,c c c c c c+ − − = − − = − + =  
 
 that is, either  c = 4  or  c = –3. 
 
39. It is given that the augmented coefficient matrix of the homogeneous 3 3×  system has the 

form 

   
1 1 1

2 2 2

1 2 1 2 1 2

0
0 .
0

a b c
a b c

pa qa pb qb pc qc

 
 
 
 + + + 

 

 
 Upon subtracting both  p times row 1 and  q times row 2 from row 3, we get the matrix 
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1 1 1

2 2 2

0
0

0 0 0 0

a b c
a b c
 
 
 
  

 

 
 corresponding to two homogeneous linear equations in three unknowns.  Hence there is at 

least one free variable, and thus the system has a nontrivial family of solutions. 
 
40. In reducing further from the echelon matrix  E  to the matrix  E*,  the leading entries of  

E  become the leading ones in the reduced echelon matrix  E*.  Thus the nonzero rows of  
E* come precisely from the nonzero rows of  E.  We therefore are talking about the same 
rows — and in particular about the same number of rows — in either case. 

 
 
 
SECTION 3.4 
 
MATRIX OPERATIONS 
 
The objective of this section is simple to state.  It is not merely knowledge of, but complete mastery 
of matrix addition and multiplication (particularly the latter).  Matrix multiplication must be 
practiced until it is carried out not only accurately but quickly and with confidence — until you can 
hardly look at two matrices  A  and  B  without thinking of "pouring" the ith row of  A  down the jth 
column of  B.  
 

1. 
3 5 1 0 9 15 4 0 5 15

3 4
2 7 3 4 6 21 12 16 18 5

− − − − −         
+ = + =         − −         

 

 

2. 
2 0 3 2 3 1 10 0 15 6 9 3 16 9 18

5 3
1 5 6 7 1 5 5 25 30 21 3 15 26 22 15

− − − − − − −         
− = + =         − − − − − −         

 

 

3. 
5 0 4 5 10 0 16 20 26 20

2 0 7 4 3 2 0 14 12 8 12 6
3 1 7 4 6 2 28 16 22 18

− − − −         
         − + = − + = −         
         − −         

 

 

4. 
2 1 0 6 3 4

7 4 0 3 5 5 2 1
5 2 7 0 7 9

− − −   
   − + −   
   −   

 

  
14 7 0 30 15 20 44 22 20
28 0 21 25 10 5 53 10 26
35 14 49 0 35 45 35 21 94

− − − − −     
     = − + − = −     
     −     
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5. 
2 1 4 2 9 1 4 2 2 1 2 8

;
3 2 1 3 10 12 1 3 3 2 11 5

− − − − − −           
= =           −           

 

 

6. 
1 0 3 7 4 3 7 13 24
3 2 4 1 5 2 23 10 41
2 3 5 0 3 9 11 8 57

− − − −     
     − =     
     − −     

 

 
7 4 3 1 0 3 1 17 22
1 5 2 3 2 4 12 16 7
0 3 9 2 3 5 27 21 57

− − − −     
     − =     
     − −     

 

 

7. [ ] [ ] [ ]
3 3 3 6 9

1 2 3 4 26 ; 4 1 2 3 4 8 12
6 6 5 10 15

     
     = =     
          

 

 

8. 
3 0 3 0 3 0 9

1 0 3 21 15 1 0 3
1 4 ; 1 4 7 20 13

2 5 4 35 0 2 5 4
6 5 6 5 16 25 38

     
          − = − = −          − −          −     

 

 

9. 
0 2 4

3
3 1 7

2
4 5 22

−   
    =    −    − −   

  but the product  
0 2

3
3 1

2
4 5

− 
   
   −   − 

  is not defined. 

 

10. 
2 1 1 0 4 1 2 13
4 3 3 2 5 5 6 31

− −     
= =     − −     

AB   but the product  BA  is not defined. 

 

11. [ ] [ ]2 7 5 6
3 5 11 1 5 3

1 4 2 3
 

= − = − 
AB   but the product  BA  is not defined. 

 
12. Neither product matrix  AB  or  BA  is defined. 
 

13. 
3 1 2 5 0 1 3 1 10 17 32 51

( )
1 4 3 1 2 3 1 4 2 0 2 17

            
= = =            − − − − −            

A BC  

 
3 1 2 5 0 1 3 16 0 1 32 51

( )
1 4 3 1 2 3 14 1 2 3 2 17

            
= = =            − − − − − −            

AB C  
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14. ( ) [ ] [ ] [ ]2 5 6 13
2 1 2 1 3

3 1 5 23
  −     

= − = − = −      − − −      
A BC  

 ( ) [ ] [ ] [ ]2 5 6 6
2 1 7 9 3

3 1 5 5
      

= − = = −      − − −      
AB C  

 

15. ( ) [ ] [ ]
2 0

3 3 12 15
1 1 2 0 3 4 5

2 2 8 10
1 4

  
       = − = =       
         

A BC  

 ( ) [ ]
2 0 2 0

3 3 3 6 12 15
1 1 2 0 3 0 3

2 2 2 4 8 10
1 4 1 4

   
  −        = − = =         −             

AB C  

 

16. ( )
2 0

1 1 1 0 1 2
0 3

3 2 3 2 0 1
1 4

 
 − −    =       −      

A BC  

  
2 0 4 4 2 2

2 2 1 1
0 3 9 12 9 12

3 4 3 4
1 4 14 18 13 17

− − −   
− − −    = = − − −    − − −    − − −   

 

 ( )
2 0

1 1 1 0 1 2
0 3

3 2 3 2 0 1
1 4

  
− −     =       −       

AB C  

  
2 2 4 4 2 2

1 0 1 2
9 6 9 12 9 12

3 2 0 1
13 9 14 18 13 17

− − − −   
−    = − = − − −    

    − − − −   

 

 
Each of the homogeneous linear systems in Problems 17–22 is already in echelon form, so it 
remains only to write (by back substitution) the solution, first in parametric form and then in 
vector form. 
 
17. 3 4 1 2, , 5 4 , 2 7x s x t x s t x s t= = = − = − +  

 ( ) ( )5, 2,1,0 4,7,0,1s t= − + −x  
 
18. 2 4 1 3, , 3 6 , 9x s x t x s t x t= = = − = −  

 ( ) ( )3,1,0,0 6,0, 9,1s t= + − −x  
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19. 4 5 1 2 3, , 3 , 2 6 , 8x s x t x s t x s t x s t= = = − + = − = − +  

 ( ) ( )3, 2, 1,1,0 1, 6,8,0,1s t= − − + −x  
 
20. 2 5 1 3 4, , 3 7 , 2 , 10x s x t x s t x t x t= = = − = =  

 ( ) ( )3,1,0,0,0 7,0,2,10,0s t= + −x  
 
21. 3 4 5 1 2, , , 2 7 , 2 3 4x r x s x t x r s t x r s t= = = = − − = − + −  

 ( ) ( ) ( )1, 2,1,0,0 2,3,0,1,0 7, 4,0,0,1r s t= − + − + − −x  
 
22. 2 4 5 1 3, , , 7 3 , 2x r x s x t x r s t x s t= = = = − − = +  

 ( ) ( ) ( )1,1,0,0,0 7,0,1,1,0 3,0, 2,0,1r s t= + − + −x  
 

23. The matrix equation  
2 1 1 0
3 2 0 1

a b
c d

     
=     

     
  entails the four scalar equations 

 

   
2 1 2 0
3 2 0 3 2 1

a c b d
a c b d

+ = + =
+ = + =

 

 
that we readily solve for  2, 1, 3, 2.a b c d= = − = − =   Hence the apparent inverse 

matrix of A,  such that  AB = I, is  
2 1

.
3 2

− 
=  − 

B   Indeed, we find that  BA = I   

as well.   
 

24. The matrix equation  
3 4 1 0
5 7 0 1

a b
c d

     
=     

     
  entails the four scalar equations 

 

   
3 4 1 3 4 0
5 7 0 5 7 1
a c b d
a c b d

+ = + =
+ = + =

 

 
that we readily solve for  7, 4, 5, 3.a b c d= = − = − =   Hence the apparent inverse 

matrix of A,  such that  AB = I, is  
7 4

.
5 3

− 
=  − 

B   Indeed, we find that  BA = I   

as well.   
 

25. The matrix equation  
5 7 1 0
2 3 0 1

a b
c d

     
=     

     
  entails the four scalar equations 
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5 7 1 5 7 0
2 3 0 2 3 1
a c b d
a c b d

+ = + =
+ = + =

 

 
that we readily solve for  3, 7, 2, 5.a b c d= = − = − =   Hence the apparent inverse 

matrix of A,  such that  AB = I, is  
3 7

.
2 5

− 
=  − 

B   Indeed, we find that  BA = I   

as well.   
 

26. The matrix equation  
1 2 1 0
2 4 0 1

a b
c d

−     
=     −     

  entails the four scalar equations 

 

   
2 1 2 0

2 4 0 2 4 1.
a c b d
a c b d

− = − =
− + = − + =

 

 
But the two equations in  a  and  c  obviously are inconsistent, because  ( 1)(1) 0,− ≠  and 
the two equations in  b  and  d  are similarly inconsistent.  Therefore the given matrix  A  
has no inverse matrix. 

 

27. 

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0n n n n

a b a b
a b a b

a b a b

a b a b

     
     
     
     =
     
     
          

� � �

� � �

� � �

� � � � � � � � � � � � � � �

� � �

 

 
Thus the product of two diagonal matrices of the same size is obtained simply by  
multiplying corresponding diagonal elements.  Then the commutativity of scalar 
multiplication immediately implies that  AB = BA  for diagonal matrices. 

 
28. The matrix power  nA   is simply the product  AAA A�  of  n  copies of  A.   It follows 

(by associativity) that parentheses don't matter: 
 
  

copies copies copies
( ) ( ) ( )r s r s

r s r s

+

+
= = =A A AAA A AAA A AAA A A� � � , 

 
 the product of  r + s  copies of  A  in either case. 
 

29. 
1 0

( ) ( ) ( ) ( )
0 1

a b
a d ad bc a d ad bc

c d
   

+ − − = + − −   
   

A I  

  
2 2

2 2

( ) ( )
( ) ( )

a ad ad bc ab bd a bc ab bd
ac cd ad d ad bc ac cd bc d

   + − − + + +
= =   + + − − + +   
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  2a b a b
c d c d
   

= =   
   

A  

 

30. If  
2 1
1 2
 

=  
 

A  then  4 and 3.a d ad bc+ = − =   Hence 

 2 2 1 1 0 5 4
4 3 4 3 ;

1 2 0 1 4 5
     

= − = − =     
     

A A I  

 3 2 5 4 2 1 14 13
4 3 4 3 ;

4 5 1 2 13 14
     

= − = − =     
     

A A A  

 4 3 2 14 13 5 4 41 40
4 3 4 3 ;

13 14 4 5 40 41
     

= − = − =     
     

A A A  

 5 5 3 41 40 14 13 122 121
4 3 4 3 .

40 41 13 14 121 122
     

= − = − =     
     

A A A  

 

31. (a) If  
2 1 1 5

and
4 3 3 7

−   
= =   −   

A B  then 

   
3 4 1 6 25 34

( )( )
1 10 7 4 71 34

− − −     
+ − = =     − − − − −     

A B A B  

 but 

   2 2 8 5 16 40 8 45
.

20 13 24 64 44 51
− − −     

− = − =     − − −     
A B  

 (b) If  AB = BA  then 

   2 2 2 2

( )( ) ( ) ( )
.

+ − = − + −

= − + − = −

A B A B A A B B A B
A AB BA B A B

 

 

32. (a) If  
2 1 1 5

and
4 3 3 7

−   
= =   −   

A B  then 

   2 3 4 3 4 5 52
( )

1 10 1 10 13 96
     

+ = =     − − −     
A B  

 but 

  

2 2 8 5 2 1 1 5 16 40
2 2

20 13 4 3 3 7 24 64

8 5 1 3 16 40 22 41
2 .

20 13 5 1 24 64 14 79

− −       
+ + = + +       − −       

− −       
= + + =       −       

A AB B
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 (b) If  AB = BA  then 

   2 2 2 2

( )( ) ( ) ( )
.

+ − = − + −

= − + − = −

A B A B A A B B A B
A AB BA B A B

 

33. Four different 2 2×  matrices  A  with  A2 = I  are 
 

  
1 0 1 0 1 0 1 0

, , , and .
0 1 0 1 0 1 0 1

− −       
       − −       

 

 

34. If  21 1
then (0) (0) .

1 1
− 

= ≠ = − = − 
A 0 A A I 0  

 

35. If  22 1
then (1) (0) .

2 1
− 

= ≠ = − = − 
A 0 A A I A  

 

36. If  20 1
then (0) ( 1) .

1 0
 

= ≠ = − − = 
 

A 0 A A I I  

 

37. If  20 1
then (0) (1) .

1 0
 

= ≠ = − = − − 
A 0 A A I I  

 

38. If  
0 1
1 0
 

= ≠ 
 

A 0  is the matrix of Problem 36 and  
0 1
1 0

 
= ≠ − 

B 0  is the matrix 

of Problem 37, then  2 2 ( ) ( ) .+ = + − =A B I I 0  
 
39. If  Ax1 = Ax2 = 0, then 
 
  ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 2 .c c c c c c+ = + = + =A x x Ax Ax 0 0 0  
 
40. (a) If  Ax0 = 0  and  Ax1 = b, then ( )0 1 0 1 .+ = + = + =A x x Ax Ax 0 b b  

 (b) If  Ax1 = b  and  Ax2 = b, then ( )1 2 1 2 .− = − = − =A x x Ax Ax b b 0  

 
41. If  AB = BA then 
 
  ( ) ( ) ( ) ( ) ( )3 2 2 22+ = + + = + + +A B A B A B A B A AB B  

  ( ) ( )2 2 2 22 2= + + + + +A A AB B B A AB B  

  ( ) ( )3 2 2 2 2 32 2= + + + + +A A B AB A B AB B  
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  3 2 2 33 3 .= + + +A A B AB B  
  

To compute  ( )4 ,+A B   write  ( ) ( ) ( )4 3+ = + +A B A B A B  and proceed similarly, 

substituting the expansion of  ( )3+A B  just obtained. 
 

42. (a) Matrix multiplication gives 2 3

0 0 4 0 0 0
0 0 0 and 0 0 0 .
0 0 0 0 0 0

   
   = =   
      

N N  

 (b) 2 2

1 0 0 0 2 0 0 0 4 1 4 4
2 0 1 0 2 0 0 2 0 0 0 0 1 4

0 0 1 0 0 0 0 0 0 0 0 1

       
       = + + = + + =       
              

A I N N  

  3 2

1 0 0 0 2 0 0 0 4 1 6 12
3 3 0 1 0 3 0 0 2 3 0 0 0 0 1 6

0 0 1 0 0 0 0 0 0 0 0 1

       
       = + + = + + =       
              

A I N N  

  4 2

1 0 0 0 2 0 0 0 4 1 8 24
4 6 0 1 0 4 0 0 2 6 0 0 0 0 1 8

0 0 1 0 0 0 0 0 0 0 0 1

       
       = + + = + + =       
              

A I N N  

 

43. First, matrix multiplication gives  2

2 1 1 6 3 3
1 2 1 3 6 3 3 .
1 1 2 3 3 6

− − − −   
   = − − = − − =   
   − − − −   

A A  Then 

  3 2 23 3 3 3 9 ,= ⋅ = ⋅ = = ⋅ =A A A A A A A A  
  4 3 29 9 9 3 27 ,= ⋅ = ⋅ = = ⋅ =A A A A A A A A  

 and so forth. 
 
 
 
SECTION 3.5 
 
INVERSES OF MATRICES 
 
The computational objective of this section is clearcut — to find the inverse of a given invertible 
matrix.  From a more general viewpoint, Theorem 7 on the properties of nonsingular matrices 
summarizes most of the basic theory of this chapter. 
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In Problems 1–8 we first give the inverse matrix  1−A  and then calculate the solution vector  x. 
 

1. 1 3 2 3 2 5 3
;

4 3 4 3 6 2
− − −       

= = =       − − −       
A x  

 

2. 1 5 7 5 7 1 26
;

2 3 2 3 3 11
− − − − −       

= = =       − −       
A x  

 

3. 1 6 7 6 7 2 33
;

5 6 5 6 3 28
− − −       

= = =       − − − −       
A x  

 

4. 1 17 12 17 12 5 25
;

7 5 7 5 5 10
− − −       

= = =       − − −       
A x  

 

5. 1 4 2 4 2 5 81 1 1;
5 3 5 3 6 72 2 2

− − −       
= = =       − − −       

A x  

 

6. 1 6 7 6 7 10 251 1 1;
3 4 3 4 5 103 3 3

− − −       
= = =       − − −       

A x  

 

7. 1 7 9 7 9 3 31 1 1;
5 7 5 7 2 14 4 4

− − −       
= = =       − − −       

A x  

 

8. 1 10 15 10 15 7 251 1 1;
5 8 5 8 3 115 5 5

− − −       
= = =       − − −       

A x  

 
In Problems 9–22 we give at least the first few steps in the reduction of the augmented matrix 
whose right half is the identity matrix of appropriate size.  We wind up with its echelon form, whose 
left half is an identity matrix and whose right half is the desired inverse matrix. 
 

9. 
2 4 11 25 6 1 0 1 1 1 1 1 1 1 1

4 5 0 1 4 5 0 1 0 1 4 5

R RR R −− − −     
     −     

→ →  

 1
1 2 1 0 5 6 5 6

; thus
0 1 4 5 4 5

R R
−

− − −   
=   − −   

→ A  

 

10. 
2 4 11 25 7 1 0 1 1 1 1 1 1 1 1

4 6 0 1 4 6 0 1 0 2 4 5

R RR R −− − −     
     −     

→ →  
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7
2 1

5 5
2 2

(1/2) 2 1 21 1 1 1 1 0 3 6 71; thus
0 1 2 0 1 2 4 52

R R R
−

−− − −    
=    − − −    

→ → A  

 

11. 
2 2 1

1 5 1 1 0 0 1 5 1 1 0 0
2 5 0 0 1 0 0 5 2 2 1 0
2 7 1 0 0 1 2 7 1 0 0 1

R R−   
   − − −   
      

→  

 
3 2 1 1 3

1 5 1 1 0 0 1 2 0 1 0 1
0 5 2 2 1 0 0 5 2 2 1 0
0 3 1 2 0 1 0 3 1 2 0 1

R R R R− +
−   

   − − − − − −   
   − − − − − −   

→ →  

 
2 2 3 3 3 2

1 2 0 1 0 1 1 2 0 1 0 1
0 1 0 2 1 2 0 1 0 2 1 2
0 3 1 2 0 1 0 0 1 4 3 5

R R R R− +
− −   

   − −   
   − − − − −   

→ →  

 1
( 1) 3 1 2 2

1 0 0 5 2 5 5 2 5
0 1 0 2 1 2 ; thus 2 1 2
0 0 1 4 3 5 4 3 5

R R R
−

− −
− − − −   

   − = −   
   − − − −   

→ → A�  

 

12. 
2 2 1

1 3 2 1 0 0 1 3 2 1 0 0
2 8 3 0 1 0 0 2 1 2 1 0
3 10 6 0 0 1 3 10 6 0 0 1

R R−   
   − −   
      

→  

 
3 2 1 2 3

1 3 2 1 0 0 1 3 2 1 0 0
0 2 1 2 1 0 0 1 1 1 1 1
0 1 0 3 0 1 0 1 0 3 0 1

R R R R− −
   
   − − − −   
   − −   

→ →  

 
1 3 23 2

1 3 2 1 0 0 1 0 0 18 2 7
0 1 1 1 1 1 0 1 0 3 0 1 ;
0 0 1 4 1 2 0 0 1 4 2 2

R RR R −−
−   

   − − → −   
   − − − −   

→ → �  

 1

18 2 7
thus 3 0 1

4 1 2

−

− 
 = − 
 − − 

A  

 

13. 
( 1, 2)

2 7 3 1 0 0 1 3 2 0 1 0
1 3 2 0 1 0 2 7 3 1 0 0
3 7 9 0 0 1 3 7 9 0 0 1

SWAP R R   
   
   
      

→  
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2 2 1 3 3 1

1 3 2 0 1 0 1 3 2 0 1 0
0 1 1 1 2 0 0 1 1 1 2 0
3 7 9 0 0 1 0 2 3 0 3 1

R R R R− −
   
   − − − −   
   − −   

→ →  

 1
3 2 2

1 0 0 13 42 5 13 42 5
0 1 0 3 9 1 ; thus 3 9 1
0 0 1 2 7 1 2 7 1

R R
−

+
− − − −   

   → − = −   
   − −   

→ A�  

  

14. 
1 2

3 5 6 1 0 0 1 1 3 1 1 0
2 4 3 0 1 0 2 4 3 0 1 0
2 3 5 0 0 1 2 3 5 0 0 1

R R−
−   

   
   
      

→  

 
2 3 3 2 1

1 1 3 1 1 0 1 1 3 1 1 0
0 1 2 0 1 1 0 1 2 0 1 1
2 3 5 0 0 1 0 1 1 2 2 1

R R R R− −
− −   

   − − − −   
   − −   

→ →  

 1
3 2

1 0 0 11 7 9 11 7 9
0 1 0 4 3 3 ; thus 4 3 3
0 0 1 2 1 2 2 1 2

R R
−

−
− − − −   

   → − = −   
   − −   

→ A�  

  

15. 
2 1

1 1 5 1 0 0 1 1 5 1 0 0
1 4 13 0 1 0 0 3 8 1 1 0
3 2 12 0 0 1 3 2 12 0 0 1

R R−
   
   −   
      

→  

 
3 3 1 2 2 3

1 1 5 1 0 0 1 1 5 1 0 0
0 3 8 1 1 0 0 1 2 7 1 2
0 1 3 3 0 1 0 1 3 3 0 1

R R R R− +
   
   − −   
   − − − − − −   

→ →  

 1
3 2

1 0 0 22 2 7 22 2 7
0 1 0 27 3 8 ; thus 27 3 8
0 0 1 10 1 3 10 1 3

R R
−

+
− −   

   → − = −   
   − − − −   

→ A�  

  

16. 
2 1

1 3 3 1 0 0 1 3 3 1 0 0
1 1 2 0 1 0 0 2 1 1 1 0

2 3 3 0 0 1 2 3 3 0 0 1

R R+
− − − −   

   − − −   
   − − − −   

→  
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3 2 1 2 3

1 3 3 1 0 0 1 3 3 1 0 0
0 2 1 1 1 0 0 1 2 1 1 1
0 3 3 2 0 1 0 3 3 2 0 1

R R R R− +
− − − −   

   − − −   
   − −   

→ →  

 
1 2
3 3

( 1/3( 3)3 3 2
1 3 3 1 0 0 1 3 3 1 0 0
0 1 2 1 1 1 0 1 2 1 1 1
0 0 3 1 3 2 0 0 1 1

RR R −−
− − − −  

  − −  
  − − − −   

→ →  

 11 1
3 3
1 2
3 3

1 3 2
1 0 0 1 0 1 3 0 3

10 1 0 1 ; thus 1 3 1
3

0 0 1 1 1 3 2

R R
−

+
− −   

   − − − = − − −   
   − −  

→ → A�  

 

17. 
2 1

1 3 0 1 0 0 1 3 0 1 0 0
1 2 1 0 1 0 0 1 1 1 1 0

0 2 2 0 0 1 0 2 2 0 0 1

R R+
− −   

   − − − −   
   − −   

→  

 
( 1) 2 3 2 2

1 3 0 1 0 0 1 3 0 1 0 0
0 1 1 1 1 0 0 1 1 1 1 0
0 2 2 0 0 1 0 0 4 2 2 1

R R R− +
− −   

   − − − −   
   − − −   

→ →  

 

3 31
2 2 4

11 1 1
2 2 4
1 1 1
2 2 4

(1/4) 3
1 0 0 2 6 3

10 1 0 ; thus 2 2 1
4

0 0 1 2 2 1

R
−

− − − − − −   
   → − − − = − − −   
   − − − −  

→ A�  

  

18. 
2 3 1

1 2 2 1 0 0 1 2 2 1 0 0
3 0 1 0 1 0 0 6 5 3 1 0
1 1 2 0 0 1 1 1 2 0 0 1

R R−
− −   

   − −   
   − −   

→  

 
2 5 33 1

1 2 2 1 0 0 1 2 2 1 0 0
0 6 5 3 1 0 0 1 5 2 1 5
0 1 0 1 0 1 0 1 0 1 0 1

R RR R −−
− −   

   − − − −   
   − −   

→ →  

 

1 2 2
5 5 5

3 61
5 5 5

(1/5) 33 2
1 2 2 1 0 0 1 0 0
0 1 5 2 1 5 0 1 0 1 0 1 ;
0 0 5 3 1 6 0 0 1

RR R−
− −  

  − − → −  
  − − − −   

→ → �  

 1

1 2 2
1thus 5 0 5
5

3 1 6

−

− 
 = − 
 − − 

A . 
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19. 
2 1

1 4 3 1 0 0 1 4 3 1 0 0
1 4 5 0 1 0 0 0 2 1 1 0
2 5 1 0 0 1 2 5 1 0 0 1

R R−
   
   −   
      

→  

 
( 2, 3) 2 2 1

1 4 3 1 0 0 1 4 3 1 0 0
2 5 1 0 0 1 0 3 5 2 0 1
0 0 2 1 1 0 0 0 2 1 1 0

SWAP R R R R−   
   − − −   
   − −   

→ →  

 

7 11 4
2 6 3

5 3 52 1 1
3 3 3 2 6 3

1 1
2 2

( 1/3) 2 (1/2) 3
1 4 3 1 0 0 1 0 0
0 1 0 0 1 0 ;
0 0 2 1 1 0 0 0 1 0

R R−
−  

  − → − −  
  − −   

→ → �  

 1

21 11 8
1thus 9 5 2
6

3 3 0

−

− 
 = − − 
 − 

A  

  

20. 
1 2

2 0 1 1 0 0 1 0 4 1 1 0
1 0 3 0 1 0 1 0 3 0 1 0
1 1 1 0 0 1 1 1 1 0 0 1

R R−
− − −   

   
   
      

→  

 
( 2, 3)3 1

1 0 4 1 1 0 1 0 4 1 1 0
1 0 3 0 1 0 0 1 5 1 1 1
0 1 5 1 1 0 1 0 3 0 1 0

SWAP R RR R−
− − − −   

   −   
   −   

→ →  

 

3 1
7 7

32
7 7
1 2
7 7

(1/7) 33 1
1 0 4 1 1 0 1 0 0 0
0 1 5 1 1 1 0 1 0 1 ;
0 0 7 1 2 0 0 0 1 0

RR R−
− −   

  − → − −  
  − −   

→ → �  

 1

3 1 0
1thus 2 3 7
7

1 2 0

−

 
 = − − 
 − 

A  

  

21. 
( 1, 2)

0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0
0 1 2 0 0 0 1 0 0 1 2 0 0 0 1 0
3 0 0 1 0 0 0 1 3 0 0 1 0 0 0 1

SWAP R R
   
   
   
   
   
   

→  
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( 2, 3) 4 3 1

1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 1 2 0 0 0 1 0 0 1 2 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0
3 0 0 1 0 0 0 1 0 0 0 1 0 3 0 1

SWAP R R R R−
   
   
   
   
   −   

→ →  

 
2 2 3

1 0 0 0 0 1 0 0
0 1 0 0 2 0 1 0

;
0 0 1 0 1 0 0 0
0 0 0 1 0 3 0 1

R R−

 
 − 
 
 − 

→      1

0 1 0 0
2 0 1 0

thus
1 0 0 0
0 3 0 1

−

 
 − =
 
 − 

A  

  

22. 
1 2

4 0 1 1 1 0 0 0 1 1 2 0 1 1 0 0
3 1 3 1 0 1 0 0 3 1 3 1 0 1 0 0
0 1 2 0 0 0 1 0 0 1 2 0 0 0 1 0
3 2 4 1 0 0 0 1 3 2 4 1 0 0 0 1

R R−

− − −   
   
   
   
   
   

→  

 
2 3 1 4 3 1

1 1 2 0 1 1 0 0 1 1 2 0 1 1 0 0
0 4 9 1 3 4 0 0 0 4 9 1 3 4 0 0
0 1 2 0 0 0 1 0 0 1 2 0 0 0 1 0
3 2 4 1 0 0 0 1 0 5 10 1 3 3 0 1

R R R R− −

− − − − − −   
   − −   
   
   −   

→ →

2 3 3 3 2

1 1 2 0 1 1 0 0 1 1 2 0 1 1 0 0
0 1 3 1 3 4 3 0 0 1 3 1 3 4 3 0
0 1 2 0 0 0 1 0 0 0 1 1 3 4 4 0
0 5 10 1 3 3 0 1 0 5 10 1 3 3 0 1

R R R R− −

− − − − − −   
   − − − −   
   − − −
   − −   

→ →  

 
4 5 2

1 0 0 0 1 1 1 0
0 1 0 0 0 2 1 2

;
0 0 1 0 0 1 1 1
0 0 0 1 3 3 5 1

R R−

− 
 − − →
 −
 − − 

→ �  1

1 1 1 0
0 2 1 2

thus
0 1 1 1
3 3 5 1

−

− 
 − − =
 −
 − − 

A  

 
In Problems 23–28 we first give the inverse matrix  1−A  and then calculate the solution matrix  X. 
 

23. 1 4 3 4 3 1 3 5 7 18 35
;

5 4 5 4 1 2 5 9 23 45
− − − − −       

= = =       − − − − − −       
A X  

 

24. 1 7 6 7 6 2 0 4 14 30 46
;

8 7 8 7 0 5 3 16 35 53
− − − −       

= = =       − − − − −       
A X  
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25. 1

11 9 4 11 9 4 1 0 3 7 14 15
2 2 1 ; 2 2 1 0 2 2 1 3 2
2 1 0 2 1 0 1 1 0 2 2 4

−

− − −       
       = − − = − − = − −       
       − − − − −       

A X  

 

26. 1

16 3 11 16 3 11 2 0 1 21 9 6
6 1 4 ; 6 1 4 0 3 0 8 3 2
13 2 9 13 2 9 1 0 2 17 6 5

−

− − −       
       = − − = − − = − −       
       − − −       

A X  

 

27. 1

7 20 17 7 20 17 0 0 1 1 17 20 24 13
0 1 1 ; 0 1 1 0 1 0 1 1 1 1 1
2 6 5 2 6 5 1 0 1 0 5 6 7 4

−

− − − −       
       = − = − = − −       
       − − − − − −       

A X  

 

28. 1

5 5 10 5 5 10 2 1 0 2 5 5 10 1
8 8 15 ; 8 8 15 1 3 5 0 8 8 15 7

24 23 45 24 23 45 1 1 0 5 24 23 45 13

−

− − −       
       = − = − − = −       
       − − − − − − −       

A X  

 
29. (a) The fact that  A–1  is the inverse of  A  means that  1 1 .− −= =AA A A I   That is, that 

when  A–1  is multiplied either on the right or on the left by  A,  the result is the identity  
matrix  I.  By the same token, this means that   A  is the inverse of  A–1. 

(b) 1 1 1 1 1 1 1 1( ) ( ) ( ) .n n n n n n− − − − − − − −= ⋅ ⋅ = ⋅ ⋅ = =A A A AA A A I A I�   Similarly, 
1( ) ,n n− =A A I  so it follows that  1( )n−A  is the inverse of  .nA  

 
30. 1 1 1 1 1 1 ,− − − − − −⋅ = ⋅ ⋅ = ⋅ ⋅ =ABC C B A AB I B A A I A I  and we see is a similar way that 
 1 1 1 .− − − ⋅ =C B A ABC I  
 
31. Let  10, 0, and .p r q s −= − > = − > =B A   Then 
 

   

1 1

1

( ) ( )
(because , 0)

( )

r s p q p q

p q p q

p q p q r s

p q

− − − −

+

− + − − +

= =

= = >
= = =

A A A A A A
B B B
A A A

 

 
 as desired, and  ( ) ( ) ( )r s p q p q pq pq rs− − − −= = = = =A A B B A A  similarly. 
 
32. Multiplication of  AB = AC on the left by  A–1  yields  B = C. 
 
33. In particular,  j j=Ae e   where  je   denotes the jth column vector of the identity matrix  I.  

Hence it follows from Fact 2 that  AI = I,  and therefore  A = I–1 = I. 
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34. The invertibility of a diagonal matrix with nonzero diagonal elements follows immediately 
from the rule for multiplying diagonal matrices (Problem 27 in Section 3.4).  The inverse of 
such a diagonal matrix is gotten simply by inverting each diagonal element. 

 
35. If the jth column of  A  is all zeros and  B  is any n n×  matrix, then the jth column of  BA  is 

all zeros, so  .≠BA I   Hence  A  has no inverse matrix.  Similarly, if the ith row of  A  is all 
zeros, then so is the ith row of  AB. 

 
36. If  ad – bc = 0, then it follows easily that one row of  A  is a multiple of the other.  Hence the 

reduced echelon form of  A  is of the form  
* *
0 0
 
 
 

  rather than the 2 2×  identity matrix.  

Therefore  A  is not invertible. 
 
37. Direct multiplication shows that  1 1 .− −= =AA A A I  
 

38. 
3 0 3 3
0 1

a b a b
c d c d

     
= =     

     
EA  

 

39. 
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 11 32 12 33 13

1 0 0
0 1 0
2 0 1 2

a a a a a a
a a a a a a
a a a a a a a a a

     
     = =     
     + + +     

EA  

 

40. 
11 12 13 21 22 23

21 22 23 11 12 13

31 32 33 31 32 33

0 1 0
1 0 0
0 0 1

a a a a a a
a a a a a a
a a a a a a

     
     = =     
          

EA  

 
41. This follows immediately from the fact that the ijth element of  AB  is the product of the ith 

row of  A  and the jth column of   B. 
 
42. Let  ie  denote the ith row of  I. Then  ,i i=e B B  the ith row of  B.  Hence the result in 

Problem 41 yields 
 

   

1 1 1

2 2 2 .

m m m

     
     
     = = = =
     
     
          

e e B B
e e B B

IB B B

e e B B
� � �

 

 
43. Let  1 2, , , kE E E�   be the elementary matrices corresponding to the elementary row 

operations that reduce  A  to  B.  Then Theorem 5 gives  1 2 1k k −= =B E E E E A GA�  where  

1 2 1.k k−=G E E E E�  
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44. This follows immediately from the result in Problem 43, because an invertible matrix is 

row-equivalent to the identity matrix. 
 
45. One can simply photocopy the portion of the proof of Theorem 7 that follows Equation (20).  

Starting only with the assumption that  A  and  B are square matrices with  AB = I,  it is 
proved there that  A  and  B  are then invertible. 

 
46. If  C = AB is invertible, so  C–1  exists, then  1 1( ) and ( ) .− −= =A BC I C A B I   Hence the 

fact that  A  and  B  are invertible follows immediately from Problem 45. 
 
 
 
SECTION 3.6 
 
DETERMINANTS 
 

1. 
0 0 3

4 0
4 0 0 (3) 3 4 5 60

0 5
0 5 0

= + = ⋅ ⋅ =  

 

2. 
2 1 0

2 1 1 1
1 2 1 (2) (1) 2(4 1) (2 0) 4

1 2 0 2
0 1 2

= + − = − − − =  

 

3. 

1 0 0 0
0 5 0

2 0 5 0 6 8
(1) 6 9 8 (5) 5(42 0) 210

3 6 9 8 0 7
0 10 7

4 0 10 7

= + = − = − − = −  

 

4. 

5 11 8 7
5 11 8

3 2 6 23 5 8
( 3) 3 2 6 3( 4) 12(30 24) 72

0 0 0 3 3 6
0 4 0

0 4 0 17

−
= − − − = − = − − = −

−
 

 

5. 

0 0 1 0 0
2 0 0 0

0 3 02 0 0 0 0
0 0 3 0 3 0

1 2 0 0 4 2( 5) 2 5 3 4 1200 0 0 3 0
0 0 0 4 0 4

5 0 00 0 0 0 4
0 5 0 0

0 5 0 0 0

= + = + = + = ⋅ ⋅ ⋅ =  
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6. 

3 0 11 5 0
3 0 5 0

3 0 02 4 13 6 5
2 4 6 5 4 5

5 5( 2) 2 4 5 10( 3) 600 0 5 0 0
7 6 17 7 6 7

7 6 77 6 9 17 7
0 0 2 0

0 0 8 2 0

−
−

−
−

= + = − − = − + =
−

 

 

7. 
2 2 1

1 1 1 1 1 1
2 2 2 0 0 0 0
3 3 3 3 3 3

R R−
= =  

 

8. 
2 1

2 3 4 2 3 4
2 3

2 3 1 0 0 5 5 5(4 9) 25
3 2

3 2 7 3 2 7

R R+
− − = = − = − − =  

 

9. 
3 2 1

3 2 5 3 2 5
3 5

0 5 17 0 5 17 2 5(6 0) 30
0 2

6 4 12 0 0 2

R R−
− −

= = + = − =
−

 

 

10. 
1 3 2

3 6 5 0 0 7
1 2

1 2 4 1 2 4 ( 7) 7( 5 4) 7
2 5

2 5 12 2 5 12

R R+
− −

−
− − = − − = + − = − − + =

−
− −

 

 

11. 
4 2 1

1 2 3 4 1 2 3 4
5 6 7

0 5 6 7 0 5 6 7 8 9
1 0 8 9 5 5 8 40

0 0 8 9 0 0 8 9 0 1
0 0 1

2 4 6 9 0 0 0 1

R R−
= = + = + = ⋅ =  

 

12. 
4 2 1

2 0 0 3 2 0 0 3
1 11 12

0 1 11 12 0 1 11 12 5 13
2 0 5 13 2 2 5 10

0 0 5 13 0 0 5 13 0 1
0 0 1

4 0 0 7 0 0 0 1

R R+

− −

= = + = + = ⋅ =

−

 

 

13. 
2 3 1 4 3

4 4 1 4 4 1 0 20 11
20 11

1 2 2 0 2 5 0 2 5 1 100 22 78
2 5

1 4 3 1 4 3 1 4 3

R R R R+ +
− − − −
− − = = = + = − =  
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14. 
2 3 1
3 5 11 2

4 2 2 1 1 3 1 1 3
2 14

3 1 5 3 1 5 0 2 14 1 22
1 18

5 4 3 5 4 3 0 1 18

R R
R RR R

−
+−

−
− −

− = − = − − = + = −
− − − −

 

 

15. 
1 2 3 2 5 3

2 5 4 0 13 14 0 13 14
13 14

5 3 1 5 3 1 0 17 24 1 74
17 24

1 4 5 1 4 5 1 4 5

R R R R+ −
−

= = − − = + = −
− −

 

 

16. 
1 2 3 2 2 3

2 4 2 10 0 4 10 0 4
10 4

5 4 1 5 4 1 13 0 1 2 84
13 1

4 2 1 4 2 1 4 2 1

R R R R− +
− − −

−
− − − = − − − = − = − =

−
− − −

 

 

17. 
2 1
3 13 1

2 3 3 1 2 3 3 1
4 3 3 4 3 3

0 4 3 3 0 4 3 3
2 4 4 4 2 0 1 7 8

2 1 1 3 0 4 4 4
4 3 2 0 0 1

0 4 3 2 0 4 3 2

R R
R RR R

+
+−

− −
− −

= = − − − = − − =
− − − − − −

− − −
− − − −

 

 

18. 
2 9 1

3 3 1 3 1

1 4 4 1 1 4 4 1
1 2 2 1 2 2

0 1 2 2 0 1 2 2
1 9 11 1 0 29 19 135

3 3 1 4 0 9 11 1
1 3 2 0 1 4

0 1 3 2 0 1 3 2

R R
R R R R

+
− −

− −
− −

= = − − = − =
− −

− − − −
− − − −

 

 

19. 
2 2 13 2 1

1 0 0 3 1 0 0 3
1 2 0 1 0 0

0 1 2 0 0 1 2 0
1 3 2 9 3 4 9 39

2 3 2 3 0 3 2 9
3 3 3 3 3 3

0 3 3 3 0 3 3 3

C CR R ++
−

− −
= = − = =

− − −
− − −

− −

 

 

20. 
2 2 1 2 2 1
4 1 3 1

1 2 1 1 1 2 1 1
3 1 5 3 1 5

2 1 3 3 0 3 1 5
1 1 2 3 5 0 13 79

0 1 2 3 0 1 2 3
6 1 3 3 0 8

1 4 2 4 0 6 1 3

R R R R
R R R R

− +
+ +

− −
− −

−
= = − = − =

− −
−

− − −

 

 

21. 
3 4 2 4 3 21 11; 10, 7
5 7 1 7 5 1

x y∆ = = = = = = −
∆ ∆

 

 

22. 
5 8 3 8 5 31 11; 1, 1
8 13 5 13 8 5

x y∆ = = = = − = =
∆ ∆
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23. 
17 7 6 7 17 61 11; 2, 4
12 5 4 5 12 4

x y∆ = = = = = = −
∆ ∆

 

 

24. 
11 15 10 15 11 101 11; 5, 3
8 11 7 11 8 7

x y∆ = = = = = = −
∆ ∆

 

 

25. 
5 6 12 6 5 121 12; 6, 3
3 4 6 4 3 6

x y∆ = = = = = = −
∆ ∆

 

 

26. 
6 7 3 7 6 31 1 12; , 0
8 9 4 9 8 42

x y∆ = = − = = = =
∆ ∆

 

 

27. 1

5 2 2 1 2 2
1 11 5 3 96; 2 5 3 ,

3
5 3 5 2 3 5

x
− −

∆ = − = = − − =
∆

− −
 

 2 3

5 1 2 5 2 1
1 2 1 11 2 3 , 1 5 2

3 3
5 2 5 5 3 2

x x
−

= − − = − = − = −
∆ ∆

−
 

 

28. 1

5 4 2 4 4 2
1 42 0 3 35; 2 0 3 ,

7
2 1 1 1 1 1

x
− −

∆ = = = =
∆

− −
 

 2 3

5 4 2 5 4 4
1 3 1 22 2 3 , 2 0 2

7 7
2 1 1 2 1 1

x x
−

= = = =
∆ ∆

−
 

 

29. 1

3 1 5 3 1 5
14 4 3 23; 4 4 3 2,

1 0 5 2 0 5
x

− − − −
∆ = − − = = − − − =

∆
− −

 

 2 3

3 3 5 3 1 3
1 14 4 3 3, 4 4 4 0

1 2 5 1 0 2
x x

− −
= − − = = − − =

∆ ∆
−
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30. 1

1 4 2 3 4 2
1 14 2 1 56; 1 2 1 ,

7
2 2 5 3 2 5

x∆ = = = = −
∆

− − − − −
 

 2 3

1 3 2 1 4 3
1 9 1 24 1 1 , 4 2 1

14 7
2 3 5 2 2 3

x x= = = =
∆ ∆

− − − −
 

 

31. 1

2 0 5 3 0 5
1 84 5 3 14; 3 5 3 ,

7
2 1 1 1 1 1

x
− − −

∆ = − = = − = −
∆

−
 

 2 3

2 3 5 2 0 3
1 10 1 14 3 3 , 4 5 3

7 7
2 1 1 2 1 1

x x
− − −

= = − = − =
∆ ∆

− −
 

 

32. 1

3 4 3 5 4 3
1 73 2 4 6; 7 2 4 ,

3
3 2 1 3 2 1

x
− −

∆ = − = = − = −
∆

− −
 

 2 3

3 5 3 3 4 5
1 13 7 4 9, 3 2 7 8

3 3 1 3 2 3
x x

−
= = = − =

∆ ∆
−

 

 

33. 1

4 4 4
1det 4, 16 15 13
4

28 25 23

−

 
 = − =  
  

A A  

 

34. 1

2 3 12
1det 35, 9 4 19
35

13 2 8

−

− − 
 = = − − 
 − 

A A  

 

35. 1

15 25 26
1det 35, 10 5 8
35

15 25 19

−

− − 
 = = − 
 − 

A A  
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36. 1

5 20 17
1det 23, 10 17 11
23

1 4 8

−

− 
 = = − 
 − 

A A  

 

37. 1

11 14 15
1det 29, 17 19 10
29

18 15 14

−

− − 
 = = − 
 − − 

A A  

 

38. 1

6 10 2
1det 6, 15 21 6
6

12 18 6

−

− 
 = = − − 
 − − 

A A  

 

39. 1

21 1 13
1det 37, 4 9 6

37
6 5 9

−

− − − 
 = =  
 − − 

A A  

 

40. 1

9 12 13
1det 107, 11 21 4

107
15 20 14

−

− 
 = = − − 
 − − − 

A A  

 

41. If  [ ]1
1 2

2

and
 

= = 
 

a
A B b b

a
  in terms of the two row vectors of  A  and the two column 

vectors of  B, then  1 1 1 2

2 1 2 2

 
=  

 

a b a b
AB

a b a b
,  so 

( ) 1 1 2 1 1
1 1

1 2 2 2 2

,
T

T T T T T
T

  
 = = =    

   

a b a b b
AB a a B A

a b a b b
 

 
 because the rows of  A  are the columns of  AT  and the columns of  B  are the rows of  BT. 

 

42. det det
a b a b a b
c d c d c d c d

  +   
= = = +     + + +    

x x y x y
AB

y x y x y x y
 

 ac ad bc bd ad bc= + + + = +
x x y y x y
x y x y y x

 

 ( ) (det )(det )ad bc ad bc= − = − =
x x x

A B
y y y
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43. We expand the left-hand determinant along its first column: 
 

  
( ) ( ) ( )

( ) ( ) ( )

11 12 13

21 22 23

31 32 33

11 12 23 22 13 21 12 33 32 13 31 12 23 22 13

11 12 23 22 13 21 12 33 32 13 31 12 23 22 13

11 12 13

21 22 23

31 32 33

ka a a
ka a a
ka a a

ka a a a a ka a a a a ka a a a a

k a a a a a a a a a a a a a a a

a a a
k a a a

a a a

= − − − + −

 = − − − + − 

=

 

 
44.  We expand the left-hand determinant along its third row:  
 

( ) ( ) ( )
( ) ( ) ( )

21 22 23

11 12 13

31 32 33

31 22 13 23 12 32 21 13 23 11 33 21 13 22 11

31 23 12 22 13 32 23 11 21 13 33 22 11 21 13

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a

a a a
k a a a

a a a

= − − − + −

 = − − − − + − 

=

 

 
45. We expand the left-hand determinant along its third column: 
 

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1

2 2 2 2

3 3 3 3

1 1 2 3 3 2 2 2 1 3 3 1 3 3 1 2 2 1

1 2 3 3 2 2 1 3 3 1 3 1 2 2 1

1 2 3 3 2 2 1 3 3 1 3 1 2 2 1

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a b c d
a b c d
a b c d

c d a b a b c d a b a b c d a b a b

c a b a b c a b a b c a b a b

d a b a b d a b a b d a b a b

a b c a b d
a b c a b d
a b c a b d

+
+
+

= + − − + − + + −

= − − − + −

+ − − − + −

= +
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46. We expand the left-hand determinant along its first column: 
 

  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

2 2 2 2

3 3 3 3

1 1 2 3 3 2 2 2 1 3 3 3 3 3 1 2 2 1

1 2 3 3 2 2 1 3 3 3 3 1 2 2 1

1 2 3 3 2 2 1 3 3 3 3 1 2 2 1

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a kb b c
a kb b c
a kb b c

a kb b c b c a kb b c c b a kb b c b c

a b c b c a b c c b a b c b c

k b b c b c b b c c b b b c b c

a b c b b d a
a b c k b b d
a b c b b d

+
+
+

= + − − + − + + −

 = − − − + − 

 + − − − + − 

= + =
1 1 1

2 2 2

3 3 3

b c
a b c
a b c

 

 
47. We illustrate these properties with 2 2×  matrices  and .ij ija b   = =   A B  

 (a) ( ) 11 21 11 12

12 22 22 22

T
TT a a a a

a a a a
   

= = =   
   

A A  

 (b) ( ) 11 12 11 21 11 21

21 22 12 22 12 22

T
T Tca ca ca ca a a

c c c
ca ca ca ca a a
     

= = = =     
     

A A  

 (c) ( ) 11 11 12 12 11 11 21 21

21 21 22 22 12 12 22 22

T
T a b a b a b a b

a b a b a b a b
+ + + +   

+ = =   + + + +   
A B  

  11 21 11 21

12 22 12 22

T Ta a b b
a a b b
   

= + = +   
   

A B  

 
48. The ijth element of  ( )TAB  is the jith element of  AB, and hence is the product of the jth 

row of  A  and the ith column of  B.  The ijth element of  T TB A  is the product of the ith row 
of  TB  and the jth column of  .TA  Because transposition of a matrix changes the ith row to 
the ith column and vice versa, it follows that the ijth element of  T TB A  is the product of the 
jth row of  A  and the ith column of  B.  Thus the matrices  ( )TAB  and  T TB A  have the 
same ijth elements, and hence are equal matrices. 

 

49. If we write  
1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

and ,T

a b c a a a
a b c b b b
a b c c c c

= =A A  then expansion of  A  along its 

first row and of  TA  along its first column both give the result 

( ) ( ) ( )1 2 3 3 2 1 2 3 3 2 1 2 3 3 2 .a b c b c b a c a c c a b a b− + − + −  
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50. If  2 =A A   then  2 =A A , so  ( )2 1 0,− = − =A A A A  and hence it follows 

immediately that either  0 or 1.= =A A  
 
51. If  then ,nn = =A 0 A 0  so it follows immediately that  .=A 0  
 
52. If  1T −=A A  then  11 .T −−= = =A A A A   Hence  2 1,=A  so it follows that  1.= ±A  
 
53. If  1−=A P BP  then  11 1 .−− −= = = =A P BP P B P P B P B  
 
54. If  A  and  B  are invertible, then  0 and 0.≠ ≠A B   Hence  0,= ≠AB A B   so it 

follows that  AB is invertible.  Conversely,  AB  invertible implies that  0,= ≠AB A B  

 so it follows that both  0 and 0,≠ ≠A B  and therefore that both  A  and  B  are 
invertible.   

 
55. If either  or= =AB I BA I  is given, then it follows from Problem 54 that  A  and  B  are 

both invertible because their product (one way or the other) is invertible.  Hence  A–1  exists.  
So if (for instance) it is  =AB I   that is given, then multiplication by  A–1  on the right 
yields  1.−=B A  

 
56. The matrix  A–1  in part (a) and the solution vector  x  in part (b) have only integer entries 

because the only division involved in their calculation — using the adjoint formula for the 
inverse matrix or Cramer's rule for the solution vector — is by the determinant  1.=A  

 

57. If  1 10 then 0 .
0 0 0 0

a d f bc cd de bf
b e ac ae

abc
b ab

−

− −   
   = = −   
      

A A   

 
58. The coefficient determinant of the linear system 
 

   
cos cos

cos cos
cos cos

c B b C a
c A a C b
b A a B c

+ =
+ =

+ =
 

 
 in the unknowns  { }cos , cos , cosA B C  is 
 

    
0

0 2 .
0

c b
c a abc
b a

=  
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Hence Cramer's rule gives 
 

  
2 3 2 2 2 21cos 0 ,

2 2 2
0

a c b
ab a ac b a cA b a

abc abc bc
c a

− + − += = =  

 
whence  2 2 2 2 cos .a b c bc A= + −  

 

59. These are almost immediate computations. 
 

60. (a) In the 4 4×  case, expansion along the first row gives 
 

  

2 1 0 0
2 1 0 1 1 0 2 1 0

1 2 1 0 2 1
2 1 2 1 0 2 1 2 1 2 1 ,

0 1 2 1 1 2
0 1 2 0 1 2 0 1 2

0 0 1 2

= − = −  

 
 so  4 3 22 2(4) (3) 5.B B B= − = − =   The general recursion formula  1 22n n nB B B− −= −   
 results in the same way upon expansion along the first row. 

 (b) If we assume inductively that 
 
   1 2( 1) 1 and ( 2) 1 1,n nB n n B n n− −= − + = = − + = −  
 
 then the recursion formula of part (a) yields 
 
   1 22 2( ) ( 1) 1.n n nB B B n n n− −= − = − − = +  
 

61. Subtraction of the first row from both the second and the third row gives 
 

  

[ ]

2 2

2 2 2 2 2 2 2

2 2 2

1 1
1 0 ( )( ) ( )( )
1 0

( )( )( ) ( )( )( )
( )( ) ( ) ( ) ( )( )( ).

a a a a
b b b a b a b a c a c a b a
c c c a c a

b a c a c a c a b a b a
b a c a c a b a b a c a c b

= − − = − − − − −
− −

= − − + − − − +
= − − + − + = − − −

 

 

62. Expansion of the 4 4×  determinant defining  ( )P y  along its 4th row yields 
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2
1 1

3 2 3
2 2 1 2 3

2
3 3

1
( ) 1 ( , , )

1

x x
P y y x x y V x x x

x x
= + = +�  lower-degree terms in  y. 

 
Because it is clear from the determinant definition of  ( )P y  that  

1 2 3( ) ( ) ( ) 0,P x P x P x= = =  the three roots of the cubic polynomial  ( )P y  are  1 2 3, , .x x x   
The factor theorem therefore says that 1 2 3( ) ( )( )( )P y k y x y x y x= − − −  for some constant  
k,  and the calculation above implies that 
 
  1 2 3 3 1 3 2 2 1( , , ) ( )( )( ).k V x x x x x x x x x= = − − −  
 
Finally we see that   
 

 1 2 3 4 4 1 2 3 4 1 4 2 4 1

4 1 4 2 4 1 3 1 3 2 2 1

( , , , ) ( ) ( , , ) ( )( )( )
( )( )( )( )( )( ),

V x x x x P x V x x x x x x x x x
x x x x x x x x x x x x

= = ⋅ − − −
= − − − − − −

 

 
which is the desired formula for  1 2 3 4( , , , )V x x x x . 

 
 
63. The same argument as in Problem 62 yields 
 
  1 2 1 1 2 1( ) ( , , , ) ( )( ) ( ).n nP y V x x x y x y x y x− −= ⋅ − − ⋅ ⋅ −� �  

 Therefore 

  

1 2 1 2 1 1 2 1
1

1 2 1

( , , , ) ( )( ) ( ) ( , , , )

( )( ) ( ) ( )

( ).

n n n n n n
n

n n n n i j
i j

n

i j
i j

V x x x x x x x x x V x x x

x x x x x x x x

x x

− −
−

−
>

>

= − − ⋅ ⋅ −

= − − ⋅ ⋅ − −

= −

∏

∏

� � �

�  

 
 
64. (a) V(1, 2, 3, 4)  =  (4 – 1)(4 – 2)(4 – 3)(3 – 1)(3 – 2)(2 – 1)  =  12 

(b) V(–1, 2,–2, 3)  = 

  ( ) [ ] ( ) ( ) ( ) ( ) ( )3 1 3 2 3 2 2 1 2 2 2 1 240         − − − − − − − − − − − − =           
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SECTION 3.7 
 
LINEAR EQUATIONS AND CURVE FITTING 
 
In Problems 1–10 we first set up the linear system in the coefficients  , ,a b …  that we get by 
substituting each given point  ( , )i ix y  into the desired interpolating polynomial equation  

.y a bx= + +�   Then we give the polynomial that results from solution of this linear system. 
 
1. ( )y x a bx= +  

 
1 1 1

2, 3 so ( ) 2 3
1 3 7

a
a b y x x

b
     

= ⇒ = − = = − +     
     

 

 
2. ( )y x a bx= +  

 
1 1 11

4, 7 so ( ) 4 7
1 2 10

a
a b y x x

b
−     

= ⇒ = = − = −     −     
 

 
3. 2( )y x a bx cx= + +  

 2

1 0 0 3
1 1 1 1 3, 0, 2 so ( ) 3 2
1 2 4 5

a
b a b c y x x
c

     
     = ⇒ = = = − = −     
     −     

 

 
4. 2( )y x a bx cx= + +  

 2

1 1 1 1
1 1 1 5 0, 2, 3 so ( ) 2 3
1 2 4 16

a
b a b c y x x x
c

−     
     = ⇒ = = = = +     
          

 

 
5. 2( )y x a bx cx= + +  

 2

1 1 1 3
1 2 4 3 5, 3, 1 so ( ) 5 3
1 3 9 5

a
b a b c y x x x
c

     
     = ⇒ = = − = = − +     
          

 

 
6. 2( )y x a bx cx= + +  

 
1 1 1 1
1 3 9 13
1 5 25 5

a
b
c

− −     
     = −     
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 210, 7, 2 so ( ) 10 7 2a b c y x x x⇒ = − = − = = − − +  
 
7. 2 3( )y x a bx cx dx= + + +  

 

1 1 1 1 1
1 0 0 0 0
1 1 1 1 1
1 2 4 8 4

a
b
c
d

− −     
     
     =
     
     −     

 

 ( )2 34 4 10, , 1, so ( ) 4 3 4
3 3 3

a b c d y x x x x⇒ = = = = − = + −  

 
8. 2 3( )y x a bx cx dx= + + +  

 

1 1 1 1 3
1 0 0 0 5
1 1 1 1 7
1 2 4 8 3

a
b
c
d

− −     
     
     =
     
     
     

 

 35, 3, 0, 1 so ( ) 5 3a b c d y x x x⇒ = = = = − = + −  
 
9. 2 3( )y x a bx cx dx= + + +  

 

1 2 4 8 2
1 1 1 1 2
1 1 1 1 10
1 2 4 8 26

a
b
c
d

− − −     
     − −     =
     
     
     

 

 2 34, 3, 2, 1 so ( ) 4 3 2a b c d y x x x x⇒ = = = = = + + +  
 
10. 2 3( )y x a bx cx dx= + + +  

 

1 1 1 1 17
1 1 1 1 5
1 2 4 8 3
1 3 9 27 2

a
b
c
d

− −     
     −     =
     
     −     

 

 2 317, 5, 3, 2 so ( ) 17 5 3 2a b c d y x x x x⇒ = = − = = − = − + −  
 
In Problems 11–14 we first set up the linear system in the coefficients  , ,A B C   that we get by 
substituting each given point  ( , )i ix y  into the circle equation  2 2Ax By C x y+ + = − −   (see  
Eq. (9) in the text).  Then we give the circle that results from solution of this linear system. 
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11. 2 2Ax By C x y+ + = − −  

 
1 1 1 2

6 6 1 72 6, 4, 12
7 5 1 74

A
B A B C
C

− − −     
     = − ⇒ = − = − = −     
     −     

 

 2 2 6 4 12 0x y x y+ − − − =  

 2 2( 3) ( 2) 25x y− + − =  center  (3, 2)  and radius  5 
 
12. 2 2Ax By C x y+ + = − −  

 
3 4 1 25
5 10 1 125 6, 8, 75
9 12 1 225

A
B A B C
C

− −     
     = − ⇒ = = − = −     
     − −     

 

 2 2 6 8 75 0x y x y+ + − − =  

 2 2( 3) ( 4) 100x y+ + − =  center  (–3, 4)  and radius  10 
 
13. 2 2Ax By C x y+ + = − −  

 
1 0 1 1
0 5 1 25 4, 4, 5
5 4 1 41

A
B A B C
C

−     
     − = − ⇒ = = = −     
     − − −     

 

 2 2 4 4 5 0x y x y+ + + − =  

 2 2( 2) ( 2) 13x y+ + + =  center  (–3, –2)  and radius  13  
 
14. 2 2Ax By C x y+ + = − −  

 
0 0 1 0

10 0 1 100 10, 24, 0
7 7 1 98

A
B A B C
C

     
     = − ⇒ = − = − =     
     − −     

 

 2 2 10 24 0x y x y+ − − =  

 2 2( 5) ( 12) 169x y− + − =  center  (5, 12)  and radius  13 
 
In Problems 15–18 we first set up the linear system in the coefficients  , ,A B C   that we get by 
substituting each given point  ( , )i ix y  into the central conic equation  2 2 1Ax Bxy Cy+ + =   (see  
Eq. (10) in the text).  Then we give the equation that results from solution of this linear system. 
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15. 2 2 1Ax Bxy Cy+ + =  

 
0 0 25 1

1 1 125 0 0 1 , ,
25 25 25

25 25 25 1

A
B A B C
C

     
     = ⇒ = = − =     
          

 

 2 2 25x xy y− + =  
 

16. 2 2 1Ax Bxy Cy+ + =  

 
0 0 25 1

1 7 125 0 0 1 , ,
25 100 25

100 100 100 1

A
B A B C
C

     
     = ⇒ = = − =     
          

 

 2 24 7 4 100x xy y− + =  
 

17. 2 2 1Ax Bxy Cy+ + =  

 
0 0 1 1

1991 0 0 1 1, , 1
100

100 100 100 1

A
B A B C
C

     
     = ⇒ = = − =     
          

 

 2 2100 199 100 100x xy y− + =  
 

18. 2 2 1Ax Bxy Cy+ + =  

 
0 0 16 1

1 481 19 0 0 1 , ,
9 3600 16

25 25 25 1

A
B A B C
C

     
     = ⇒ = = − =     
          

 

 2 2400 481 225 3600x xy y− + =  

19. We substitute each of the two given points into the equation By A
x

= + . 

 
1 1 5 23, 2 so 31 41

2

A
A B y

B x

 
     = ⇒ = = = +          

 

 

20. We substitute each of the three given points into the equation 2 .B Cy Ax
x x

= + +  
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 2

1 1 1 2
1 1 8 162 20 10, 8, 16 so 10
2 4

411 14
4 16

A
B A B C y x

x x
C

 
 

    
     = ⇒ = = = − = + −    
        

 
  

 

 
 
In Problems 21 and 22 we fit the sphere equation  2 2 2 2( ) ( ) ( )x h y k z l r− + − + − =  in the expanded 
form  2 2 2Ax By Cz D x y z+ + + = − − −  that is analogous to Eq. (9) in the text (for a circle). 
 
21. 2 2 2Ax By Cz D x y z+ + + = − − −  

 

4 6 15 1 277
13 5 7 1 243

2, 4, 6, 155
5 14 6 1 257
5 5 9 1 131

A
B

A B C D
C
D

−     
     −     = ⇒ = − = − = − = −
     −
     − −     

 

 2 2 2 2 4 6 155 0x y z x y z+ + − − − − =  

 2 2 2( 1) ( 2) ( 3) 169x y z− + − + − =  center  (1, 2, 3)  and radius  13 
 
22. 2 2 2Ax By Cz D x y z+ + + = − − −  

 

11 17 17 1 699
29 1 15 1 1067

10, 14, 18, 521
13 1 33 1 1259
19 13 1 1 531

A
B

A B C D
C
D

−     
     −     = ⇒ = − = = − = −
     − −
     − − −     

 

 2 2 2 10 14 18 521 0x y z x y z+ + − + − − =  

 2 2 2( 5) ( 7) ( 9) 676x y z− + + + − =  center  (5, –7, 9)  and radius  26 
 
In Problems 23–26 we first take t = 0 in 1970 to fit a quadratic polynomial  2( ) .P t a bt ct= + +   
Then we write the quadratic polynomial  ( ) ( 1970)Q T P T= −  that expresses the predicted 
population in terms of the actual calendar year  T.   
 
23. 2( )P t a bt ct= + +  

 
1 0 0 49.061
1 10 100 49.137
1 20 400 50.809

a
b
c

     
     =     
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 2( ) 49.061 0.0722 0.00798P t t t= − +  
 2( ) 31160.9 31.5134 0.00798Q T T T= − +  
 
 
24. 2( )P t a bt ct= + +  

 
1 0 0 56.590
1 10 100 58.867
1 20 400 59.669

a
b
c

     
     =     
          

 

 
 2( ) 56.590 0.30145 0.007375P t t t= + −  
 2( ) 29158.9 29.3589 0.007375Q T T T= − + −  
 
 
25. 2( )P t a bt ct= + +  

 
1 0 0 62.813
1 10 100 75.367
1 20 400 85.446

a
b
c

     
     =     
          

 

 
 2( ) 62.813 1.37915 0.012375P t t t= + −  
 2( ) 50680.3 50.1367 0.012375Q T T T= − + −  
 
 
26. 2( )P t a bt ct= + +  

 
1 0 0 34.838
1 10 100 43.171
1 20 400 52.786

a
b
c

     
     =     
          

 

 
 2( ) 34.838 0.7692 0.00641P t t t= + +  
 2( ) 23396.1 24.4862 0.00641Q T T T= − +  
 
 
In Problems 27–30 we first take t = 0 in 1960 to fit a cubic polynomial  2 3( ) .P t a bt ct dt= + + +   
Then we write the cubic polynomial  ( ) ( 1960)Q T P T= −  that expresses the predicted population 
in terms of the actual calendar year  T.   
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27. 2 3( )P t a bt ct dt= + + +  

 

1 0 0 0 44.678
1 10 100 1000 49.061
1 20 400 8000 49.137
1 30 900 27000 50.809

a
b
c
d

     
     
     =
     
     
     

 

 
 2 3( ) 44.678 0.850417 0.05105 0.000983833P t t t t= + − +  
 6 2 3( ) 7.60554 10 11539.4 5.83599 0.000983833Q T T T T= − × + − +  
 

28. 2 3( )P t a bt ct dt= + + +  

 

1 0 0 0 51.619
1 10 100 1000 56.590
1 20 400 8000 58.867
1 30 900 27000 59.669

a
b
c
d

     
     
     =
     
     
     

 

 
 2 3( ) 51.619 0.672433 0.019565 0.000203167P t t t t= + − +  
 6 2 3( ) 1.60618 10 2418.82 1.21419 0.000203167Q T T T T= − × + − +  
 

29. 2 3( )P t a bt ct dt= + + +  

 

1 0 0 0 54.973
1 10 100 1000 62.813
1 20 400 8000 75.367
1 30 900 27000 85.446

a
b
c
d

     
     
     =
     
     
     

 

 
 2 3( ) 54.973 0.308667 0.059515 0.00119817P t t t t= + + −  
 6 2 3( ) 9.24972 10 14041.6 7.10474 0.00119817Q T T T T= × − + −  
 
30. 2 3( )P t a bt ct dt= + + +  

 

1 0 0 0 28.053
1 10 100 1000 34.838
1 20 400 8000 43.171
1 30 900 27000 52.786

a
b
c
d

     
     
     =
     
     
     

 

 
 2 3( ) 28.053 0.592233 0.00907 0.0000443333P t t t t= + + −  
 2 3( ) 367520 545.895 0.26975 0.0000443333Q T T T T= − + −  



184 Chapter 3 

In Problems 31–34 we take t = 0 in 1950 to fit a quartic polynomial 2 3 4( ) .P t a bt ct dt et= + + + +   
Then we write the quartic polynomial  ( ) ( 1950)Q T P T= −  that expresses the predicted 
population in terms of the actual calendar year  T.   
 
 
31. 2 3 4( ) .P t a bt ct dt et= + + + +  

 

1 0 0 0 0 39.478
1 10 100 1000 10000 44.678
1 20 400 8000 160000 49.061
1 30 900 27000 810000 49.137
1 40 1600 64000 2560000 50.809

a
b
c
d
e

     
     
     
     =
     
     
          

 

 
 2 3 4( ) 39.478 0.209692 0.0564163 0.00292992 0.0000391375P t t t t t= + + − +  
 8 6 2 3 4( ) 5.87828 10 1.19444 10 910.118 0.308202 0.0000391375Q T T T T T= × − × + − +  
 
 
32. 2 3 4( ) .P t a bt ct dt et= + + + +  

 

1 0 0 0 0 44.461
1 10 100 1000 10000 51.619
1 20 400 8000 160000 56.590
1 30 900 27000 810000 58.867
1 40 1600 64000 2560000 59.669

a
b
c
d
e

     
     
     
     =
     
     
          

 

 
 2 3 6 4( ) 44.461 0.7651 0.000489167 0.000516 7.19167 10P t t t t t−= + − − + ×  
 8 2 3 6 4( ) 1.07807 10 219185 167.096 0.056611 7.19167 10Q T T T T T−= × − + − + ×  
 
 
33. 2 3 4( ) .P t a bt ct dt et= + + + +  

 

1 0 0 0 0 47.197
1 10 100 1000 10000 54.973
1 20 400 8000 160000 62.813
1 30 900 27000 810000 75.367
1 40 1600 64000 2560000 85.446

a
b
c
d
e

     
     
     
     =
     
     
          

 

 
 2 3 4( ) 47.197 1.22537 0.0771921 0.00373475 0.0000493292P t t t t t= + − + −  
 8 6 2 3 4( ) 7.41239 10 1.50598 10 1147.37 0.388502 0.0000493292Q T T T T T= − × + × − + −  
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34. 2 3 4( ) .P t a bt ct dt et= + + + +  

 

1 0 0 0 0 20.190
1 10 100 1000 10000 28.053
1 20 400 8000 160000 34.838
1 30 900 27000 810000 43.171
1 40 1600 64000 2560000 52.786

a
b
c
d
e

     
     
     
     =
     
     
          

 

 
 2 3 4( ) 20.190 1.00003 0.031775 0.00116067 0.00001205P t t t t t= + − + −  
 8 2 3 4( ) 1.8296 10 370762 281.742 0.0951507 0.00001205Q T T T T T= − × + − + −  
 

35. Expansion of the determinant along the first row gives an equation of the form  
 2 0ay bx cx d+ + + =  that can be solved for  2 .y Ax Bx C= + +  If the coordinates of any  

one of the three given points  1 1 2 2 3 3( , ), ( , ), ( , )x y x y x y are substituted in the first row, then 
the determinant has two identical rows and therefore vanishes. 

 

36. Expansion of the determinant along the first row gives 
 

2

2

1
1 1 1 3 1 1 3 1 1 3 1 1

3 1 1 1
4 2 1 3 2 1 3 4 1 3 4 2

3 4 2 1
9 3 1 7 3 1 7 9 1 7 9 3

7 9 3 1

y x x

y x x= − + − =  

     22 4 12 14 0y x x− + − + = . 
 
 Hence  22 6 7y x x= − +   is the parabola that interpolates the three given points. 
 

37. Expansion of the determinant along the first row gives an equation of the form  
2 2( ) 0,a x y bx cy d+ + + + =  and we get the desired form of the equation of a circle upon 

division by  a.  If the coordinates of any one of the three given points  1 1 2 2( , ), ( , ),x y x y  and 

3 3( , )x y  are substituted in the first row, then the determinant has two identical rows and 
therefore vanishes. 

 

38. Expansion of the determinant along the first row gives 
  

 

2 2 1
25 3 4 1

125 5 10 1
225 9 12 1

x y x y+
−

=

−
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  2 2

3 4 1 25 4 1 25 3 1 25 3 4
( ) 5 10 1 125 10 1 125 5 1 125 5 10

9 12 1 225 12 1 225 9 1 225 9 12
x y x y

− − −
= + − + −

− − −
 

2 2200( ) 1200 1600 15000 0.x y x y= + + − − =  
 
 Division by 200 and completion of squares gives  2 2( 3) ( 4) 100,x y+ + − =  so the circle has   
 center  (–3, 4) and radius 10. 
 
 
39. Expansion of the determinant along the first row gives an equation of the form  

2 2 0,ax bxy cy d+ + + =  which can be written in the central conic form 
2 2 1Ax Bxy Cy+ + =  upon division by  –d.  If the coordinates of any one of the three given 

points  1 1 2 2( , ), ( , ),x y x y  and 3 3( , )x y  are substituted in the first row, then the determinant 
has two identical rows and therefore vanishes. 
 
 

40. Expansion of the determinant along the first row gives 
  

 

2 2 1
0 0 16 1
9 0 0 1
25 25 25 1

x xy y

=   

  2

0 16 1 0 16 1 0 0 1 0 0 16
0 0 1 9 0 1 9 0 1 9 0 0
25 25 1 25 25 1 25 25 1 25 25 25

x xy y= − + −  

2 2400 481 225 3600 0.x xy y= − + − =  
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CHAPTER 4 
  
VECTOR SPACES 
 
 
 
The treatment of vector spaces in this chapter is very concrete.  Prior to the final section of the 
chapter, almost all of the vector spaces appearing in examples and problems are subspaces of 
Cartesian coordinate spaces of n-tuples of real numbers.  The main motivation throughout is the 
fact that the solution space of a homogeneous linear system  Ax = 0  is precisely such a 
"concrete" vector space. 
 
 
SECTION 4.1 
 
THE VECTOR SPACE R3 
 
Here the fundamental concepts of vectors, linear independence, and vector spaces are introduced in 
the context of the familiar 2-dimensional coordinate plane R2 and 3-space R3.  The concept of a 
subspace of a vector space is illustrated, the proper nontrivial subspaces of R3 being simply lines 
and planes through the origin.  
 
1. (2,5, 4) (1, 2, 3) (1,7, 1) 51− = − − − − = − =a b  

 
2 2(2,5, 4) (1, 2, 3) (4,10, 8) (1, 2, 3) (5,8, 11)
3 4 3(2,5, 4) 4(1, 2, 3) (6,15, 12) (4, 8, 12) (2,23,0)

+ = − + − − = − + − − = −
− = − − − − = − − − − =

a b
a b

 

 
2. ( 1,0,2) (3,4, 5) ( 4, 4,7) 81 9− = − − − = − − = =a b  

 
2 2( 1,0,2) (3, 4, 5) ( 2,0,4) (3, 4, 5) (1, 4, 1)
3 4 3( 1,0, 2) 4(3,4, 5) ( 3,0,6) (12,16, 20) ( 15, 16, 26)

+ = − + − = − + − = −
− = − − − = − − − = − −

a b
a b

 

 
3. (2 3 5 ) (5 3 7 ) 3 6 12 189 3 21− = − + − + − = − − + = =a b i j k i j k i j k  

 

2 2(2 3 5 ) (5 3 7 )
(4 6 10 ) (5 3 7 ) 9 3 3

3 4 3(2 3 5 ) 4(5 3 7 )
(6 9 15 ) (20 12 28 ) 14 21 43

+ = − + + + −
= − + + + − = − +

− = − + − + −
= − + − + − = − − +

a b i j k i j k
i j k i j k i j k

a b i j k i j k
i j k i j k i j k

 

 
4. (2 ) ( 3 ) 2 2 3 17− = − − − = − + =a b i j j k i j k  

 
2 2(2 ) ( 3 ) (4 2 ) ( 3 ) 4 3
3 4 3(2 ) 4( 3 ) (6 3 ) (4 12 ) 6 7 12

+ = − + − = − + − = − −
− = − − − = − − − = − +

a b i j j k i j j k i j k
a b i j j k i j j k i j k
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5. 3
2 ,=v u  so the vectors  u  and  v  are linearly dependent. 

 
6. (0, 2) (3,0) (3 , 2 )a b a b b a+ = + = =u v 0  implies  a = b = 0, so the vectors  u  and  v  

are linearly independent. 
 
7. (2,2) (2, 2) (2 2 , 2 2 )a b a b a b a b+ = + − = + − =u v 0  implies  a = b = 0, so the vectors  

u  and  v  are linearly independent. 
 
8. ,= −v u  so the vectors  u  and  v  are linearly dependent. 
 

In each of Problems 9–14, we set up and solve (as in Example 2 of this section) the system 
 

   1 1 1

2 2 2

u v wa
a b

u v wb
    

+ = = =    
    

u v w  

 
to find the coefficient values  a  and  b  such that  ,a b= +w u v  
 

9. 
1 1 1

3, 2 so 3 2
2 3 0

a
a b

b
−     

= ⇒ = = = +     −     
w u v  

 

10. 
3 2 0

2, 3 so 2 3
4 3 1

a
a b

b
     

= ⇒ = = − = −     −     
w u v  

 

11. 
5 2 1

1, 2 so 2
7 3 1

a
a b

b
     

= ⇒ = = − = −     
     

w u v  

 

12. 
4 2 2

3, 5 so 3 5
1 1 2

a
a b

b
−     

= ⇒ = = = +     − −     
w u v  

 

13. 
7 3 5

2, 2 so 2 3
5 4 2

a
a b

b
     

= ⇒ = = − = −     −     
w u v  

 

14. 
5 6 5

7, 5 so 7 5
2 4 6

a
a b

b
−     

= ⇒ = = = +     −     
w u v  

 
 
In Problems 15–18, we calculate the determinant  u v w  so as to determine (using Theorem 
4) whether the three vectors  u,  v,  and  w  are linearly dependent (det = 0) or linearly 
independent (det ≠ 0).  
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15. 
3 5 8
1 4 3 0

2 6 4
− =

− −
  so the three vectors are linearly dependent. 

 

16. 
5 2 4
2 3 5 0

4 5 7
− − =

−
  so the three vectors are linearly dependent. 

 

17. 
1 3 1
1 0 2 5 0

2 1 2
− − = − ≠   so the three vectors are linearly independent. 

 

18. 
1 4 3
1 3 2 9 0
0 1 4

− = ≠
−

  so the three vectors are linearly independent. 

 
In Problems 19–24, we attempt to solve the homogeneous system  =Ax 0  by reducing the 
coefficient matrix  [ ]=A u v w   to echelon form  E.  If we find that the system has only the 
trivial solution  a = b = c = 0, this means that the vectors  u,  v,  and  w  are linearly independent.  
Otherwise, a nontrivial solution  [ ]Ta b c= ≠x 0  provides us with a nontrivial linear 
combination  a b c+ + ≠u v w 0  that shows the three vectors are linearly dependent. 
 

19. 
2 3 0 1 0 3
0 1 2 0 1 2
1 1 1 0 0 0

− −   
   = − → − =   
   − −   

A E  

The nontrivial solution  a = 3,  b = 2,  c = 1  gives  3u + 2v + w  =  0,  so the three vectors 
are linearly dependent. 

 

20. 
5 2 4 1 0 2
5 3 1 0 1 3
4 1 5 0 0 0

   
   = → − =   
      

A E  

The nontrivial solution  a = –2,  b = 3,  c = 1  gives  –2u + 3v + w  =  0,  so the three 
vectors are linearly dependent. 

 

21. 
1 2 3 1 0 11
1 1 7 0 1 4
2 6 2 0 0 0

−   
   = − → =   
   −   

A E  
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The nontrivial solution  a = 11,  b = 4,  c = –1  gives  11u + 4v – w  =  0,  so the three 
vectors are linearly dependent. 

 

22. 
1 5 0 1 0 0
1 1 1 0 1 0
0 3 2 0 0 1

   
   = → =   
      

A E 

The system  Ax = 0  has only the trivial solution  a = b = c = 0, so the vectors  u,  v,  and  
w  are linearly independent.   

 

23. 
2 5 2 1 0 0
0 4 1 0 1 0
3 2 1 0 0 1

   
   = − → =   
   −   

A E  

The system  Ax = 0  has only the trivial solution  a = b = c = 0, so the vectors  u,  v,  and  
w  are linearly independent.   

 

24. 
1 4 3 1 0 0
4 2 3 0 1 0
5 5 1 0 0 1

−   
   = → =   
   −   

A E  

The system  Ax = 0  has only the trivial solution  a = b = c = 0, so the vectors  u,  v,  and  
w  are linearly independent.   

 
 
In Problems 25–28, we solve the nonhomogeneous system  =Ax t   by reducing the augmented 
coefficient matrix  [ ]=A u v w t   to echelon form  E.  The solution vector   

[ ]Ta b c=x  appears as the final column of  E, and provides us with the desired linear 
combination  .a b c= + +t u v w  
 

25. 
1 3 1 2 1 0 0 2
2 0 1 7 0 1 0 1

2 1 2 9 0 0 1 3

   
   = − − − → − =   
      

A E  

Thus  a = 2,  b = –1,  c = 3  so  t  =  2u – v + 3w. 
 

26. 
5 1 5 5 1 0 0 1
2 5 3 30 0 1 0 5
2 3 4 21 0 0 1 1

   
   = − → =   
   − − − −   

A E  

Thus  a = 1,  b = 5,  c = –1  so  t  =  u + 5v – w. 
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27. 
1 1 4 0 1 0 0 2
4 2 4 0 0 1 0 6
3 2 1 19 0 0 1 1

−   
   = − → =   
      

A E  

Thus  a = 2,  b = 6,  c = 1  so  t  =  2u + 6v + w. 
 

28. 
2 4 1 7 1 0 0 1
5 1 1 7 0 1 0 1
3 1 5 7 0 0 1 1

   
   = → =   
   −   

A E  

Thus  a = 1,  b = 1,  c = 1  so  t  =  u + v + w. 
 

29. Given vectors  (0, , ) and (0, , )y z v w  in  V, we see that their sum  (0, , )y v z w+ +  and the 
scalar multiple  (0, , ) (0, , )c y z cy cz=  both have first component 0, and therefore are 
elements of  V. 

 

30. If  ( , , ) and ( , , )x y z u v w  are in  V, then 
 
  ( ) ( ) ( ) ( ) ( ) 0 0 0,x v y u z w x y z u v w+ + + + + = + + + + + = + =  
 
 so their sum  ( , , )x u y v z w+ + +  is in  V.  Similarly,   

 
( ) (0) 0,cx cy cz c x y x c+ + = + + = =  

 
 so the scalar multiple  ( , , )cx cy cz  is in  V. 
 

31. If  ( , , ) and ( , , )x y z u v w  are in  V, then 
 
  2( ) (2 ) (2 ) (3 ) (3 ) 3( ),x u x u y v y v+ = + = + = +  
 
 so their sum  ( , , )x u y v z w+ + +  is in  V.  Similarly,  
 

2( ) (2 ) (3 ) 3( ),cx c x c y cy= = =   
 

so the scalar multiple  ( , , )cx cy cz  is in  V. 
 

32. If  ( , , ) and ( , , )x y z u v w  are in  V, then 
 
  (2 3 ) (2 3 ) 2( ) 3( ),z w x y u v x u y v+ = + + + = + + +  
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 so their sum  ( , , )x u y v z w+ + +  is in  V.  Similarly,  
 

(2 3 ) 2( ) 3( ),cz c x y cx cy= + = +   
 

so the scalar multiple  ( , , )cx cy cz  is in  V. 
 
33. (0,1,0)  is in  V  but the sum  (0,1,0) (0,1,0) (0, 2,0)+ =  is not in  V; thus  V  is not 

closed under addition.  Alternatively,  2(0,1,0) (0, 2,0)=  is not in  V,  so  V  is not 
closed under multiplication by scalars. 

 
34. (1,1,1)  is in  V,  but   
 
   2(1,1,1) (1,1,1) (1,1,1) (2, 2, 2)= + =  
 
 is not, so  V  is closed neither under addition of vectors nor under multiplication by 

scalars. 
 
35. Evidently  V  is closed under addition of vectors.  However,  (0,0,1)  is in  V  but  

( 1)(0,0,1) (0,0, 1)− = −  is not, so  V  is not closed under multiplication by scalars. 
 
36. (1,1,1)  is in  V, but   
 
   2(1,1,1) (1,1,1) (1,1,1) (2, 2, 2)= + =  
 
 is not, so  V  is closed neither under addition of vectors nor under multiplication by 

scalars. 
 
37. Pick a  fixed element  u  in the (nonempty) vector space  V.  Then, with  c = 0,  the scalar 

multiple  0c = =u u 0  must be in  V.  Thus  V  necessarily contains the zero vector  0. 
 
38. Suppose  u  and  v  are vectors in the subspace  V  of  R3  and  a  and  b  are scalars.  Then  

au  and  bv  are in  V  because  V  is closed under multiplication by scalars.  But then it 
follows that the linear combination  a b+u v  is in  V  because  V  is closed under addition 
of vectors. 

 
39. It suffices to show that every vector  v  in  V  is a scalar multiple of the given nonzero 

vector  u  in  V.  If  u  and  v  were linearly independent, then — as illustrated in Example 
2 of this section — every vector in R2 could be expressed as a linear combination of  u 
and  v.  In this case it would follow that  V  is all of  R2 (since, by Problem 38, V is closed 
under taking linear combinations).  But we are given that  V  is a proper subspace of  R2, 
so we must conclude that  u  and  v  are linearly dependent vectors.  Since  0,≠u  it 
follows that the arbitrary vector  v  in  V  is a scalar multiple of  u,  and thus  V  is 
precisely the set of all scalar multiples of  u.  In geometric language,  the subspace  V  is 
then the straight line through the origin determined by the nonzero vector  u. 
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40. Since the vectors  u, v, w  are linearly dependent , there exist scalars  p, q, r  not all zero 
such that  .p q r+ + =u v w 0   If  r = 0,  then  p  and  q  are scalars not both zero such that  

.p q+ =u v 0   But this contradicts the given fact that  u  and  v  are linearly independent.  
Hence  r ≠ 0,  so we can solve for 

 

   ,p q a b
r r

= − − = +w u v u v  

 
 thereby expressing  w  as a linear combination of  u  and  v. 
 
41. If the vectors  u  and  v  are in the intersection  V  of the subspaces  V1  and  V2,  then   
 their sum  u + v  is in  V1  because both vectors are in  V1,  and  u + v  is in  V2  because 

both are in  V2.  Therefore  u + v  is in  V,  and thus  V  is closed under addition of 
vectors.  Similarly, the intersection  V  is closed under multiplication by scalars, and is 
therefore itself a subspace. 

 
 

 
SECTION 4.2 
 
THE VECTOR SPACE Rn AND SUBSPACES 
 
The main objective in this section is for the student to understand what types of subsets of the vector 
space Rn of n-tuples of real numbers are subspaces — playing the role in Rn of lines and planes 
through the origin in R3.  Our first reason for studying subspaces is the fact that the solution space 
of any homogeneous linear system  Ax = 0 is a subspace of Rn. 
 
1. If  1 2 1 2( , ,0) and ( , ,0)x x y y= =x y  are vectors in W, then their sum   
 

1 2 1 2 1 1 2 2( , ,0) ( , ,0) ( , ,0)x x y y x y x y+ = + = + +x y  
 

and the scalar multiple 1 2( , ,0)c cx cx=x  both have third coordinate zero, and therefore are 
also elements of  W.  Hence  W  is a subspace of  R3. 

 
2. Suppose  1 2 3 1 2 3( , , ) and ( , , )x x x y y y= =x y  are vectors in W, so  1 25 andx x=  1 25 .y y=  

Then their sum  1 1 2 2 3 3 1 2 3( , , ) ( , , )x y x y x y s s s= + = + + + =s x y satisfies the same 
condition   

   1 1 1 2 2 2 2 25 5 5( ) 5 ,s x y x y x y s= + = + = + =  
 

and thus is an element of  W.  Similarly, the scalar multiple 1 2 3( , , )c cx cx cx= = =m x   

1 2 3( , , )m m m satisfies the condition  1 1 2 2 2(5 ) 5( ) 5 ,m cx c x cx m= = = =  and hence is also an 
element of  W.  Therefore  W  is a subspace of  R3. 
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3. The typical vector in  W  is of the form  1 3( ,1, )x x=x  with second coordinate 1.  But the 
particular scalar multiple  1 32 (2 , 2, 2 )x x=x  of such a vector has second coordinate  2 1,≠  
and thus is not in  W.  Hence  W  is not closed under multiplication by scalars, and 
therefore is not a subspace of  R3.  (Since  2x = x + x,  W is not closed under vector addition 
either.) 

 
4. The typical vector  1 2 3( , , )x x x=x  in  W  has coordinate sum  1 2 3x x x+ +  equal to 1.  But 

then the particular scalar multiple  1 2 32 (2 , 2 , 2 )x x x=x  of such a vector has coordinate  
sum   

1 2 3 1 2 32 2 2 2( ) 2(1) 2 1,x x x x x x+ + = + + = = ≠   
 

and thus is not in  W.  Hence  W  is not closed under multiplication by scalars, and 
therefore is not a subspace of  R3.  (Since  2x = x + x,  W is not closed under vector addition 
either.) 

 
5. Suppose  1 2 3 4 1 2 3 4( , , , ) and ( , , , )x x x x y y y y= =x y  are vectors in W, so   
 

1 2 3 4 1 2 3 42 3 4 0 and 2 3 4 0.x x x x y y y y+ + + = + + + =    
 

Then their sum  1 1 2 2 3 3 4 4 1 2 3 4( , , , ) ( , , , )x y x y x y x y s s s s= + = + + + + =s x y satisfies the 
same condition   
 

 1 2 3 4 1 1 2 2 3 3 4 4

1 2 3 4 1 2 3 4

2 3 4 ( ) 2( ) 3( ) 4( )
( 2 3 4 ) ( 2 3 4 ) 0 0 0,

s s s s x y x y x y x y
x x x x y y y y

+ + + = + + + + + + +
= + + + + + + + = + =

 

    
and thus is an element of  W.  Similarly, the scalar multiple 1 2 3 4( , , , )c cx cx cx cx= = =m x   

1 2 3 4( , , , )m m m m satisfies the condition   
 
 1 2 3 4 1 2 3 4 1 2 3 42 3 4 2 3 4 ( 2 3 4 ) 0,m m m m cx cx cx cx c x x x x+ + + = + + + = + + + =  
 
and hence is also an element of  W.  Therefore  W  is a subspace of  R4. 

 
6. Suppose  1 2 3 4 1 2 3 4( , , , ) and ( , , , )x x x x y y y y= =x y  are vectors in W, so   
 

1 3 2 4 1 3 2 43 , 4 and 3 , 4 .x x x x y y y y= = = =    
 

Then their sum  1 1 2 2 3 3 4 4 1 2 3 4( , , , ) ( , , , )x y x y x y x y s s s s= + = + + + + =s x y satisfies the 
same conditions  
  

  1 1 1 3 3 3 3 3

2 2 2 4 4 4 4 4

3 3 3( ) 3 ,
4 4 4( ) 4 ,

s x y x y x y s
s x y x y x y s

= + = + = + =
= + = + = + =
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and thus is an element of  W.  Similarly, the scalar multiple 1 2 3 4( , , , )c cx cx cx cx= = =m x   

1 2 3 4( , , , )m m m m satisfies the conditions   
 
 1 1 3 3 3 2 2 4 4 4(3 ) 3( ) 3 , (4 ) 4( ) 4 ,m cx c x cx m m cx c x cx m= = = = = = = =  
 
and hence is also an element of  W.  Therefore  W  is a subspace of  R4. 

 
7. The vectors  (1,1) and (1, 1)= = −x y  are in  W,  but their sum  (2,0)+ =x y  is not, 

because  2 0 .≠   Hence  W  is not a subspace of R2. 
 
8. W  is simply the zero subspace  { }0  of R2.  
 
9. The vector  (1,0)=x  is in  W,  but its scalar multiple  2 (2,0)=x   is not, because  

2 2(2) (0) 4 1.+ = ≠   Hence  W  is not a subspace of R2. 
 
10. The vectors  (1,0) and (0,1)= =x y  are in  W,  but their sum  (1,1)= + =s x y  is not, 

because  1 1 2 1.+ = ≠   Hence  W  is not a subspace of R2. 
 
11. Suppose  1 2 3 4 1 2 3 4( , , , ) and ( , , , )x x x x y y y y= =x y  are vectors in W, so   
 

1 2 3 4 1 2 3 4and .x x x x y y y y+ = + + = +    
 

Then their sum  1 1 2 2 3 3 4 4 1 2 3 4( , , , ) ( , , , )x y x y x y x y s s s s= + = + + + + =s x y satisfies the 
same condition 
  

  1 2 1 1 2 2 1 2 1 2

3 4 3 4 3 3 4 4 3 4

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

s s x y x y x x y y
x x y y x y x y s s

+ = + + + = + + +
= + + + = + + + = +

 

 
and thus is an element of  W.  Similarly, the scalar multiple 1 2 3 4( , , , )c cx cx cx cx= = =m x   

1 2 3 4( , , , )m m m m satisfies the condition   
 
 1 2 1 2 1 2 3 4 3 4 3 4( ) ( ) ,m m cx cx c x x c x x cx cx m m+ = + = + = + = + = +  
 
and hence is also an element of  W.  Therefore  W  is a subspace of  R4. 

 
12. The vectors  (1,0,1,0) and (0,2,0,3)= =x y  are in  W  (because both products are 0 in 

each case)  but their sum  (1, 2,1,3)= + =s x y  is not, because  1 2 3 42 but 3.s s s s= =   
Hence  W  is not a subspace of R4. 
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13. The vectors  (1,0,1,0) and (0,1,0,1)= =x y  are in  W  (because the product of the 4 
components is 0 in each case)  but their sum  (1,1,1,1)= + =s x y  is not, because  

1 2 3 4 1 0.s s s s = ≠   Hence  W  is not a subspace of R4. 
 
14. The vector  (1,1,1,1)=x  is in  W  (because all 4 components are nonzero)  but the multiple  

0 (0,0,0,0)=x  is not.  Hence  W  is not a subspace of R4. 
 
 
In Problems 15–22, we first reduce the coefficient matrix  A   to echelon form  E in order to 
solve the given homogeneous system =Ax 0 . 
 

15. 
1 4 1 4 1 0 1 4
1 2 1 8 0 1 0 2
1 1 1 6 0 0 0 0

− −   
   = → =   
      

A E  

Thus  3 4andx s x t= =  are free variables.  We solve for  1 24 and 2 ,x s t x t= − − = −  so 
 

1 2 3 4( , , , ) ( 4 , 2 , , )
( ,0, ,0) ( 4 , 2 ,0, )
x x x x s t t s t

s s t t t s t
= = − − −
= − + − − = +

x
u v

 

 
 where  ( 1,0,1,0) and ( 4, 2,0,1).= − = − −u v  
 

16. 
1 4 3 7 1 0 1 5
2 1 1 7 0 1 1 3
1 2 3 11 0 0 0 0

− − −   
   = − → =   
      

A E  

Thus  3 4andx s x t= =  are free variables.  We solve for  1 25 and 3 ,x s t x s t= − − = − −  
so 
 

1 2 3 4( , , , ) ( 5 , 3 , , )
( , , ,0) ( 5 , 3 ,0, )
x x x x s t s t s t

s s s t t t s t
= = − − − −
= − − + − − = +

x
u v

 

 
 where  ( 1, 1,1,0) and ( 5, 3,0,1).= − − = − −u v  
 

17. 
1 3 8 1 1 0 1 2
1 3 10 5 0 1 3 1
1 4 11 2 0 0 0 0

− −   
   = − − → − =   
   −   

A E  

Thus  3 4andx s x t= =  are free variables.  We solve for  1 22 and 3 ,x s t x s t= − = − +  
so 
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1 2 3 4( , , , ) ( 5 , 3 , , )
( , 3 , ,0) ( 2 , ,0, )
x x x x s t s t s t
s s s t t t s t

= = − − − −
= − + − = +

x
u v

 

 
 where  (1, 3,1,0) and ( 2,1,0,1).= − = −u v  
 

18. 
1 3 2 5 1 1 0 0 2 3
2 7 4 11 2 0 1 0 1 4
2 6 5 12 7 0 0 1 2 5

− − −   
   = → =   
   − −   

A E  

Thus  4 5andx s x t= =  are free variables.  We solve for  1 22 3 , 4 ,x s t x s t= + = − −  

3and 2 5 ,x s t= − +  so 
 

1 2 3 4 5( , , , , ) (2 3 , 4 , 2 5 , , )
(2 , , 2 , ,0) (3 , 4 ,5 ,0, )
x x x x x s t s t s t s t
s s s s t t t t s t

= = + − − − +
= − − + − = +

x
u v

 

 
 where  (2, 1, 2,1,0) and (3, 4,5,0,1).= − − = −u v  
 

19. 
1 3 5 6 1 0 1 0
2 1 4 4 0 1 2 0
1 3 7 1 0 0 0 1

− − −   
   = − → =   
      

A E  

Thus  3x t=  is a free variable and  4 0.x = .  We solve for  1 2and 2 ,x t x t= − = −  so 
 

1 2 3 4( , , , ) ( , 2 , ,0)x x x x t t t t= = − − =x u  
 
 where  ( 1, 2,1,0).= − −u  
 

20. 
1 5 1 8 1 0 0 5
2 5 0 5 0 1 0 3
2 7 1 9 0 0 1 2

−   
   = − → − =   
   −   

A E  

Thus  4x t=  is a free variable.  We solve for  1 2 45 , 3 , and 2 .x t x t x t= − = = −  so 
 

1 2 3 4( , , , ) ( 5 ,3 , 2 , )x x x x t t t t t= = − − =x u  
 
 where  ( 5,3, 2,1).= − −u  
 

21. 
1 7 2 3 1 0 0 3
2 7 1 4 0 1 0 2
3 5 1 5 0 0 1 4

−   
   = − → − =   
   − −   

A E 
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Thus  4x t=  is a free variable.  We solve for  1 2 43 , 2 , and 4 .x t x t x t= − = = −  so 
 

1 2 3 4( , , , ) ( 3 ,2 , 4 , )x x x x t t t t t= = − − =x u  
 
 where  ( 3, 2, 4,1).= − −u  
 

22. 
1 3 3 3 1 0 0 6
2 7 5 1 0 1 0 4
2 7 4 4 0 0 1 3

   
   = − → − =   
   −   

A E  

Thus  4x t=  is a free variable.  We solve for  1 2 46 , 4 , and 3 .x t x t x t= − = = −  so 
 

1 2 3 4( , , , ) ( 6 ,4 , 3 , )x x x x t t t t t= = − − =x u  
 
 where  ( 6,4, 3,1).= − −u  
 
23. Let  u  be a vector in  W.  Then  0u  is also in  W.  But  0u  =  (0+0)u  =  0u + 0u, so upon 

subtracting  0u  from each side, we see that  0u = 0, the zero vector. 
 
24. (a) Problem 23 shows that  0u = 0   for every vector  u. 

 (b) The fact that  c0  =  c(0 + 0)  =  c0 + c0  implies (upon adding –c0  to each side)  
  that  c0 = 0. 

 (c) The fact that  u + (–1)u  =  (1 + (–1))u  =  0u  =  0  means that  (–1)u = –u. 
 
25. If  W  is a subspace, then it contains the scalar multiples  au  and  bv,  and hence contains 

their sum  au + bv.  Conversely, if the subset  W  is closed under taking linear combinations 
of pairs of vectors, then it contains  (1)u + (1)v  =  u + v  and  (c)u + (0)v  =  cu,  and hence 
is a subspace.   

 
26. The sum of any two scalar multiples of  u  is a scalar multiple of  u,  as is any scalar 

multiple of a scalar multiple of  u.   
 
27. Let  a1u + b1v  and  a2u + b2v  be two vectors in  { }.W a b= +u v   Then the sum 
 
   (a1u + b1v)  +  (a2u + b2v)  =  1 2 1 2( ) ( )a a b b+ + +u v  
 
 and the scalar multiple  1 1 1 1( ) ( ) ( )c a b ca cb+ = +u v u v   are again scalar multiples of   

u  and  v,  and hence are themselves elements of  W.  Hence  W  is a subspace. 
 
28. If  u  and  v  are vectors in  W,  then  Au = ku  and  Av = kv.   It follows that 
 
  A(au+bv)  =  a(Au) + b(Av)  =  a(ku) + b(kv)  =  k(au + bv), 
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 so the linear combination  au + bv  of  u  and  v  is also in W.  Hence  W  is a subspace. 
 
29. If  Ax0 = b  and  y =  x – x0,  then 
 
   Ay  =  A(x – x0)  =  Ax – Ax0  =  Ax  –  b. 
 
 Hence it is clear that  Ay = 0  if and only if  Ax = b. 
 
30. Let  W  denote the intersection of the subspaces  U  and  V.  If  u  and  v  are vectors in  W,  

then these two vectors are both in  U  and  in  V.  Hence the linear combination  au + bv  is 
both in  U  and  in  V,  and hence is in the intersection  W,  which therefore is a subspace.  If  
U  and  V  are non-coincident planes through the origin if  R3,  then their intersection  W  is a 
line through the origin. 

 
31. Let  w1  and  w2  be two vectors in the sum  U + V.  Then  wi  =  ui + vi  where  ui  is in  U  

and  vi  is in  V  (i = 1, 2).  Then the linear combination 
 
  aw1 + bw2  =  a(u1 + v1) + b(u2 + v2)  =  (au1 + bu2) +  (av1 + bv2) 
 
 is the sum of the vectors  au1 + bu2  in  U  and  av1 + bv2   in  U,  and therefore is an element 

of  U + V.  Thus  U + V  is a subspace.  If  U  and  V  are noncollinear lines through the 
origin in R3, then  U + V  is a plane through the origin.      

 
 
 
SECTION 4.3 
 
LINEAR COMBINATIONS AND  
INDEPENDENCE OF VECTORS 
 
In this section we use two types of computational problems as aids in understanding linear 
independence and dependence.  The first of these problems is that of expressing a vector  w  as a 
linear combination of  k  given vectors  1 2, , , kv v v�  (if possible).  The second is that of 
determining whether  k  given vectors  1 2, , , kv v v�  are linearly independent.  For vectors in Rn, 
each of these problems reduces to solving a linear system of  n  equations in  k  unknowns.  Thus an 
abstract question of linear independence or dependence becomes a concrete question of whether or 
not a given linear system has a nontrivial solution. 
 
1. 3

2 12 ,=v v  so the two vectors  v1  and  v2  are linearly dependent. 
 
2. Evidently the two vectors  v1  and  v2  are not scalar multiples of one another.  Hence they 

are linearly dependent. 
 
3. The three vectors  v1,  v2,  and  v3  are linearly dependent, as are any 3 vectors in R2.  The 

reason is that the vector equation  c1v1 + c2v2 + c3v3  =  0  reduces to a homogeneous linear 



200 Chapter 4 

system of  2 equations in the 3 unknowns  1 2 3, , and ,c c c  and any such system has a 
nontrivial solution.  

 
4. The four vectors  v1,  v2, v3,  and  v4  are linearly dependent, as are any 4 vectors in R3.  The 

reason is that the vector equation  c1v1 + c2v2 + c3v3 + c4v4  =  0  reduces to a homogeneous 
linear system of  3 equations in the 4 unknowns  1 2 3 4, , , and ,c c c c  and any such system 
has a nontrivial solution.  

 
5. The equation  1 1 2 2 3 3c c c+ + =v v v 0  yields   
 

1 2 3 1 2 3(1,0,0) (0, 2,0) (0,0,3) ( , 2 ,3 ) (0,0,0),c c c c c c+ − + = − =  
 
 and therefore implies immediately that  1 2 3 0.c c c= = =   Hence the given vectors 
 v1,  v2,  and  v3  are linearly independent. 
 
6. The equation  1 1 2 2 3 3c c c+ + =v v v 0  yields   
 

1 2 3 1 2 3 2 3 3(1,0,0) (1,1,0) (1,1,1) ( , , ) (0,0,0).c c c c c c c c c+ + = + + + =  
 
 But it is obvious by back-substitution that the homogeneous system 

     
1 2 3

2 3

3

0
0
0

c c c
c c

c

+ + =
+ =

=
 

has only the trivial solution  1 2 3 0.c c c= = =   Hence the given vectors 
 v1,  v2,  and  v3  are linearly independent. 
 
7. The equation  1 1 2 2 3 3c c c+ + =v v v 0  yields   
 

1 2 3 1 2 1 2 3(2,1,0,0) (3,0,1,0) (4,0,0,1) (2 3 , , , ) (0,0,0,0).c c c c c c c c+ + = + =  
 

Obviously it follows immediately that  1 2 3 0.c c c= = =   Hence the given vectors 
 v1,  v2,  and  v3  are linearly independent. 
 
8. Here inspection of the three given vectors reveals that  3 1 2 ,= +v v v  so the vectors 
 v1,  v2,  and  v3  are linearly dependent. 
 
 
In Problems 9–16 we first set up the linear system to be solved for the linear combination 
coefficients  { } ,ic  and then show the reduction of its augmented coefficient matrix  A  to reduced 
echelon form  E. 
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9. 1 1 2 2c c+ =v v w  

5 3 1 1 0 2
3 2 0 0 1 3
4 5 7 0 0 0

   
   = → − =   
   −   

A E  

We see that the system of 3 equations in 2 unknowns has the unique solution  
1 22, 3,c c= = −   so  1 22 3 .= −w v v  

 
10. 1 1 2 2c c+ =v v w  

3 6 3 1 0 7
1 2 1 0 1 4
2 3 2 0 0 0

−   
   = − − → =   
   − −   

A E  

We see that the system of 3 equations in 2 unknowns has the unique solution  
1 27, 4,c c= =   so  1 27 4 .= +w v v  

 
11. 1 1 2 2c c+ =v v w  

7 3 1 1 0 1
6 3 0 0 1 2

4 2 0 0 0 0
5 3 1 0 0 0

   
   − − −   = → =
   
   −   

A E  

We see that the system of 4 equations in 2 unknowns has the unique solution  
1 21, 2,c c= = −   so  1 22 .= −w v v  

 
12. 1 1 2 2c c+ =v v w  

7 2 4 1 0 2
3 2 4 0 1 5
1 1 3 0 0 0

9 3 3 0 0 0

−   
   − −   = → =
   −
   −   

A E  

We see that the system of 4 equations in 2 unknowns has the unique solution  
1 22, 5,c c= =   so  1 22 5 .= +w v v  

 
13. 1 1 2 2c c+ =v v w  

1 5 5 1 0 0
5 3 2 0 1 0
3 4 2 0 0 1

   
   = − → =   
   − −   

A E  
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The last row of  E  corresponds to the scalar equation  1 20 0 1,c c+ =  so the system of 3 
equations in 2 unknowns is inconsistent.  This means that  w  cannot be expressed as a 
linear combination of  v1  and  v2. 

 
14. 1 1 2 2 3 3c c c+ + =v v v w  

1 0 0 2 1 0 0 0
0 1 1 3 0 1 0 0
0 2 1 2 0 0 1 0
3 0 1 3 0 0 0 1

   
   − −   = → =
   −
   −   

A E  

The last row of  E  corresponds to the scalar equation  1 2 30 0 0 1,c c c+ + =  so the system 
of 4 equations in 3 unknowns is inconsistent.  This means that  w  cannot be expressed as 
a linear combination of  v1, v2,  and  v3. 

 
15. 1 1 2 2 3 3c c c+ + =v v v w  

2 3 1 4 1 0 0 3
1 0 2 5 0 1 0 2

4 1 1 6 0 0 1 4

   
   = − → − =   
   −   

A E  

We see that the system of 3 equations in 3 unknowns has the unique solution  
1 2 33, 2, 4,c c c= = − =   so  1 2 33 2 4 .= − +w v v v  

 
16. 1 1 2 2 3 3c c c+ + =v v v w  

2 4 1 7 1 0 0 6
0 1 3 7 0 1 0 2
3 3 1 9 0 0 1 3
1 2 3 11 0 0 0 0

   
   −   = → =
   −
   
   

A E  

We see that the system of 4 equations in 3 unknowns has the unique solution  
1 2 36, 2, 3,c c c= = − =   so  1 2 36 2 3 .= − +w v v v  

 
 
In Problems 17–22,  [ ]1 2 3=A v v v   is the coefficient matrix of the homogeneous linear 
system corresponding to the vector equation  1 1 2 2 3 3 .c c c+ + =v v v 0    Inspection of the indicated 
reduced echelon form  E  of  A  then reveals whether or not a nontrivial solution exists. 
 

17. 
1 2 3 1 0 0
0 3 5 0 1 0
1 4 2 0 0 1

   
   = − → =   
      

A E  
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We see that the system of 3 equations in 3 unknowns has the unique solution  
1 2 3 0,c c c= = =   so the vectors  1 2 3, ,v v v   are linearly independent. 

 

18. 
2 4 2 1 0 3/ 5
0 5 1 0 1 1/ 5
3 6 3 0 0 0

− −   
   = − → − =   
   − −   

A E 

We see that the system of 3 equations in 3 unknowns has a 1-dimensional solution space.  
If we choose  3 5c =  then  1 23 and 1.c c= =  Therefore  1 2 33 5 .+ + =v v v 0  

 

19. 

2 5 2 1 0 0
0 4 1 0 1 0
3 2 1 0 0 1
0 1 1 0 0 0

   
   −   = → =
   −
   −   

A E  

We see that the system of 4 equations in 3 unknowns has the unique solution  
1 2 3 0,c c c= = =   so the vectors  1 2 3, ,v v v   are linearly independent. 

 

20. 

1 2 3 1 0 0
1 1 1 0 1 0
1 1 4 0 0 1

1 1 1 0 0 0

   
   
   = → =
   −
   
   

A E  

We see that the system of 4 equations in 3 unknowns has the unique solution  
1 2 3 0,c c c= = =   so the vectors  1 2 3, ,v v v   are linearly independent. 

 

21. 

3 1 1 1 0 1
0 1 2 0 1 2
1 0 1 0 0 0
2 1 0 0 0 0

   
   − −   = → =
   
   
   

A E  

We see that the system of 4 equations in 3 unknowns has a 1-dimensional solution space.  
If we choose  3 1c = −  then  1 21 and 2.c c= = −  Therefore  1 2 32 .− − =v v v 0  

 

22. 

3 3 5 1 0 7 / 9
9 0 7 0 1 5 / 9
0 9 5 0 0 0
5 7 0 0 0 0

   
   
   = → =
   
   −   

A E  

We see that the system of 4 equations in 3 unknowns has a 1-dimensional solution space.  
If we choose  3 9c = −  then  1 27 and 5.c c= =  Therefore  1 2 37 5 9 .+ − =v v v 0  
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23. Because  v1  and  v2  are linearly independent, the vector equation 
 
  1 1 2 2 1 1 2 2 1 2( ) ( )c c c c+ = + + − =u u v v v v 0  
 
 yields the homogeneous linear system 
 

    1 2

1 2

0
0.

c c
c c

+ =
− =

 

 
It follows readily that  1 2 0,c c= =  and therefore that the vectors  u1  and  u2  are linearly 
independent. 

 
24. Because  v1  and  v2  are linearly independent, the vector equation 
 
  1 1 2 2 1 1 2 2 1 2( ) (2 3 )c c c c+ = + + + =u u v v v v 0  
 
 yields the homogeneous linear system 
 

    1 2

1 2

2 0
3 0.

c c
c c

+ =
+ =

 

 
Subtraction of the first equation from the second one gives  c2 = 0,  and then it follows 
from the first equation that  c2 = 0 also.  Therefore the vectors  u1  and  u2  are linearly 
independent. 

 
25. Because the vectors  1 2 3, ,v v v   are linearly independent, the vector equation 
 
  1 1 2 2 3 3 1 1 2 1 2 3 1 2 3( ) ( 2 ) ( 2 3 )c c c c c c+ + = + + + + + =u u u v v v v v v 0  
 
 yields the homogeneous linear system 
 

    
1 2 3

2 3

3

0
2 2 0

3 0.

c c c
c c

c

+ + =
+ =

=
 

 
It follows by back-substitution that  1 2 3 0,c c c= = =  and therefore that the vectors  

1 2 3, ,u u u  are linearly independent. 
 
26. Because the vectors  1 2 3, ,v v v   are linearly independent, the vector equation 
 
  1 1 2 2 3 3 1 2 3 2 1 3 3 1 2( ) ( ) ( )c c c c c c+ + = + + + + + =u u u v v v v v v 0  
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 yields the homogeneous linear system 
 

    
2 3

1 3

1 2

0
0
0.

c c
c c
c c

+ =
+ =

+ =
 

 The reduction  

   
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

   
   = → =   
      

A E  

 
 then shows that  1 2 3 0,c c c= = =  and therefore that the vectors  1 2 3, ,u u u  are linearly 
independent. 

 
27. If the elements of  S  are  1 2, , , kv v v�  with  1 ,=v 0  then we can take  1 1c =  and  

2 0.kc c= = =�   This choice gives coefficients  1 2, , , kc c c�  not all zero such that  

1 1 2 2 .k kc c c+ + + =v v v 0�   This means that the vectors  1 2, , , kv v v�  are linearly 
dependent. 

 
28. Because the set  S  of vectors  1 2, , , kv v v�  is linearly dependent, there exist scalars  

1 2, , , kc c c�  not all zero such that  1 1 2 2 .k kc c c+ + + =v v v 0�   If  1 0,k mc c+ = = =�  
then  1 1 2 2 m mc c c+ + + =v v v 0�  with the coefficients  1 2, , , mc c c�  not all zero.  This 
means that the vectors  1 2, , , mv v v�  comprising  T  are linearly dependent. 

 
29. If some subset of  S  were linearly dependent, then Problem 28 would imply immediately 

that  S  itself is linearly dependent (contrary to hypothesis). 
 
30. Let  W  be the subspace of  V  spanned by the vectors  1 2, , , .kv v v�   Because  U  is a 

subspace containing each of these vectors, it contains every linear combination of 
 1 2, , , .kv v v�   But  W  consists solely of such linear combinations, so it follows that  U  

contains  W. 
 
31. If  S  is contained in  span(T), then every vector in  S  is a linear combination of vectors in  

T.  Hence every vector in  span(S)  is a linear combination of linear combinations of 
vectors in  T.  Therefore every vector in  span(S)  is a linear combination of vectors in  T, 
and therefore is itself in  span(T).  Thus  span(S)  is a subset of  span(T).  

 
32. If  u  is another vector in  S  then the  k+1 vectors  1 2, , , ,kv v v u�  are linearly 

dependent.  Hence there exist scalars  1 2, , , ,kc c c c�  not all zero such that  
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1 1 2 2 .k kc c c c+ + + + =v v v u 0�   If  c = 0  then we have a contradiction to the 
hypothesis that the vectors  1 2, , , kv v v�  are linearly independent.  Therefore  c ≠ 0,   
so we can solve for  u  as a linear combination of the vectors  1 2, , , .kv v v�  

 
33. The determinant of the k k×  identity matrix is nonzero, so it follows immediately from 

Theorem 3 in this section that the vectors  1 2, , , kv v v�  are linearly independent.   
 
34. If the vectors  1 2, , , nv v v�  are linearly independent, then by Theorem 2 the matrix    

[ ]1 2 n=A v v v�   is nonsingular.  If  B  is another nonsingular  n n×  matrix, then 
the product  AB  is also nonsingular, and therefore (by Theorem 2) has linearly 
independent column vectors. 

 
35. Because the vectors  1 2, , , kv v v�  are linearly independent, Theorem 3 implies that some 

k k×  submatrix  A0  of  A  has nonzero determinant.  Let  A0  consist of the rows  
1 2, , , ki i i�  of the matrix  A,  and let  C0  denote the  k k×  submatrix consisting of the 

same rows of the product matrix  C = AB.  Then  C0 = A0B,  so  0 0 0= ≠C A B  
because (by hypothesis) the k k×  matrix  B  is also nonsingular.  Therefore Theorem 3 
implies that the column vectors of  AB  are linearly independent. 

 
 
 
SECTION 4.4 
 
BASES AND DIMENSION FOR VECTOR SPACES 
 
A basis  { }1 2, , , kv v v�  for a subspace  W  of Rn enables up to visualize  W  as a k-dimensional 
plane (or "hyperplane") through the origin in Rn.  In case W is the solution space of a 
homogeneous linear system, a basis for  W  is a maximal linearly independent set of solutions of 
the system, and every other solution is a linear combination of these particular solutions.   
 
1. The vectors  v1  and  v2  are linearly independent (because neither is a scalar multiple of 

the other) and therefore form a basis for R2. 
 
2. We note that  v2 = 2v1.  Consequently the vectors  1 2 3, ,v v v  are linearly dependent, and 

therefore do not form a basis for R3. 
 
3. Any four vectors in R3 are linearly dependent, so the given vectors do not form a basis 

for R3. 
 
4. Any basis for R4 contains four vectors, so the given vectors  1 2 3, ,v v v   do not form a 

basis for R4. 
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5. The three given vectors  1 2 3, ,v v v   all lie in the 2-dimensional subspace  x1 = 0  of  R3.  
Therefore they are linearly dependent, and hence do not form a basis for R3. 

 
6. [ ]( )1 2 3Det 1 0,= − ≠v v v  so the three vectors are linearly independent, and hence do 

form a basis for R3. 
 
7. [ ]( )1 2 3Det 1 0,= ≠v v v  so the three vectors are linearly independent, and hence do 

form a basis for R3. 
 
8. [ ]( )1 2 3 4Det 66 0,= ≠v v v v  so the four vectors are linearly independent, and hence 

do form a basis for R4. 
 
9. The single equation  2 5 0x y z− + =  is already a system in reduced echelon form, with 

free variables  y  and  z.  With  , , 2 5y s z t x s t= = = −  we get the solution vector 
 
   ( , , ) (2 5 , , ) (2,1,0) ( 5,0,1).x y z s t s t s t= − = + −  
 
 Hence the plane  2 5 0x y z− + =  is a 2-dimensional subspace of  R3 with basis consisting 

of the vectors  1 2(2,1,0) and ( 5,0,1).= = −v v  
 
10. The single equation  0y z− =  is already a system in reduced echelon form, with free 

variables  x  and  z.  With  ,x s y z t= = =  we get the solution vector 
 
   ( , , ) ( , , ) (1,0,0) (0,1,1).x y z s t t s t= = +  
 
 Hence the plane  0y z− =  is a 2-dimensional subspace of  R3 with basis consisting of the 

vectors  1 2(1,0,0) and (0,1,1).= =v v  
 
11. The line of intersection of the planes in Problems 9 and 11 is the solution space of the 

system 

    
2 5 0

0.
x y z

y z
− + =

− =
 

 
 This system is in echelon form with free variable  z = t.  With  y = t  and  x = –3t  we have 

the solution vector  ( 3 , , ) ( 3,1,1).t t t t− = −   Thus the line is a 1-dimensional subspace of R3 
with basis consisting of the vector  v = (–3,1,1). 

 
12. The typical vector in R4 of the form  ( , , , )a b c d  with  a b c d= + +  can be written as   
 

( , , , ) (1,1,0,0) (1,0,1,0) (1,0,0,1).b c d b c d b c d= + + = + +v  
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Hence the subspace consisting of all such vectors is 3-dimensional with basis consisting 
of the vectors 1 2 3(1,1,0,0), (1,0,1,0), and (1,0,0,1).= = =v v v  

 
13. The typical vector in R4 of the form  ( , , , )a b c d  with  3 and 4a c b d= =  can be written 

as   
(3 , 4 , , ) (3,0,1,0) (0,4,0,1).c d c d c d= = +v  

 
Hence the subspace consisting of all such vectors is 2-dimensional with basis consisting 
of the vectors 1 2(3,0,1,0) and (0,4,0,1).= =v v  

 
14. The typical vector in R4 of the form  ( , , , )a b c d  with  2 and 3a b c d= − = −  can be 

written as   
( 2 , , 3 , ) ( 2,1,0,0) (0,0, 3,1).b b d d b d= − − = − + −v  

 
Hence the subspace consisting of all such vectors is 2-dimensional with basis consisting 
of the vectors 1 2( 2,1,0,0) and (0,0, 3,1).= − = −v v  

 
In Problems 15–26, we show first the reduction of the coefficient matrix  A  to echelon form  E. 
Then we write the typical solution vector as a linear combination of basis vectors for the 
subspace of the given system. 
 

15. 
1 2 3 1 0 11
2 3 1 0 1 7

− −   
= → =   − −   

A E  

With free variable  3 1 2and 11 , 7x t x t x t= = =  we get the solution vector  
(11 ,7 , ) (11,7,1).t t t t= =x   Thus the solution space of the given system is 1-

dimensional with basis consisting of the vector  1 (11,7,1).=v  
 

16. 
1 3 4 1 0 11
3 8 7 0 1 5

−   
= → =   

   
A E  

With free variable  3 1 2and with 11 , 5x t x t x t= = = −  we get the solution vector  
(11 , 5 , ) (11, 5,1).t t t t= − = −x   Thus the solution space of the given system is 1-

dimensional with basis consisting of the vector  1 (11, 5,1).= −v  
 

17. 
1 3 2 4 1 0 11 11
2 5 7 3 0 1 3 5

− −   
= → =   − −   

A E  

With free variables  3 4 1 2, and with 11 11 , 3 5x s x t x s t x s t= = = − − = − −  we get the 
solution vector   
 

( 11 11 , 3 5 , , ) ( 11, 3,1,0) ( 11, 5,0,1).s t s t s t s t= − − − − = − − + − −x    
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Thus the solution space of the given system is 2-dimensional with basis consisting of the 
vectors  1 2( 11, 3,1,0) and ( 11, 5,0,1).= − − = − −v v  

 

18. 
1 3 4 5 1 3 0 25
2 6 9 5 0 0 1 5
   

= → =   −   
A E  

With free variables  2 4 1 3, and with 3 25 , 5x s x t x s t x t= = = − − =  we get the solution  
vector   

( 3 25 , ,5 , ) ( 3,1,0,0) ( 25,0,5,1).s t s t t s t= − − = − + −x    
 
Thus the solution space of the given system is 2-dimensional with basis consisting of the 
vectors  1 2( 3,1,0,0) and ( 25,0,5,1).= − = −v v  

 

19. 
1 3 8 5 1 0 3 4
2 1 4 11 0 1 2 3
1 3 3 13 0 0 0 0

− − − −   
   = − → =   
      

A E  

With free variables  3 4 1 2, and with 3 4 , 2 3x s x t x s t x s t= = = − = − −  we get the 
solution vector   
 

(3 4 , 2 3 , , ) (3, 2,1,0) ( 4, 3,0,1).s t s t s t s t= − − − = − + − −x    
 
Thus the solution space of the given system is 2-dimensional with basis consisting of the 
vectors  1 2(3, 2,1,0) and ( 4, 3,0,1).= − = − −v v  

 

20. 
1 3 10 5 1 0 1 2
1 4 11 2 0 1 3 1
1 3 8 1 0 0 0 0

− − −   
   = − → − =   
   −   

A E  

With free variables  3 4 1 2, and with 2 , 3x s x t x s t x s t= = = − = − +  we get the solution 
vector   
 

( 2 , 3 , , ) (1, 3,1,0) ( 2,1,0,1).s t s t s t s t= − − + = − + −x    
 
Thus the solution space of the given system is 2-dimensional with basis consisting of the 
vectors  1 2(1, 3,1,0) and ( 2,1,0,1).= − = −v v  

 

21. 
1 4 3 7 1 0 1 5
2 1 1 7 0 1 1 3
1 2 3 11 0 0 0 0

− − −   
   = − → =   
      

A E  
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With free variables  3 4 1 2, and with 5 , 3x s x t x s t x s t= = = − − = − −  we get the solution 
vector   
 

( 5 , 3 , , ) ( 1, 1,1,0) ( 5, 3,0,1).s t s t s t s t= − − − − = − − + − −x    
 
Thus the solution space of the given system is 2-dimensional with basis consisting of the 
vectors  1 2( 1, 1,1,0) and ( 5, 3,0,1).= − − = − −v v  

 

22. 
1 2 3 16 1 2 0 5
2 4 1 17 0 0 1 7
1 2 3 26 0 0 0 0

− − − −   
   = − → =   
   −   

A E  

With free variables  2 4 1 3, and with 2 5 , 7x s x t x s t x t= = = − = −  we get the solution  
vector   

(2 5 , , 7 , ) (2,1,0,0) ( 5,0, 7,1).s t s t t s t= − − = + − −x    
 
Thus the solution space of the given system is 2-dimensional with basis consisting of the 
vectors  1 2(2,1,0,0) and ( 5,0, 7,1).= = − −v v  

 

23. 
1 5 13 14 1 0 2 0
2 5 11 12 0 1 3 0
2 7 17 19 0 0 0 1

−   
   = → =   
      

A E  

With free variable  3 1 2 4and with 2 , 3 , 0x s x s x s x= = = − =  we get the solution  
vector  (2 , 3 , ,0) (2, 3,1,0).s s s s= − = −x   Thus the solution space of the given system is 
1-dimensional with basis consisting of the vector  1 (2, 3,1,0).= −v  

 

24. 
1 3 4 8 6 1 0 2 1 3
1 0 2 1 3 0 1 2 3 1
2 7 10 19 13 0 0 0 0 0

− −   
   = → − − =   
   − −   

A E  

With free variables  3 4 5 1 2, , and with 2 3 , 2 3x r x s x t x r s t x r s t= = = = − − − = + −  we 
get the solution vector   
 
   ( 2 3 ,2 3 , , , ) ( 2,2,1,0,0) ( 1,3,0,1,0) ( 3, 1,0,0,1).r s t r s t r s t r s t= − − − + − = − + − + − −x    
 
Thus the solution space of the given system is 3-dimensional with basis consisting of the 
vectors  1 2 3( 2,2,1,0,0), ( 1,3,0,1,0), and ( 3, 1,0,0,1).= − = − = − −v v v  

 



 Section 4.4 211  

25. 
1 2 7 9 31 1 2 0 2 3
2 4 7 11 34 0 0 1 1 4
3 6 5 11 29 0 0 0 0 0

− −   
   = − → − =   
   −   

A E  

With free variables  2 4 5 1 3, , and with 2 2 3 , 4x r x s x t x r s t x s t= = = = − + − = −  we get 
the solution vector   
 

( 2 2 3 , , 4 , , ) ( 2,1,0,0,0) (2,0,1,1,0) ( 3,0, 4,0,1).r s t r s t s t r s t= − + − − = − + + − −x    
 
Thus the solution space of the given system is 3-dimensional with basis consisting of the 
vectors  1 2 3( 2,1,0,0,0), (2,0,1,1,0), and ( 3,0, 4,0,1).= − = = − −v v v  

 

26. 
3 1 3 11 10 1 0 0 2 3
5 8 2 2 7 0 1 0 1 4
2 5 0 1 14 0 0 1 2 5

− −   
   = − → − =   
   − − −   

A E  

With free variables  4 5 1 2 3, and with 2 3 , 4 , 2 5x s x t x s t x s t x s t= = = − + = − = +  we get 
the solution vector   
 

( 2 3 , 4 , 2 5 , , ) ( 2,1,2,1,0) (3, 4,5,0,1).s t s t s t s t s t= − + − + = − + −x    
 
Thus the solution space of the given system is 2-dimensional with basis consisting of the 
vectors  1 2( 2,1,2,1,0) and (3, 4,5,0,1).= − = −v v  

 
27. If the vectors  1 2, , , nv v v�  are linearly independent, and  w  is another vector in V, then 

the vectors  1 2, , , , nw v v v�  are linearly dependent (because no  n+1 vectors in the n-
dimensional vector space  V  are linearly independent).  Hence there exist scalars  

1 2, , , , nc c c c�  not all zero such that 
 
    1 1 2 2 .n nc c c c+ + + + =w v v v 0�  
 
 If  c = 0  then the coefficients  1 2, , , nc c c�  would not all be zero, and hence this equation 

would say (contrary to hypothesis) that the vectors  1 2, , , nv v v�  are linearly dependent.  
Therefore  c ≠ 0,  so we can solve for  w  as a linear combination of the vectors  

1 2, , , .nv v v�   Thus the linearly independent vectors  1 2, , , nv v v�  span  V,  and 
therefore form a basis for  V.   

 
28. If the  n  vectors in  S  were not linearly independent, then some one of them would be a 

linear combination of the others.  These remaining  n–1  vectors would then span the n-
dimensional vector space  V,  which is impossible.  Therefore the spanning set  S  is also 
linearly independent, and therefore is a basis for  V.   
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29. Suppose  1 1 2 2 .k kc c c c+ + + + =v v v v 0�   Then  c = 0  because, otherwise, we could 
solve for  v  as a linear combination of the vectors  1 2, , , .kv v v�   But this is impossible, 
because  v  is not in the subspace  W  spanned by  1 2, , , .kv v v�   It follows that   

1 1 2 2 ,k kc c c+ + + =v v v 0�   which implies that  1 2 0kc c c= = = =�  also, because the 
vectors  1 2, , , kv v v�  are linearly independent.  Hence we have shown that the  k+1  
vectors  1 2, , , , kv v v v�  are linearly independent. 

 
30. Let  { }1 2, , , kS = v v v�  be a linearly independent set of  k < n  vectors in  V.  If the 

vector  1k+v  in  V  is not in  W = span(S), then Problem 29 implies that the  k+1 vectors  

1 2 1, , , ,k k +v v v v�  are linearly independent.  Continuing in this fashion, we can add one 
vector at a time until we have  n  linearly independent vectors in  V, which then form a 
basis for  V  that contains the original basis  S.   

 
31. If  1k+v  is a linear combination of the vectors  1 2, , , ,kv v v�  then obviously every linear 

combination of the vectors  1 2 1, , , ,k k +v v v v�  is also a linear combination of  

1 2, , , .kv v v�   But the former set of  k+1  vectors spans  V, so the latter set of  k  vectors 
also spans  V. 

 
32. If the spanning set  S  for  V  is not linearly independent, then some vector in  S  is a 

linear combination of the others.  But Problem 31 says that when we remove this 
dependent vector from  S,  the resulting set of one fewer vectors still spans  V.  
Continuing in this fashion, we remove one vector at a time from  S  until we wind up with 
a spanning set for  V  that is also a linearly independent set, and therefor forms a basis for  
V  that is contained by the original spanning set  S. 

 
33. If  S  is a maximal linearly independent set in  V,  the we see immediately that every other 

vector in  V  is a linear combination of the vectors in  S.  Thus  S  also spans  V, and is 
therefore a basis for  V. 

 
34. If the minimal spanning set  S  for  V  were not linearly independent, then (by Problem 

28) some vector  S  would be a linear combination of the others.  Then the set obtained 
from the minimal spanning set  S  by deleting this dependent vector would be a smaller 
spanning set for  S  (which is impossible).  Hence the spanning set  S  is also a linearly 
independent set, and therefore is a basis for  V. 

 
35. Let  { }1 2, , , nS = v v v�   be a uniquely spanning set for  V.  Then the fact, that   

    1 20 0 0 n= + + +0 v v v�  

 is the unique expression of the zero vector  0  as a linear combination of the vectors in  S, 
means that  S  is a linearly independent set of vectors.  Hence  S  is a basis for  V. 
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36. If  1 2, , , ka a a�  are scalars, then the linear combination  1 1 2 2 k kc c c+ + +v v v�  — of the 
column vectors of the matrix in Eq. (12) having the k k×  identity matrix as its "bottom" 
k k×  submatrix — is a vector of the form  ( )1 2, , , , , , ,* * * ka a a� � .  Hence this linear 
combination can equal the zero vector only if  1 2 0.ka a a= = = =�   Thus the vectors  

1 2, , , kv v v�  are linearly independent. 
 
 
 
SECTION 4.5 
 
ROW AND COLUMN SPACES 
 
Conventional wisdom (at a certain level) has it that a homogeneous linear system  =Ax 0  of  m  
equations in  n m>  unknowns ought to have  n m−  independent solutions.  In Section 4.5 of the 
text we use row and column spaces to show that this "conventional wisdom" is valid under the 
condition that the  m  equations are irredundant — meaning that the rank of the coefficient 
matrix  A  is  m  (so its  m  row vectors are linearly independent).  
 
In each of Problems 1–12 we give the reduced echelon form  E  of the matrix  A, a basis for the 
row space of  A, and a basis for the column space of  A. 
 

1. 
1 0 11
0 1 4
0 0 0

 
 = −
 
  

E  

 Row basis:   The first and second row vectors of  E.  
 Column basis:   The first and second column vectors of  A. 
 

2. 
1 0 2
0 1 3
0 0 0

 
 = −
 
  

E  

 Row basis:   The first and second row vectors of  E.  
 Column basis:   The first and second column vectors of  A. 
 

3. 
1 0 1 5
0 1 1 3
0 0 0 0

 
 =
 
  

E  

 Row basis:   The first and second row vectors of  E.  
 Column basis:   The first and second column vectors of  A. 
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4. 
1 0 0 4
0 1 0 3
0 0 1 0

 
 =
 
  

E  

 Row basis:   The three row vectors of  E.  
 Column basis:   The first three column vectors of  A. 
 

5. 
1 0 2 0
0 1 3 0
0 0 0 1

− 
 =
 
  

E  

 Row basis:   The three row vectors of  E.  
 Column basis:   The first, second, and fourth column vectors of  A. 
 

6. 
1 0 1 0
0 1 2 0
0 0 0 1

 
 =
 
  

E  

 Row basis:   The three row vectors of  E.  
 Column basis:   The first, second, and fourth column vectors of  A. 
 

7. 

1 0 3 4
0 1 2 3
0 0 0 0
0 0 0 0

− 
 
 =
 
 
 

E  

 Row basis:   The first two row vectors of  E.  
 Column basis:   The first two column vectors of  A. 
 

8. 

1 0 1 0
0 1 2 0
0 0 0 1
0 0 0 0

 
 
 =
 
 
 

E  

 Row basis:   The first three row vectors of  E.  
 Column basis:   The first, second, and fourth column vectors of  A. 
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9. 

1 0 0 3
0 1 0 2
0 0 1 4
0 0 0 0

 
 −
 =
 
 
 

E  

 Row basis:   The first three row vectors of  E.  
 Column basis:   The first three column vectors of  A. 
 

10. 

1 0 1 0 0
0 1 1 0 1
0 0 0 1 1
0 0 0 0 0

 
 
 =
 
 
 

E  

 Row basis:   The first three row vectors of  E.  
 Column basis:   The first, second, and fourth column vectors of  A. 
 

11. 

1 0 2 1 0
0 1 1 2 0
0 0 0 0 1
0 0 0 0 0

 
 
 =
 
 
 

E  

 Row basis:   The first three row vectors of  E.  
 Column basis:   The first, second, and fifth column vectors of  A. 
 

12. E is the same reduced echelon matrix as in Problem 11. 
 Row basis:   The first three row vectors of  E.  
 Column basis:   The first, second, and fifth column vectors of  A. 
 

In each of Problems 13–16 we give the reduced echelon form  E  of the matrix having the given 
vectors  1 2, ,v v …  as its column vectors. 
 

13. 

1 0 1
0 1 2
0 0 0
0 0 0

 
 
 =
 
 
 

E  

 Linearly independent:   1 2andv v   
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14. 

1
5
2
5

1 0 2
0 1 1
0 0 0 0
0 0 0 0

 
 
 =
 
 
 

E  

 Linearly independent:   1 2andv v   
 

15. 

1 0 2 0
0 1 1 0
0 0 0 1
0 0 0 0

 
 −
 =
 
 
 

E  

 Linearly independent:   1 2 4, , andv v v   
 

16. 

1 0 2 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

 
 −
 =
 
 
 

E  

 Linearly independent:   1 2 4 5, , , andv v v v   
 

In each of Problems 17–20 the matrix  E  is the reduced echelon matrix of the matrix  
[ ]1 1 .k n=A v v e e� �  

 

17. 
1 0 3 0 2
0 1 2 0 1
0 0 0 1 1

− 
 = −
 

−  

E  

 Basis vectors:   1 2 2, ,v v e   
 

18. 

1 2
5 5

31
5 5

1 0 0
0 1 0
0 0 0 1 2

− 
 =
 
  

E  

 Basis vectors:   1 2 2, ,v v e   
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19. 

1 0 3 0 0 2
0 1 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

− 
 −
 =

− 
 − 

E  

 Basis vectors:   1 2 2 3, , ,v v e e   
 

20. 

5
2

3
2

1 0 0 0 2
0 1 0 0 1
0 0 1 0 0 1
0 0 0 0 1 1

− 
 −
 =
 − 
 −� �

E  

 Basis vectors:   1 2 1 3, , ,v v e e   
 

In each of Problems 21–24 the matrix  E  is the reduced echelon form of the transpose  TA  of 
the coefficient matrix  .A  
 

21. 
1 0 2
0 1 1
0 0 0

 
 =
 
  

E  

 The first and second equations are irredundant. 
 

22. 

1 0 2
0 1 1
0 0 0
0 0 0

 
 
 =
 
 
 

E  

 The first and second equations are irredundant. 
 

23. 

1 0 2 0
0 1 1 0
0 0 0 1
0 0 0 0

 
 
 =
 
 
 

E  

 The first, second, and fourth equations are irredundant. 
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24. 
1 0 1 2 0
0 1 2 1 0
0 0 0 0 1

 
 =
 
  

E  

 The first, second, and fifth equations are irredundant. 
 

25. The row vectors of  A  are the column vectors of its transpose matrix  ,TA  so 
 
  rank(A)  =  row rank of  A  =  column rank of  TA  =  rank ( ).TA  
 
26. The rank of the  n n×  matrix  A  is  n  if and only if its column vectors are linearly 

independent, in which case  det( ) 0≠A  by Theorem 2 in Section 4.3, so it follows by 
Theorem 2 in Section 3.6 that  A  is invertible. 

 
27. The rank of the 3 5×  matrix  A  is 3, so its column vectors  1 1 5, , ,a a a…  span  3.R   

Therefore any given vector  b  in  3R  can be expressed as a linear combination  
1 1 2 2 5 5x x x= + + +b a a a�  of the column vectors of  A.  The column vector  x  whose 

elements are the coefficients in this linear combination  is then a solution of the equation  
.=Ax b  

 
28. The rank of the 5 3×  matrix  A  is 3, so its three column vectors  1 1 3, ,a a a  are linearly 

independent.  Therefore any given vector  b  in  5R  can be expressed in at most one way 
as a linear combination  1 1 2 2 3 3x x x= + +b a a a  of the column vectors of  A.  This means 

that the equation  =Ax b  has at most one solution  [ ]1 2 3 .Tx x x=x  
 
29. The rank of the m n×  matrix  A  is at most  ,m n<  and therefore is less than the number  

n  of its column vectors.  Hence the column vectors  1 1, , , na a a…  of  A  are linearly 
dependent, so there exists a linear combination  1 1 2 2 n ny y y+ + + =a a a 0�  with not all 

the coefficients being zero.  If   [ ]1 2
T

nx x x=x …  is one solution of the equation  
,=Ax b  then  ( ) ,+ = + = + =A x y Ax Ay b 0 b  so  +x y  is a second different solution.  

Thus solutions of the equation are not unique. 
 
30. The rank of the m n×  matrix  A  is at most  ,n m<  and therefore is less than the number  

m  of its row vectors.  Hence the dimension of the column space of  A  is less than  m, so 
this column space is a proper subspace of  .mR  Hence there exists a vector  b  in  mR  
that is not a linear combination of the column vectors of  A.  This means that the equation  

=Ax b  has no solution. 
 
31. The rank of the m n×  matrix  A  is  m  if and only if  A  has  m  linearly independent 

column vectors — in which case these  m  linearly independent column vectors constitute 
a basis for  .mR  Hence the rank of  A  is  m  if and only if its column vectors  



 Section 4.5 219  

1 1, , , na a a…  span  mR  — in which case every vector  b  in  mR  can be expressed as a 
linear combination  1 1 2 2 ,n nx x x= + + +b a a a�  so the equation  =Ax b   has the solution  

[ ]1 2 .T
nx x x=x …  

 
 
32. The rank of the m n×  matrix  A  is  n  if and only if  the n  column vectors  1 1, , , na a a…  

of  A  are linearly independent — in which a vector  b  in  mR  can be expressed in at 
most one way as a linear combination  1 1 2 2 .n nx x x= + + +b a a a�   This means that the 

equation  =Ax b   has at most one solution  [ ]1 2 .T
nx x x=x …  

 
 
33. Suppose that some linear combination of the  k  pivot column vectors  1 1, , , kp p p…  in (8) 

equals the zero vector.  Denote by  1 1, , , kc c c…  the coefficients in this linear 
combination.  Then the first  k  scalar components of the equation  

1 1 2 2 3 3 k kc c c c+ + + + =p p p p 0�  yield the  k k×  upper-triangular system  
 

   

1 1 2 21 3 31 1

2 2 3 32 2

3 3 3

0
0
0

0

k k

k k

k k

k k

c d c p c p c p
c d c p c p

c d c p

c d

+ + + + =
+ + + =

+ + =

=

�

�

�

�

 

 
 where  i jp  (for  i j> ) denotes the jth element of the vector  ip  and  .ii ip d=  Because the 

leading entries  1 1, , , kd d d…  are all nonzero, it follows by back-substitution that  

1 2 0.kc c c= = = =�  Therefore the column vectors are linearly independent. 
 
 
34. If no row interchanges are involved, then (for any k) the space spanned by the first  k  row 

vectors of  A  is never changed in the process of reducing  A  to the echelon matrix  E; 
this follows immediately from the proof of Theorem 2 in this section.  Hence the first  r  
row vectors of  A  span the r-dimensional space  Row(A), and therefore are linearly 
independent. 

 
 
35. Look at the  r  row vectors of the matrix  A  that are determined by its largest nonsingular  

r r×  submatrix.  Then Theorem 3 in Section 4.3 says that these  r  row vectors are 
linearly independent, whereas any  1r +  row vectors of  A  are linearly dependent. 
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SECTION 4.6 
 
ORTHOGONAL VECTORS IN nR  
 
The generalization in this section, of the dot product to vectors in  ,nR  enables us to flesh out the 
algebra of vectors in nR  with the Euclidean geometry of angles and distance.  We can now refer to 
the vector space nR  (provided with the dot product) as n-dimensional Euclidean space. 
 
1. 1 2 (2)(3) (1)( 6) (2)(1) (1)( 2) 6 6 2 2 0⋅ = + − + + − = − + − =v v  
 1 3 (2)(3) (1)( 1) (2)( 5) (1)(5) 6 1 10 5 0⋅ = + − + − + = − − + =v v  
 2 3 (3)(3) ( 6)( 1) (1)( 5) ( 2)(5) 9 6 5 10 0⋅ = + − − + − + − = + − − =v v  

 Yes, the three vectors are mutually orthogonal. 
 
2. 1 2 (3)(6) ( 2)(3) (3)(4) ( 4)(6) 18 6 12 24 0⋅ = + − + + − = − + − =v v  
 1 3 (3)(17) ( 2)( 12) (3)( 21) ( 4)(3) 51 24 63 12 0⋅ = + − − + − + − = + − − =v v  
 2 3 (6)(17) (3)( 12) (4)( 21) (6)(3) 102 36 84 18 0⋅ = + − + − + = − − + =v v  

 Yes, the three vectors are mutually orthogonal. 
 
3. 1 2 1 3 2 315 10 4 1 0, 15 0 32 17 0, 9 0 8 17 0⋅ = − − − = ⋅ = + − + = ⋅ = + + − =v v v v v v  
 Yes, the three vectors are mutually orthogonal. 
 

4. 1 2 1 3

2 3

3 4 9 12 4 0, 6 4 12 2 4 0,
18 4 12 6 16 0

⋅ = + + − − = ⋅ = + − − + =
⋅ = + − + − =

v v v v
v v

 

 Yes, the three vectors are mutually orthogonal. 
 
In each of Problems 5–8 we write  , , and .CB CA AB= = =u v w

���� ��� ����

  Then we calculate  ,a = u  

,b = v   and  c = w   so as to verify that  2 2 2.a b c+ =  
 
5. 2 2 2(1,1,2, 1), (1, 1,1,2), (0,2,1, 3); 7, 7, 14a b c= − = − = − = = =u v w  
 
6. 2 2 2(3, 1,2,2), (2,2, 3,1), (1, 3,5,1); 18, 18, 36a b c= − = − = − = = =u v w  
 
7. 2 2 2(2,1, 2,1,3), (3,2,2,2, 2), ( 1, 1, 4, 1,5); 19, 25, 44a b c= − = − = − − − − = = =u v w  
 
8. 2 2 2(3,2,4,5,7), (7,5, 5,2, 3), ( 4, 3,9,3,10); 103, 112, 215a b c= = − − = − − = = =u v w  
 
The computations in Problems 5–8 show that in each triangle  ABC∆  the angle at  C  is a right 

angle.  The angles at the vertices  A  and  B  are then determined by the relations 



 Section 4.6 221  

 cos and cos .AB AC BA BCA B
AB AC BA BC

⋅ ⋅ ⋅ ⋅∠ = = − ∠ = = +v w u w
v w u w

���� ���� ���� ����

���������� ���������  

The fact that  90A B °∠ + ∠ =  then serves as a check on our numerical computations. 
 

9. 1 1 1 17 1 7 1cos cos 45 , cos cos 45
7 14 2 7 14 2

A B− − ° − − °−      ∠ = − = = ∠ = + = =      
      

 

 

10. 1 118 1cos cos 45 ,
18 36 2

A − − °−   ∠ = − = =  
  

 

 1 118 1cos cos 45
18 36 2

B − − °   ∠ = + = =  
  

 

 

11. 1 125 25cos cos 41.08 ,
4425 44

A − − ° − ∠ = − = =  
   

 

 1 119 19cos cos 48.92
4419 44

B − − °  ∠ = = =  
   

 

 

12. 1 1112 112cos cos 43.80 ,
215112 215

A − − ° − ∠ = − = =  
   

 

 1 1103 103cos cos 46.20
215103 215

B − − °  ∠ = = =  
   

 

 
In each of Problems 13–22, we denote by  A  the matrix having the given vectors as its row 
vectors, and by  E  the reduced echelon form of  A.  From  E  we find the general solution of the 
homogeneous system  =Ax 0  in terms of parameters  , , .s t …   We then get basis vectors  

1 2, ,u u …  for the orthogonal complement  V ⊥  by setting each parameter in turn equal to  1  (and 
the others then equal to 0). 
 
13. [ ] 2 3 11 2 3 ; , , 2 3x s x t x s t= = − = = = −A E  
 1 2(2,1,0), ( 3,0,1)= = −u u   
 
14. [ ] 2 3 11 5 3 ; , , 5 3x s x t x s t= = − = = = − +A E  
 1 2( 5,1,0), (3,0,1)= − =u u   
 
15. [ ] 2 3 4 11 2 3 5 ; , , , 2 3 5x r x s x t x r s t= = − − = = = = + −A E  
 1 2 3(2,1,0,0), (3,0,1,0), ( 5,0,0,1)= = = −u u u   
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16. [ ] 2 3 4 11 7 6 9 ; , , , 7 6 9x r x s x t x r s t= = − − = = = = − + +A E  
 1 2 3( 7,1,0,0), (6,0,1,0), (9,0,0,1)= − = =u u u   
 

17. 
1 0 7 19
0 1 3 5

− =  − 
E  

 3 4 2 1, , 3 5 , 7 19x s x t x s t x s t= = = − + = −  

 1 2(7, 3,1,0), ( 19,5,0,1)= − = −u u   
 

18. 
1 0 12 16
0 1 3 7

− =  − 
E  

 3 4 2 1, , 3 7 , 12 16x s x t x s t x s t= = = − + = − +  

 1 2( 12, 3,1,0), (16,7,0,1)= − − =u u   
 

19. 
1 0 13 4 11
0 1 4 3 4

− =  − − 
E  

 3 4 5 2 1, , , 4 3 4 , 13 4 11x r x s x t x r s t x r s t= = = = − + = − + −  

 1 2 3( 13,4,1,0,0), (4, 3,0,1,0), ( 11,4,0,0,1)= − = − = −u u u   
 

20. 
1 0 5 12 19
0 1 1 4 7
 =  − − − 

E  

 3 4 5 2 1, , , 4 7 , 5 12 19x r x s x t x r s t x r s t= = = = + + = − − −  

 1 2 3( 5,1,1,0,0), ( 12,4,0,1,0), ( 19,7,0,0,1)= − = − = −u u u   
 

21. 
1 0 1 0 0
0 1 1 0 1
0 0 0 1 1

 
 =
 
  

E  

 3 5 4 2 1, , , ,x s x t x t x s t x s= = = − = − − = −  

 1 2( 1, 1,1,0,0), (0, 1,0, 1,1)= − − = − −u u   
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22. 
1 0 2 1 0
0 1 1 2 0
0 0 0 0 1

− 
 = −
 
  

E  

 3 4 5 2 1, , 0, 2 , 2x s x t x x s t x s t= = = = − = − +  

 1 2( 2,1,1,0,0), (1, 2,0,1,0)= − = −u u   
 
23. (a) 2 2 ( 2 ) ( 2 )+ + − = ⋅ + ⋅ + ⋅ + ⋅ − ⋅ + ⋅u v u v u u u v v v u u u v v v  

    2 22 2 2= + = ⋅ + ⋅u v u u u u  

 (b) 2 2 ( 2 ) ( 2 ) 4+ − − = ⋅ + ⋅ + ⋅ − ⋅ − ⋅ + ⋅ = ⋅u v u v u u u v v v u u u v v v u v  

 

24. Equation (15) in the text says that the given formula holds for  2k =  vectors.  Assume 
inductively that it holds for  1k n= −  vectors.  Then 

 
  2 2 2

1 2 1 1 2 1n n n n− −+ + + = + + +v v v v v v v v� �  

     ( )2 2 2 2
1 2 1n n−= + + + +v v v v�  

 
 as desired.  The case  2k =  is used for the first equality here, and the case  1k n= −  for 

the second one. 
 
25. Suppose, for instance, that  1 3(1,0,0,0,0), (0,0,1,0,0),A B= = = =e e  and  

5
5 (0,0,0,0,1) in .C = =e R   Then  3 1 ( 1,0,1,0,0)AB = − = −e e

����

  and  

5 1 (0,0,1,0,0, 1).AC = − = −e e
����

  Then  1AB AC⋅ =
���� ����

  while  2.AB AC= =
���� ����

  It follows 

that  1
2cos 1/( 2)( 2) , so 60 .A A∠ = = ∠ = °   Similarly,  60 ,B C∠ = ∠ = °  so we see 

that  ABC∆  is an equilateral triangle. 
 
26. Because  cos ,θ⋅ =u v u v  it follows that  ⋅ =u v u v   if and only if  cos 1,θ =  in which 

case  0θ =  so the two vectors are collinear. 
 
27. If the u  lines both in the subspace  V  and in its orthogonal complement  ,V ⊥  then the 

vector  u  is orthogonal to itself.  Hence  2 0,u⋅ = =u u  so it follows that  .=u 0  
 
28. If  W  is the orthogonal complement of  V,  then every vector in  V  is orthogonal to every 

vector in  W.  Hence  V  is contained in  .W ⊥   But it follows from Equation (18) in this 
section that the two subspaces  V  and  W ⊥  have the same dimension.  Because one 
contains the other, they must therefore be the same subspace,  so  W V⊥ =  as desired. 
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29. If  u  is orthogonal to each vector in the set  S  of vectors, then it follows easily (using the 
dot product) that  u  is orthogonal to every linear combination of vectors in  S.  Therefore  
u  is orthogonal to  Span( ).V S=  

 
30. If  0⋅ =u v   and  + =u v 0  then 
 
   0 ( ) ,= ⋅ + = ⋅ + ⋅ = ⋅u u v u u u v u u  
 
 so it follows that  ,=u 0  and then  + =u v 0   implies that  =v 0  also. 
 
31. We want to show that any linear combination of vectors  1 2, , , pu u u…  of vectors in  S  is 

orthogonal to every linear combination of vectors  1 2, , , qv v v…  in  T.  But if each  iu  is  
 orthogonal to each  ,jv  so  0,i j⋅ =u v  then it follows that 

  ( ) ( )1 1 2 2 1 1 2 2
1 1

0,
p q

p p q q i j i j
i j

a a a b b b a b
= =

+ + + ⋅ + + + = ⋅ =∑∑u u u v v v u v� �  

 so we see that the two linear combinations are orthogonal, as desired. 
 
32. Suppose that the linear combination  1 1 2 2 1 1 2 2 ,a a b b+ + + =u u v v 0  and we want to deduce 

that all four coefficients  1 2 1 2, , ,a a b b  must necessarily be zero.  For this purpose, write 
 
   1 1 2 2a a= +u u u           and          1 1 2 2.b b= +v v v  
 
 Then the vectors  u  and  v  are orthogonal by Problem 31, so by Problem 30 the fact that  

+ =u v 0   implies that 
 
          1 1 2 2a a= + =u u u 0       and       1 1 2 2 .b b= + =v v v 0  
 
 Now the assumed linear independence of   { }1 2,u u  implies that  1 2 0,a a= =   and the 

assumed linear independence of  { }1 2,v v  implies that  1 2 0.b b= =   Thus we conclude 
that all four coefficients are zero, as desired. 

 
33. This is the same as Problem 32, except with   
 
  1 1 2 2 k ka a a= + + +u u u u�        and      1 1 2 2 .m mb b b= + + +v v v v�  
 
34. It follows immediately from Problem 33 and from Equation (18) in the text that the union 

of a basis for the subspace  V  and a basis for its orthogonal complement  V ⊥  is a linearly 
independent set of  n  vectors, and is therefore a basis for the n-dimensional vector space  

.nR  
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35. This is one of the fundamental theorems of linear algebra.  The nonhomogeneous system 

      =Ax b  

 is consistent if and only if the vector  b  is in the subspace  Col( ) Row( ).T=A A   But  b  
is in  Row( )TA  if and only if  b  is orthogonal to the orthogonal complement of  
Row( )TA .  But  Row( ) Null( ),T T⊥ =A A  which is the solution space of the 
homogeneous system 

      .T =A y 0  

 Thus we have proved (as desired) that the nonhomogeneous system  =Ax b  has a 
solution if and only if the constant vector  b  is orthogonal to every solution  y  of the 
nonhomogeneous system  .T =A y 0  

 
 
 
SECTION 4.7 
 
GENERAL VECTOR SPACES 
 
In each of Problems 1–12, a certain subset of a vector space is described.  This subset is a subspace 
of the vector space if and only if it is closed under the formation of linear combinations of its 
elements.  Recall also that every subspace of a vector space must contain the zero vector. 
 
1. It is a subspace of  M33, because any linear combination of diagonal 3 3×  matrices — with 

only zeros off the principal diagonal — obviously is again a diagonal matrix. 
 
2. The square matrix  A  is symmetric if and only if  AT = A.  If  A  and  B  are symmetric 

3 3×  matrices, then  ( ) ,T T Tc d c d c d+ = + = +A B A B A B  so the linear combination  
c d+A B  is also symmetric.  Thus the set of all such matrices is a subspace.  

 
3. The set of all nonsingular 3 3×  matrices does not contain the zero matrix, so it is not a 

subspace. 
 
4. The set of all singular 3 3×  matrices is not a subspace, because the sum 
 

  
1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1

     
     + =     
          

 

 
 of singular matrices is not singular. 
 
5. The set of all functions  :f →R R  with  (0) 0f =  is a vector space, because if  

(0) (0) 0f g= =  then  ( )(0) (0) (0) 0 0 0.a f bg a f bg a b+ = + = ⋅ + ⋅ =  
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6. The set of all functions  :f →R R  with  (0) 0f ≠  is not a vector space, because it does 
not contain the zero function  (0) 0.f ≡  

 
7. The set of all functions  :f →R R  with  (0) 0 and (1) 1f f= =  is not a vector space.  For 

instance, if  2 then (1) 2 (1) 2 1 2 1,g f g f= = = ⋅ = ≠  so  g  is not such a function.  Also, 
this set does not contain the zero function. 

 
8. A function  :f →R R  such that  ( ) ( )f x f x− = −  is called an odd function.  Any linear 

combination  af bg+  of odd functions is again odd, because 
 
  ( )( ) ( ) ( ) ( ) ( ) ( )( ).a f bg x a f x bg x a f x bg x a f bg x+ − = − + − = − − = − +  
 
 Thus the set of all odd functions is a vector space. 
 
 
For Problems 9–12, let us call a polynomial of the form 2 3

0 1 2 3a a x a x a x+ + +  a "degree at most 3" 
polynomial. 
   
9. The set of all degree at most 3 polynomials with nonzero leading coefficient  3 0a ≠  is not a 

vector space, because it does not contain the zero polynomial (with all coefficients zero). 
 
10. The set of all degree at most 3 polynomials not containing  x  or  x2  terms is a vector space, 

because any linear combination of such polynomials obviously is such a polynomial. 
 
11. The set of all degree at most 3 polynomials with coefficient sum zero is a vector space, 

because any linear combination of such polynomials obviously is such a polynomial. 
 
12. If the degree at most 3 polynomials  f  and  g  have all-integer coefficients, the linear 

combination  a f b g+ may have non-integer coefficient, because a  and  b  need not be 
integers.  Hence the set of all degree at most 3 polynomials having all-integer coefficients is 
not a vector space. 

 
13. The functions  sin and cosx x  are linearly independent, because neither is a scalar 

multiple of the other.  (This follows, for instance, from the facts that  sin(0) 0, cos(0) 1= =  
and  sin( / 2) 1, cos( / 2) 0,π π= =  noting that any scalar multiple of a function with a zero 
value must have the value 0 at the same point.) 

 
14. The functions  andx xe xe are linearly independent, since obviously neither is a scalar 

multiple of the other (their ratios  / and /x x x xxe e x e xe=  neither being constants). 
 
15. If   

2 2
1 2 3 1 2 3 1 2 3(1 ) (1 ) (1 ) ( ) ( ) 0,c x c x c x c c c c c x c x+ + − + − = + + + − − =  
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 then 
    1 2 3 1 2 3 0.c c c c c c+ + = − = =  
 
 It follows easily that  1 2 3 0,c c c= = =  so we conclude that the functions  (1 ), (1 ),x x+ −  
 and  2(1 )x−   are linearly independent. 
 

16. 2 2( 1) (1 ) (1) ( ) (1) (1 ) 0,x x x x− ⋅ + + ⋅ + + ⋅ − =  so the three given polynomials are linearly 
dependent. 

 

17. 2 2cos 2 cos sinx x x= −   according to a well-known trigonometric identity.  Thus these 
three trigonometric functions are linearly dependent. 

 

18. If   

      1 2 1 2 1 2(2cos 3sin ) (4cos 5sin ) (2 4 )cos (3 5 )sin 0c x x c x x c c x c c x+ + + = + + + =  
  

then the fact that  sin and cosx x  are linearly independent (Problem 13) implies that 

 1 2 1 22 4 3 5 0.c c c c+ = + =   It follows readily that  1 2 0,c c= =  so we conclude that the two 
original linear combinations of  sin and cosx x  are linearly independent. 

 

19. Multiplication by  ( 2)( 3)x x− −  yields 
 
   5 ( 3) ( 2) ( ) (3 2 ).x A x B x A B x A B− = − + − = + − +  
 
 Hence  1 and 3 2 5,A B A B+ = + =  and it follows readily that   A = 3  and  B = –2. 
 

20. Multiplication by  2( 1)x x −  yields 
 
  2 22 ( 1) ( 1) ( 1) ( ) ( ) .A x Bx x Cx x A B C x A B C x= − + + + − = − + − + + +  
 
 Hence  2, 0 and 0.A B C A B C− = − = + + =   It follows readily that   A = –2  and   

B = C = 1. 
 

21. Multiplication by  2( 4)x x +  yields 
 
   2 2 28 ( 4) 4 ( ) .A x Bx Cx A Cx A B x= + + + = + + +  
 
 Hence  4 8, 0 and 0.A C A B= = + =   It follows readily that   A = 2  and  B = –2. 
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22. Multiplication by  ( 1) ( 2)( 3)x x x+ + +  yields 
 

   2

2 ( 2)( 3) ( 1)( 3) ( 1) ( 2)
( ) (5 4 3 ) (6 3 2 ).

x A x x B x x C x x
A B C x A B C x A B C

= + + + + + + + +
= + + + + + + + +

 

 Hence 

     
0

5 4 3 2
6 3 2 0,

A B C
A B C
A B C

+ + =
+ + =
+ + =

  

 and we solve these three equations for  A = –1,  B = 4,  and  C = –3. 
 
23. If  ( ) 0y x′′′ =  then 
 

  
21

2

( ) ( ) (0) ,

( ) ( ) , and

( ) ( ) ( ) ,

y x y x dx dx A

y x y x dx Adx Ax B

y x y x dx Ax B dx Ax Bx C

′′ ′′′= = =

′ ′′= = = +

′= = + = + +

∫ ∫

∫ ∫

∫ ∫

 

  
 where  A,  B,  and  C  are arbitrary constants of integration.  It follows that the function  

( )y x  is a solution of the differential equation  ( ) 0y x′′′ =   if and only if it is a quadratic (at 
most 2nd degree) polynomial.  Thus the solution space is 3-dimensional with basis  
{ }21, , .x x  

 
24. If  (4) ( ) 0y x =  then 
 

  

(4)

21
2

2 21 1 1
2 6 2

( ) ( ) (0) ,

( ) ( ) ,

( ) ( ) ( ) , and

( ) ( ) ( ) .

y x y x dx dx A

y x y x dx Adx Ax B

y x y x dx Ax B dx Ax Bx C

y x y x dx Ax Bx C dx Ax Bx Cx D

′′′ = = =

′′ ′′′= = = +

′ ′′= = + = + +

′= = + + = + + +

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

  
 where  A,  B,  C,  and  D  are arbitrary constants of integration.  It follows that the function  

( )y x  is a solution of the differential equation  (4) ( ) 0y x =   if and only if it is a cubic (at 
most 3rd degree) polynomial.  Thus the solution space is 4-dimensional with basis  
{ }2 31, , , .x x x  

 
25. If  ( )y x  is any solution of the second-order differential equation  5 0y y′′ ′− =  and  

( ) ( ),v x y x′=  then  ( )v x  is a solution of the first-order differential equation  ( ) 5 ( )v x v x′ =  
with the familiar exponential solution  5( ) .xv x Ce=   Therefore 
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  5 51

5( ) ( ) ( ) .x xy x y x dx v x dx Ce dx Ce D′= = = = +∫ ∫ ∫  
 
 We therefore see that the solution space of the equation  5 0y y′′ ′− =  is 2-dimensional with 

basis  { }51, .xe  
 
26. If  ( )y x  is any solution of the second-order differential equation  10 0y y′′ ′+ =  and  

( ) ( ),v x y x′=  then  ( )v x  is a solution of the first-order differential equation  
( ) 10 ( )v x v x′ = −  with the familiar exponential solution  10( ) .xv x Ce−=   Therefore 

 
  10 101

10( ) ( ) ( ) .x xy x y x dx v x dx Ce dx Ce D−′= = = = − +∫ ∫ ∫  
 
 We therefore see that the solution space of the equation  10 0y y′′ ′+ =  is 2-dimensional with 

basis  { }101, .xe−  
 

27. If we take the positive sign in Eq. (20) of the text, then we have  2 2 2v y a= +  where   
( ) ( ).v x y x′=   Then   

2
2 2

2 2

1, sody dxy a
dx dy y a

  = + = 
  +

 

 
 (taking the positive square root as in the text).  Then   
 

   
2 2 2 2 2

1 1

2

( )

sinh sinh .
1

dy a dux y au
y a a u a
du yu b b

au
− −

= = =
+ +

= = + = +
+

⌠ ⌠

⌡⌡

⌠

⌡

 

 
 It follows that   

   
( )( ) sinh( ) sinh cosh cosh sinh

cosh sinh .
y x a x b a x b x b

A x B x
= − = −
= +

 

 

28. We start with the second-order differential equation  0y y′′ + =  and substitute  
( ) ( ),v x y x′=  so 

   dv dv dy dvy v y
dx dy dx dy

′′ = = = = −  
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 as in Example 9 of the text.  Then  ,v dv y dy= −  and integration gives 
 
   2 2 2 2 21 1

2 2 , sov y C v a y= − + = −  
 
 (taking for illustration a positive value for the arbitrary constant  C).  Then 
 

 
2

2 2

2 2

1, sody dxa y
dx dy a y

  = − = 
  −

 

 
 (taking the positive square root).  Then   
 

   
2 2 2 2 2

1 1

2

( )

sin sin .
1

dy a dux y au
a y a a u
du yu b b

au
− −

= = =
− −

= = + = +
−

⌠ ⌠

⌡⌡

⌠

⌡

 

 
 It follows that   

   
( )( ) sin( ) sin cos cos sin

cos sin .
y x a x b a x b x b

A x B x
= − = −
= +

 

 
 Thus the general solution of the 2nd-order differential equation  0y y′′ + =  is a linear 

combination of  cos and sin .x x   It follows that the solution space is 2-dimensional with 
basis  { }cos ,sin .x x  

 

29. (a) The verification in a component-wise manner that  V  is a vector space is the same as 

the verification that Rn is a vector space, except with vectors having infinitely many 

components rather than finitely many components.  It boils down to the fact that a linear 

combination of infinite sequences of real numbers is itself such a sequence, 

    { } { } { }1 1 1
.n n n na x b y ax by∞ ∞ ∞⋅ + ⋅ = +  

 
(b) If  {0, , 0,1, 0, 0, }n =e � �   is the indicated infinite sequence with  1  in the nth 
position, then the fact that   
 
  1 1 2 2 1 2{ , , , , 0, 0, }k k kc c c c c c+ + + =e e e� � �  
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evidently implies that any finite set  1 2, , , ke e e�  of these vectors is linearly independent.  
Thus V contains "arbitrarily large" sets of linearly independent vectors, and therefore is 
infinite-dimensional. 

 

30. (a) If   1 2 1 2, andn n n n n n n n nx x x y y y z ax by− − − −= + = + = +  for each  n,  then 
 

   1 2 1 2

1 1 2 2 1 2

( ) ( )
( ) ( ) .

n n n n n

n n n n n n

z a x x b y y
ax by ax by z z

− − − −

− − − − − −

= + + +
= + + + = +

 

 
 Thus  W  is a subspace of  V. 

 (b) Let  1 {1,0,1,1,2,3,5, }=v �  be the element with  1 21 and 0,x x= =  and let 

2 {0,1,1,2,3,5, }=v �  be the element with  1 20 and 1.x x= =   Then  v1  and  v2  form a 
basis for  W. 

 

31. (a) If  1 1 1z a i b= +  and  2 2 2z a ib= + ,  then direct computation shows that 

  1 1 2 2 1 1 2 2
1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

( ) ( ) ( ) .
c a c a c b b a

T c z c z c T z c T z
c b b a c a c a

+ − − 
+ = + =  + + 

 

(b) If  1 1 1z a i b= +  and  2 2 2z a ib= + ,  then  1 2 1 2 1 2 1 2 2 1( ) ( )z z a a b b i a b a b= − + +  and  
direct computation shows that 

  1 2 1 2 1 2 2 1
1 2 1 2

1 2 2 1 1 2 1 2

( ) ( ) ( ) .
a a b b a b a b

T z z T z T z
a b a b a a b b

− − − 
= =  + − 

 

 
(b) If  z a i b= +   then 
 

  2 2

1 1 .a bi a bi
z a bi a bi a b

− −= ⋅ =
+ − +

 

Therefore   

 
1

1 1
2 2

1( ) ( ) .
a b a b

T z T z
b a b aa b

−
− −−   

= = =   −+    
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CHAPTER 5 
 
HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS 
 
 
SECTION 5.1 
 
INTRODUCTION:  SECOND-ORDER LINEAR EQUATIONS 
 
In this section the central ideas of the theory of linear differential equations are introduced and 
illustrated concretely in the context of second-order equations.  These key concepts include 
superposition of solutions (Theorem 1), existence and uniqueness of solutions (Theorem 2), 
linear independence, the Wronskian (Theorem 3), and general solutions (Theorem 4).  This 
discussion of second-order equations serves as preparation for the treatment of nth order linear 
equations in Section 5.2.  Although the concepts in this section may seem somewhat abstract to 
students, the problems set is quite tangible and largely computational. 
 
In each of Problems 1–16 the verification that  y1  and  y2  satisfy the given differential equation 
is a routine matter.  As in Example 2, we then impose the given initial conditions on the general 
solution  y  =  c1y1 + c2y2.  This yields two linear equations that determine the values of the 
constants  c1  and  c2.  
 
1. Imposition of the initial conditions  (0) 0, (0) 5y y′= =  on the general solution  

1 2( ) x xy x c e c e−= +  yields the two equations  1 2 1 20, 0c c c c+ = − =  with solution  

1 25 / 2, 5 / 2.c c= = −   Hence the desired particular solution is  y(x)  =  5(ex - e-x)/2.   
   

2. Imposition of the initial conditions  (0) 1, (0) 15y y′= − =  on the general solution  
3 3

1 2( ) x xy x c e c e−= +  yields the two equations  1 2 1 21, 3 3 15c c c c+ = − − =  with solution  

1 22, 3.c c= =   Hence the desired particular solution is  y(x)  =  2e3x - 3e-3x.      
 
3. Imposition of the initial conditions  (0) 3, (0) 8y y′= =  on the general solution  

1 2( ) cos2 sin 2y x c x c x= +  yields the two equations  1 23, 2 8c c= =  with solution  

1 23, 4.c c= =   Hence the desired particular solution is  y(x)  =  3 cos 2x + 4 sin 2x.    
 
4. Imposition of the initial conditions  (0) 10, (0) 10y y′= = −  on the general solution  

1 2( ) cos5 sin5y x c x c x= +  yields the two equations  1 210, 5 10c c= = −  with solution  

1 23, 4.c c= =   Hence the desired particular solution is  y(x)  =  10 cos 5x - 2 sin 5x. 
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5. Imposition of the initial conditions  (0) 1, (0) 0y y′= =  on the general solution  
2

1 2( ) x xy x c e c e= +  yields the two equations  1 2 1 21, 2 0c c c c+ = + =  with solution  

1 22, 1.c c= = −   Hence the desired particular solution is  y(x)  =  2ex - e2x.            
  

6. Imposition of the initial conditions  (0) 7, (0) 1y y′= = −  on the general solution  
2 3

1 2( ) x xy x c e c e−= +  yields the two equations  1 2 1 27, 2 3 1c c c c+ = − = −  with solution  

1 24, 3.c c= =   Hence the desired particular solution is  y(x)  =  4e2x + 3e-3x.          
 
7. Imposition of the initial conditions  (0) 2, (0) 8y y′= − =  on the general solution  

1 2( ) xy x c c e−= +  yields the two equations  1 2 22, 8c c c+ = − − =  with solution  

1 26, 8.c c= = −   Hence the desired particular solution is  y(x)  =  6 − 8e-x.              
 
8. Imposition of the initial conditions  (0) 4, (0) 2y y′= = −  on the general solution  

3
1 2( ) xy x c c e= +  yields the two equations  1 2 24, 3 2c c c+ = = −  with solution  

1 214 / 3, 2 / 3.c c= =   Hence the desired particular solution is  y(x)  =  (14 - 2e3x)/3. 
 
9. Imposition of the initial conditions  (0) 2, (0) 1y y′= = −  on the general solution  

1 2( ) x xy x c e c x e− −= +  yields the two equations  1 1 22, 1c c c= − + = −  with solution  

1 22, 1.c c= =   Hence the desired particular solution is  y(x)  =  2e-x + xe-x.              
 
10. Imposition of the initial conditions  (0) 3, (0) 13y y′= =  on the general solution  

5 5
1 2( ) x xy x c e c x e= +  yields the two equations  1 1 23, 5 13c c c= + =  with solution  

1 23, 2.c c= = −   Hence the desired particular solution is  y(x)  =  3e5x - 2xe5x. 
 
11. Imposition of the initial conditions  (0) 0, (0) 5y y′= =  on the general solution  

1 2( ) cos sinx xy x c e x c e x= +  yields the two equations  1 1 20, 5c c c= + =  with solution  

1 20, 5.c c= =   Hence the desired particular solution is  y(x)  =  5exsin x. 
 
12. Imposition of the initial conditions  (0) 2, (0) 0y y′= =  on the general solution  

3 3
1 2( ) cos2 sin 2x xy x c e x c e x− −= +  yields the two equations  1 1 22, 3 2 5c c c= − + =  with 

solution  1 22, 3.c c= =   Hence the desired particular solution is  y(x)  =   
 e-3x(2 cos 2x + 3 sin 2x). 
 
13. Imposition of the initial conditions  (1) 3, (1) 1y y′= =  on the general solution  

2
1 2( )y x c x c x= +  yields the two equations  1 2 1 23, 2 1c c c c+ = + =  with solution  

1 25, 2.c c= = −   Hence the desired particular solution is  y(x)  =  5x - 2x2.   
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14. Imposition of the initial conditions  (2) 10, (2) 15y y′= =  on the general solution  
2 3

1 2( )y x c x c x−= +  yields the two equations  1 2 1 24 /8 10, 4 3 /16 15c c c c+ = − =  with 
solution  1 23, 16.c c= = −   Hence the desired particular solution is  y(x)  =  3x2 - 16/x3.      

 
15. Imposition of the initial conditions  (1) 7, (1) 2y y′= =  on the general solution  

1 2( ) lny x c x c x x= +  yields the two equations  1 1 27, 2c c c= + =  with solution  

1 27, 5.c c= = −   Hence the desired particular solution is  y(x)  =  7x - 5x ln x.   
 
16. Imposition of the initial conditions  (1) 2, (1) 3y y′= =  on the general solution  

1 2( ) cos(ln ) sin(ln )y x c x c x= +  yields the two equations  1 22, 3.c c= =   Hence the 
desired particular solution is  y(x)  =  2 cos(ln x) + 3 sin(ln x). 

 
17. If  /y c x=  then  2 2 2 2 2/ / ( 1) / 0y y c x c x c c x′ + = − + = − ≠   unless either  c = 0   
 or  c = 1. 
 
18. If  3y cx=  then  3 2 4 46 6 6yy cx cx c x x′′ = ⋅ = ≠  unless  2 1.c =  
 
19. If  1y x= +  then  2 3/ 2 1/ 2 2 3/ 2( ) (1 )( / 4) ( / 2) / 4 0.yy y x x x x− − −′′ ′+ = + − + = − ≠  
 
20. Linearly dependent, because 
 
    f(x)  =  π  =  π(cos2x + sin2x)  =  π g(x) 
 
21. Linearly independent, because  3 2x x x= +   if  x > 0,  whereas  3 2x x x= −   if  x < 0. 
 
22. Linearly independent, because 1 (1 )x c x+ = +   would require that  c  =  1  with  x  =  0,  

but  c  =  0  with  x  =  -1.  Thus there is no such constant  c.   
 
23. Linearly independent, because  f(x)  =  +g(x)  if  x > 0,  whereas  f(x)  =  -g(x)  if  x < 0. 
 
24. Linearly dependent, because  g(x)  =  2 f(x). 
 
25. f(x)  =  exsin x  and  g(x)  =  excos x  are linearly independent, because  f(x)  =  k g(x)  

would imply that  sin x  =  k cos x,  whereas  sin x  and  cos x  are linearly independent. 
 
26. To see that  f(x) and  g(x)  are linearly independent, assume that  f(x)  =  c g(x),  and then 

substitute both  x  =  0  and  x  =  π/2. 
 
27. Let  L[y]  =  y″ + py′ + qy.  Then  L[yc]  =  0  and  L[yp]  =  f,  so 
 
    L[yc + yp]  =  L[yc] + [yp]  =  0 + f  =  f. 
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28. If  y(x)  =  1 + c1cos x + c2sin x  then  y′(x)  =  -c1sin x + c2cos x,  so the initial conditions  
y(0)  =  y′(0)  =  -1  yield  c1  =  -2, c2  =  -1.  Hence  y  =  1 - 2 cos x - sin x. 

 
29. There is no contradiction because if the given differential equation is divided by  x2  to 

get the form in Equation (8) in the text, then the resulting functions  p(x)  =  -4/x  and  
q(x)  =  6/x2  are not continuous at  x  =  0. 

 
30. (a) 3

2y x=   and  3
2y x=   are linearly independent because  3 3x c x=   would 

require that  c  =  1  with  x  =  1,  but  c  =  -1  with  x  =  -1.   
 
 (b) The fact that  W(y1, y2)  =  0  everywhere does not contradict Theorem 3, because 

when the given equation is written in the required form 
 
     y″ - (3/x)y′ + (3/x2)y  =  0, 
 
 the coefficient functions  p(x)  =  -3/x  and  q(x)  =  3/x2  are not continuous at  x  =  0. 
 
31. W(y1, y2)  =  -2x  vanishes at  x  =  0,  whereas if  y1  and y2 were (linearly independent) 

solutions of an equation  y″ + py′ + qy  =  0  with  p  and  q  both continuous on an open 
interval  I  containing  x  =  0,  then Theorem 3 would imply that  W ≠ 0  on  I. 

 
32. (a) W  =  y1y2′ - y1′y2,  so 
 
            AW' =  A(y1′y2′ + y1y2″ - y1″y2 - y1′y2′) 

         =  y1(Ay2″) - y2(Ay1″) 

        =  y1(-By2′ - Cy2) - y2(-By1′ - Cy1) 

         =  -B(y1y2′ - y1′y2) 
         
  and thus  AW' =  -BW. 

 (b) Just separate the variables. 

 (c) Because the exponential factor is never zero. 
 
In Problems 33–42 we give the characteristic equation, its roots, and the corresponding general 
solution. 
 
33. 2 3 2 0; 1, 2;r r r− + = =      y(x)  =  c1ex + c2e2x    
 
34. 2 2 15 0; 3, 5;r r r+ − = = −      y(x)  =  c1e-5x  +c2e3x 
 
35. 2 5 0; 0, 5;r r r+ = = −      y(x)  =  c1 + c2e-5x    
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36. 22 3 0; 0, 3/ 2;r r r+ = = −      y(x)  =  c1 + c2e-3x/2 
 
37. 22 2 0; 1, 1/ 2;r r r− − = = −      y(x)  =  c1e-x/2 + c2ex    
 
38. 24 8 3 0; 1/ 2, 3/ 2;r r r+ + = = − −      y(x)  =  c1e-x/2 +c2e-3x/2 
 
39. 24 4 1 0; 1/ 2, 1/ 2;r r r+ + = = − −      y(x)  =  (c1 + c2x)e-x/2    
 
40. 29 12 4 0; 2 / 3, 2 / 3;r r r− + = = − −      y(x)  =  (c1 + c2x)e2x/3 
 
41. 26 7 20 0; 4 / 3, 5 / 2;r r r− − = = −      y(x)  =  c1e-4x/3 + c2e5x/2   
 
42. 235 12 0; 4 / 7, 3/ 5;r r r− − = = −      y(x)  =  c1e-4x/7 + c2e3x/5 
 
In Problems 43–48 we first write and simplify the equation with the indicated characteristic 
roots, and then write the corresponding differential equation. 
 
43. 2( 0)( 10) 10 0;r r r r− + = + = 10 0y y′′ ′+ =      
 
44. 2( 10)( 10) 100 0;r r r− + = − = 100 0yy′′ − =  
 
45. 2( 10)( 10) 20 100 0;r r r r+ + = + + = 20 100 0y y y′′ ′+ + =     
 
46. 2( 10)( 100) 110 1000 0;r r r r− − = − + = 110 1000 0y y y′′ ′− + =  
 
47. 2( 0)( 0) 0;r r r− − = = 0y′′ =      
 
48. 2( 1 2)( 1 2) 2 1 0;r r r r− − − + = − − = 2 0y y y′′ ′− − =  
 
49. The solution curve with  (0) 1, (0) 6y y′= =   is  2( ) 8 7x xy x e e− −= − .  We find that  

( ) 0y x′ =   when  x = ln(7/4)  so  24 / 7 and 16 / 49x xe e− −= = .  It follows that 
 (ln(7 / 4)) 16 / 7y = ,  so the high point on the curve is  (ln(7 / 4)), 16 / 7) (0.56, 2.29)≈ , 
 which looks consistent with Fig. 3.1.6. 
 
50. The two solution curves with  (0) and (0)y a y b= =   (as well as  (0) 1y′ = )  are 
 

     
2

2

(2 1) ( 1) ,
(2 1) ( 1) .

x x

x x

y a e a e
y b e b e

− −

− −

= + − +
= + − +
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Subtraction and then division by  a - b  gives  22 x xe e− −= , so it follows that  x  =  -ln 2.  
Now substitution in either formula gives  y = -2,  so the common point of intersection is  
(-ln 2, -2). 

 
51. (a) The substitution  lnv x=   gives 

    1dy dy dv dyy
dx dv dx x dv

′ = = =  

  Then another differentiation using the chain rule gives 
 

   

2

2

2

2 2 2 2

1

1 1 1 1 .

d y d dy d dyy
dx dx dx dx x dv

dy d dy dv dy d y
x dv x dv dv dx x dv x dv

   ′′ = = = ⋅   
   

 = − ⋅ + ⋅ = − ⋅ + ⋅ 
 

 

 
 Substitution of these expressions for  andy y′ ′′  into Eq. (21) in the text then yields  
 immediately the desired Eq. (22): 

    
2

2 ( ) 0.d y dya b a c y
dv dv

+ − + =  

 
  (b) If the roots  1 2andr r   of the characteristic equation of Eq. (22)  are real and  
  distinct, then a general solution of the original Euler equation is  

    ( ) ( )1 21 2 1 2
1 2 1 2 1 2( ) .

r rr v r v r rv vy x c e c e c e c e c x c x= + = + = +  
 
52. The substitution  lnv x=  yields the converted equation  2 2/ 0d y dv y− =  whose 
 characteristic equation  2 1 0r − =  has roots  1 21 and 1.r r= = −   Because  ,ve x=  the  
 corresponding  general solution is 

       2
1 2 1 .v v cy c e c e c x

x
−= + = +  

 
53. The substitution  lnv x=  yields the converted equation  2 2/ / 12 0d y dv dy dv y+ − =  
 whose  characteristic equation  2 12 0r r+ − =  has roots  1 24 and 3.r r= − =   Because   
 ,ve x= the corresponding general solution is 

       4 3 4 3
1 2 1 2 .v vy c e c e c x c x− −= + = +  

 
54. The substitution  lnv x=  yields the converted equation  2 24 / 4 / 3 0d y dv dy dv y+ − =  
 whose  characteristic equation  24 4 3 0r r+ − =  has roots  1 23/ 2 and 1/ 2.r r= − =    
 Because  ,ve x=  the corresponding general solution is 
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       3 / 2 / 2 3/ 2 1/ 2
1 2 1 2 .v vy c e c e c x c x− −= + = +  

 
55. The substitution  lnv x=  yields the converted equation  2 2/ 0d y dv =  whose 
 characteristic equation  2 0r =  has repeated roots  1 2, 0.r r =   Because  ln ,v x=  the  
 corresponding general solution is 

       1 2 1 2 ln .y c c v c c x= + = +  
 
56. The substitution  lnv x=  yields the converted equation  2 2/ 4 / 4 0d y dv dy dv y− + =  
 whose  characteristic equation  2 4 4 0r r− + =  has roots  1 2, 2.r r =   Because  ,ve x=  the  
 corresponding general solution is 

       2 2 2
1 2 1 2( ln ).v vy c e c v e x c c v= + = +  

 
 
 
SECTION 5.2 
 
GENERAL SOLUTIONS OF LINEAR EQUATIONS 
 
Students should check each of Theorems 1 through 4 in this section to see that, in the case   
n  =  2,  it reduces to the corresponding theorem in Section 5.1.  Similarly, the computational 
problems for this section largely parallel those for the previous section.  By the end of Section 
5.2 students should understand that, although we do not prove the existence-uniqueness theorem 
now, it provides the basis for everything we do with linear differential equations. 
 
The linear combinations listed in Problems 1–6 were discovered "by inspection" — that is, by 
trial and error. 
 
1. (5/2)(2x) + (-8/3)(3x2) + (-1)(5x - 8x2)  =  0 
  
2. (-4)(5) + (5)(2 - 3x2) + (1)(10 + 15x2)  =  0 
 
3. (1)(0) + (0)(sin x) + (0)(ex)  =  0 
 
4. (1)(17) + (-17/2)(2 sin2x) + (-17/3)(3 cos2x)  =  0,  because  sin2x + cos2x  =  1. 
 
5. (1)(17) + (-34)(cos2x) + (17)(cos 2x)  =  0,  because  2 cos2x  =  1 + cos 2x. 
 
6. (-1)(ex) + (1)(cosh x) + (1)(sinh x)  =  0,   because  cosh x  =  (ex + e-x)/2  and   
 sinh x  =  (ex - e-x)/2. 
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7.    

21
0 1 2 2
0 0 2

x x
W x= =    is nonzero everywhere. 

                 

8.        

2 3

2 3 6

2 3

2 3 2
4 9

x x x

x x x x

x x x

e e e
W e e e e

e e e
= =   is never zero. 

 
9. W  =  ex(cos2x + sin2x)  =  ex ≠ 0 
 
10. W  =  x-7ex(x + 1)(x + 4)  is nonzero for  x > 0. 
 
11. W  =  x3e2x  is nonzero if  x ≠ 0. 
 
12. W  =  x-2[2 cos2(ln x) + 2 sin2(ln x)]  =  2x-2  is nonzero for  x > 0. 
 
In each of Problems 13-20 we first form the general solution 
 
    y(x)  =  c1y1(x) + c2y2(x) + c3y3(x), 
 
then calculate  y′(x)  and  y″(x),  and finally impose the given initial conditions to determine the 
values of the coefficients  c1, c2, c3. 
 
13. Imposition of the initial conditions  (0) 1, (0) 2, (0) 0y y y′ ′′= = =  on the general solution  

2
1 2 3( ) x x xy x c e c e c e− −= + +  yields the three equations 

 
  1 2 3 1 2 3 1 2 31, 2 2, 4 0c c c c c c c c c+ + = − − = + + =   
 

with solution  1 2 34 / 3, 0, 1/ 3.c c c= = = −   Hence the desired particular solution is  
given by  y(x)  =  (4ex - e-2x)/3.         

 
14. Imposition of the initial conditions  (0) 0, (0) 0, (0) 3y y y′ ′′= = =  on the general solution  

2 3
1 2 3( ) x x xy x c e c e c e= + +  yields the three equations 

 
  1 2 3 1 2 3 1 2 31, 2 3 2, 4 9 0c c c c c c c c c+ + = + + = + + =   
 

with solution  1 2 33/ 2, 3, 3/ 2.c c c= = − =   Hence the desired particular solution is  
given by y(x)  =  (3ex - 6e2x + 3e3x)/2. 

 
15. Imposition of the initial conditions  (0) 2, (0) 0, (0) 0y y y′ ′′= = =  on the general 

solution  2 3
1 2 3( ) x x xy x c e c x e c x e= + +  yields the three equations 
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   1 1 2 1 2 32, 0, 2 2 0c c c c c c= + = + + =   
 
 with solution  1 2 32, 2, 1.c c c= = − =   Hence the desired particular solution is  given by 
 y(x)  =  (2 - 2x + x2)ex.       
 
16. Imposition of the initial conditions  (0) 1, (0) 4, (0) 0y y y′ ′′= = =  on the general solution  

2 2
1 2 3( ) x x xy x c e c e c x e= + +  yields the three equations 

 
   1 2 1 2 3 1 2 31, 2 4, 4 4 0c c c c c c c c+ = + + = + + =   
 

with solution  1 2 312, 13, 10.c c c= − = = −   Hence the desired particular solution is  
given by  y(x)  =  -12ex + 13e2x - 10xe2x. 

 
17. Imposition of the initial conditions  (0) 3, (0) 1, (0) 2y y y′ ′′= = − =  on the general 

solution  1 2 3( ) cos3 sin 3y x c c x c x= + +  yields the three equations 
 
   1 2 3 23, 3 1, 9 2c c c c+ = = − − =   
 

with solution  1 2 329 / 9, 2 / 9, 1/ 3.c c c= = − = −   Hence the desired particular solution is  
given by  y(x)  =  (29 - 2 cos 3x - 3 sin 3x)/9. 

 
18. Imposition of the initial conditions  (0) 1, (0) 0, (0) 0y y y′ ′′= = =  on the general solution  

( )1 2 3( ) cos sinxy x e c c x c x= + +  yields the three equations 
 
   1 2 1 2 3 1 31, 0, 2 0c c c c c c c+ = + + = + =   
 
 with solution  1 2 32, 1, 1.c c c= = − = −   Hence the desired particular solution is  given  
 by  y(x)  =  ex(2 - cos x - sin x). 
 
19. Imposition of the initial conditions  (1) 6, (1) 14, (1) 22y y y′ ′′= = =  on the general 

solution  2 3
1 2 3( )y x c x c x c x= + +  yields the three equations 

 
   1 2 3 1 2 3 2 36, 2 3 14, 2 6 22c c c c c c c c+ + = + + = + =   
 
 with solution  1 2 31, 2, 3.c c c= = =   Hence the desired particular solution is  given by   
 y(x)  =  x + 2x2 + 3x3.         
 
20. Imposition of the initial conditions  (1) 1, (1) 5, (1) 11y y y′ ′′= = = −  on the general 

solution  2 2
1 2 3( ) lny x c x c x c x x− −= + +  yields the three equations 
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   1 2 1 2 3 2 31, 2 5, 6 5 11c c c c c c c+ = − + = − = −   
 
 with solution  1 2 32, 1, 1.c c c= = − =   Hence the desired particular solution is  given by   
 y(x)  =  2x - x-2 + x-2ln x. 
 
In each of Problems 21-24 we first form the general solution 
 
            y(x)  =  yc(x) + yp(x)  =  c1y1(x) + c2y2(x) + yp(x), 
 
then calculate  y′(x),  and finally impose the given initial conditions to determine the values of 
the coefficients  c1  and  c2. 
 
21. Imposition of the initial conditions  (0) 2, (0) 2y y′= = −  on the general solution  

1 2( ) cos sin 3y x c x c x x= + +  yields the two equations  1 22, 3 2c c= + = −  with  
 solution  1 22, 5.c c= = −   Hence the desired particular solution is  given by   
 y(x)  =  2 cos x - 5 sin x + 3x. 
 
22. Imposition of the initial conditions  (0) 0, (0) 10y y′= =  on the general solution  

2 2
1 2( ) 3x xy x c e c e−= + −  yields the two equations  1 2 1 23 0, 2 2 10c c c c+ − = − =  with  

 solution  1 24, 1.c c= = −   Hence the desired particular solution is  given by   
 y(x)  =  4e2x - e-2x - 3. 
 
23. Imposition of the initial conditions  (0) 3, (0) 11y y′= =  on the general solution  

3
1 2( ) 2x xy x c e c e−= + −  yields the two equations  1 2 1 22 3, 3 11c c c c+ − = − + =  with  

 solution  1 21, 4.c c= =   Hence the desired particular solution is  given by   
 y(x)  =  e-x + 4e3x - 2. 
 
24. Imposition of the initial conditions  (0) 4, (0) 8y y′= =  on the general solution  

1 2( ) cos cos 1x xy x c e x c e x x= + + +  yields the two equations  1 1 21 4, 1 8c c c+ = + + =  
with solution  1 23, 4.c c= =   Hence the desired particular solution is  given by   

 y(x)  =  ex(3 cos x + 4 sin x) + x + 1. 
 
25. L[y]  =  L[y1 + y2]  =  L[y1] + L[y2]  =  f + g 
 
26. (a) y1  =  2  and  y2  =  3x  (b) y  =  1 2y y+  =  2 + 3x 
 
27. The equations   
 
   c1 + c2x + c3x2  =  0,    c2 + 2c3x + 0, 2c3  =  0 
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 (the latter two obtained by successive differentiation of the first one) evidently imply —
by substituting  x = 0 — that  c1  =  c2  =  c3  =  0. 

 
28. If you differentiate the equation  2

0 1 2 0n
nc c x c x c x+ + + + =�  repeatedly,  n  times in 

succession, the result is the system  
 
   2

0 1 2 0n
nc c x c x c x+ + + + =�  

   1
1 22 0n

nc c x nc x −+ + + =�  

    �   

   1( 1)! ! 0n nn c n c x−− + =  

    ! 0nn c =  
 
 of  n+1 equations in the  n+1 coefficients  0 1 2, , , , .nc c c c�   Upon substitution of   
 x = 0,  the (k+1)st of these equations reduces to  ! 0,kk c =  so it follows that all these 

coefficients must vanish. 
  
29. If  c0erx + c1xerx + ⋅⋅⋅ + cnxnerx  =  0,  then division by  erx  yields   
 
    c0 + c1x + ⋅⋅⋅ + cnxn  =  0, 
 
 so the result of Problem 28 applies. 
 
30. When the equation  x2y″ - 2xy′ + 2y  =  0  is rewritten in standard form 
 
          y″ + (-2/x)y′ + (2/x2)y  =  0, 
 
 the coefficient functions  p1(x)  =  -2/x  and  p2(x)  =  2/x2  are not continuous at  x  =  0.  

Thus the hypotheses of Theorem 3 are not satisfied. 
 
31. (a) Substitution of  x = a  in the differential equation gives  ( ) ( ) ( ).y a p y a q a′′ ′= − −  
 
 (b) If  y(0)  =  1  and  y′(0)  =  0,  then the equation  y″ - 2y′ - 5y  =  0  implies that   

y″(0)  =  2y′(0) + 5y(0)  =  5. 
 
32. Let the functions  y1, y2, ⋅⋅⋅ , yn  be chosen as indicated.  Then evaluation at   
 x  =  a  of the  (k - 1)st  derivative of the equation  c1y1 + c2y2 + ⋅⋅⋅ cnyn  =  0  yields   
 ck  =  0.  Thus  c1  =  c2  =  ⋅⋅⋅  =  cn  =  0,  so the functions are linearly independent. 
 
33. This follows from the fact that 
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2 2 2

1 1 1
( )( )( ).a b c b a c b c a

a b c
= − − −  

 
34. W(f1, f2, ⋅⋅⋅, fn)  =  V exp(rix),  and neither  V  nor  exp(rix)  vanishes.   
 
36. If  1y vy=  then substitution of the derivatives 

   1 1 1 1 1, 2y vy v y y vy v y v y′ ′ ′ ′′ ′′ ′ ′ ′′= + = + +  

 in the differential equation  0y py qy′′ ′+ + =  gives 

   
[ ] [ ] [ ]

[ ]
1 1 1 1 1 1

1 1 1 1 1 1

2 0,

2 0.

vy v y v y p vy v y q vy

v y py qy v y v y pv y

′′ ′ ′ ′′ ′ ′+ + + + + =
′′ ′ ′′ ′ ′ ′+ + + + + =

 

 But the terms within brackets vanish because  1y  is a solution, and this leaves the  
 equation 
    ( )1 1 12 0y v y py v′′ ′ ′+ + =  

 that we can solve by writing 
 

   

1
1

1

( )
( )

2 2
1 1

2 ln 2ln ( ) ln ,

( ) ( ) .
p x dx

p x dx

v y p v y p x dx C
v y

C ev x e v x C dx K
y y

−
−

′′ ′ ′ ′= − − ⇒ = − − +
′

∫
∫′ = ⇒ = +

⌠

⌡

∫
 

 With  1 and 0C K= =  this gives the second solution 

    
( )

2 1 2
1

( ) ( ) .
p x dx

ey x y x dx
y

−∫
=

⌠

⌡

 

 
37. When we substitute  3y vx=  in the given differential equation and simplify, we get the 
 separable equation  0xv v′′ ′+ =  that we solve by writing 
 

   

1 ln ln ln ,

( ) ln .

v v x A
v x

Av v x A x B
x

′′ ′= − ⇒ = − +
′

′ = ⇒ = +
 

 
 With  1 and 0A B= =  we get  ( ) lnv x x=  and hence  3

2( ) ln .y x x x=  
 
 



244 Chapter 5 

 
38. When we substitute  3y vx=  in the given differential equation and simplify, we get the 
 separable equation  7 0xv v′′ ′+ =  that we solve by writing 
 

   

7 6

7 ln 7ln ln ,

( ) .
6

v v x A
v x

A Av v x B
x x

′′ ′= − ⇒ = − +
′

′ = ⇒ = − +
 

 
 With  6 and 0A B= − =  we get  6( ) 1/v x x=  and hence  3

2( ) 1/ .y x x=  
 
 
39. When we substitute  / 2xy v e=  in the given differential equation and simplify, we 
 eventually get the simple equation  0v′′ =  with general solution  ( ) .v x Ax B= +  
 With  1 and 0A B= =  we get  ( )v x x=  and hence  / 2

2 ( ) .xy x x e=  
 
 
40. When we substitute  y vx=  in the given differential equation and simplify, we get the 
 separable equation  0v v′′ ′− =  that we solve by writing 
 

   
1 ln ln ,

( ) .x x

v v x A
v
v Ae v x Ae B

′′ ′= ⇒ = +
′
′ = ⇒ = +

 

 
 With  1 and 0A B= =  we get  ( ) xv x e=  and hence  2( ) .xy x xe=  
 
 
41. When we substitute  xy v e=  in the given differential equation and simplify, we get the 
 separable equation  (1 ) 0x v x v′′ ′+ + =  that we solve by writing 

           

 
11 ln ln(1 ) ln ,

1 1
(1 ) ( ) (1 ) (2 ) .x x x

v x v x x A
v x x
v A x e v x A x e dx A x e B− − −

′′ ′= − = − + ⇒ = − + + +
′ + +
′ = + ⇒ = + = − + +∫

 

 
 With  1 and 0A B= − =  we get  ( ) (2 ) xv x x e−= +  and hence  2( ) 2 .y x x= +  
 
 
42. When we substitute  y v x=  in the given differential equation and simplify, we get the 
 separable equation  2( 1) 2x x v v′′ ′− =  that we solve by writing 
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2

2

2 2

2 2 1 1 ,
( 1) 1 1

ln 2ln ln(1 ) ln(1 ) ln ,
(1 ) 1 11 ( ) .

v
v x x x x x

v x x x A
A xv A v x A x B

x x x

′′
= = − + −

′ − + −
′ = − + + + − +

−    ′ = = − ⇒ = − − +   
   

 

 
 With  1 and 0A B= − =  we get  ( ) 1/v x x x= +  and hence  2

2( ) 1.y x x= +  
 
 
43. When we substitute  y v x=  in the given differential equation and simplify, we get the 
 separable equation  2 2( 1) (2 4 )x x v x v′′ ′− = −  that we solve by writing 

           

 

2

2

2 2 2

2 4 2 1 1 ,
( 1) 1 1

ln 2ln ln(1 ) ln(1 ) ln ,

1 1 1 ,
(1 ) 2(1 ) 2(1 )

1 1 1( ) ln(1 ) ln(1 ) .
2 2

v x
v x x x x x

v x x x A

Av A
x x x x x

v x A x x B
x

′′ −= = − − +
′ − + −

′ = − − + − − +

 ′ = = + + − + − 

 = − + + − − + 
 

 

 
 With  1 and 0A B= − =  we get   
 

  2
1 1 1 1( ) ln(1 ) ln(1 ) ( ) 1 ln .

2 2 2 1
x xv x x x y x

x x
+= − + + − ⇒ = −
−

 

 
 
44. When we substitute  1/ 2 cosy v x x−=  in the given differential equation and simplify, we 
 eventually get the separable equation  (cos ) 2(sin )x v x v′′ ′=  that we solve by writing 

           

 
2

2

2sin ln 2 ln cos ln lnsec ln ,
cos
sec ( ) tan .

v x v x A x A
v x
v A x v x A x B

′′ ′= ⇒ = − + = +
′
′ = ⇒ = +

 

 
 With  1 and 0A B= =  we get  ( ) tanv x x=  and hence   
 
   1/ 2 1/ 2

2 ( ) (tan )( cos ) sin .y x x x x x x− −= =  
 
  
 



246 Chapter 5 

 
SECTION 5.3 
 
HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS 
 
This is a purely computational section devoted to the single most widely applicable type of 
higher order differential equations — linear ones with constant coefficients.  In Problems 1–20, 
we write first the characteristic equation and its list of roots, then the corresponding general 
solution of the given differential equation.  Explanatory comments are included only when the 
solution of the characteristic equation is not routine. 
 
1. ( )( )2 4 2 2 0; 2, 2; ( )r r r r y x− = − + = = − =  c1e2x + c2e-2x     
 
2. ( )22 3 2 3 0; 0, 3/ 2; ( )r r r r r y x− = − = = =  c1 + c2e3x/2           
 
3. ( ) ( )2 3 10 5 2 0; 5, 2; ( )r r r r r y x+ − = + − = = − =  c1e2x + c2e-5x       
 
4. ( )( )22 7 3 2 1 3 0; 1/ 2, 3; ( )r r r r r y x− + = − − = = =  c1ex/2 + c2e3x 
 
5. ( )22 6 9 3 0; 3, 3; ( )r r r r y x+ + = + = = − − =  c1e-3x + c2xe-3x    
 
6. ( )2 5 5 0; 5 5 / 2r r r+ + = = − ±  

 y(x)  =  e-5x/2[c1exp(x 5 /2) + c2exp(-x 5 /2)] 
 
7. ( )224 12 9 2 3 0; 3/ 2, 3/ 2; ( )r r r r y x− + = − = = − − =  c1e3x/2 + c2xe3x/2 
 
8. ( )2 6 13 0; 6 16 / 2 3 2 ; ( )r r r i y x− + = = ± − = ± =  e3x(c1cos 2x + c2sin 2x)  

 
9. ( )2 8 25 0; 8 36 / 2 4 3 ; ( )r r r i y x+ + = = − ± − = − ± =  e-4x(c1cos 3x + c2sin 3x) 

 
10. ( )4 3 35 3 5 3 0; 0, 0, 0, 3/ 5; ( )r r r r r y x+ = + = = −   =  c1 + c2x + c3x2 + c4e-3x/5 
  
11. ( )24 3 2 28 16 4 0; 0, 0, 4, 4; ( )r r r r r r y x− + = − = = =  c1 + c2x + c3e4x + c4xe4x 
 
12. ( )34 3 23 3 1 0; 0,1,1,1; ( )r r r r r r r y x− + − = − = = =  c1 + c2ex + c3xex + c4x2ex 
  
13. ( )23 29 12 4 3 2 0; 0, 2 / 3, 2 / 3r r r r r r+ + = + = = − −  
 y(x)  =  c1 + c2e-2x/3 + c3xe-2x/3 
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14. ( ) ( )4 2 2 23 4 1 4 0; 1,1, 2r r r r r i+ − = − + = = − ±  
 y(x)  =  c1ex + c2e-x + c3cos 2x + c4sin 2x 
 

15. ( )24 2 2 2 24 8 16 4 ( 2) ( 2) 0; 2, 2, 2, 2r r r r r r− + = − = − + = = − −  
 y(x)  =  c1e2x + c2xe2x + c3e-2x + c4xe-2x 
 

16. ( )24 2 218 81 9 0; 3 , 3r r r r i i+ + = + = = ± ±  
 y(x)  =  (c1 + c2x)cos 3x + (c3 + c4x)sin 3x 
 
17. 4 2 2 26 11 4 (2 1)(3 4) 0; / 2, 2 / 3,r r r r r i i+ + = + + = = ± ±  
 y(x)  =  c1cos(x / 2 ) + c2sin(x/ 2 ) + c3cos(2x / 3 ) + c4sin(2x/ 3 ) 
 
18. ( ) ( )4 2 216 4 4 0; 2, 2, 2r r r r i− = − + = = − ±  
 y(x)  =  c1e2x + c2e-2x + c3cos 2x + c4sin 2x 
 
19. ( ) ( ) ( )( )23 2 2 21 1 1 1 1 0; 1, 1, 1;r r r r r r r r r+ − − = − + − = − + = = − −  
 y(x)  =  c1ex + c2e-x + c3xe-x  
 
20. r4 + 2r3 + 3r2 + 2r + 1  =  (r2 + r + 1)2  =  0;     ( ) ( )1 3 / 2, 1 3 / 2i i− ± − ±  

 y  =  e-x/2(c1 + c2x)cos(x 3 /2) + e-x/2(c3 + c4x)sin(x 3 /2) 
 
21. Imposition of the initial conditions  (0) 7, (0) 11y y′= =  on the general solution  

3
1 2( ) x xy x c e c e= +  yields the two equations  1 2 1 27, 3 11c c c c+ = + =  with solution  

1 25, 2.c c= =   Hence the desired particular solution is  y(x)  =  5ex + 2e3x.    
 
22. Imposition of the initial conditions  (0) 3, (0) 4y y′= =  on the general solution  

( ) ( )/ 3
1 2( ) cos / 3 sin / 3xy x e c x c x−  = +

 
 yields the two equations  

1 1 23, / 3 / 3 4c c c= − + =  with solution  1 23, 5 3.c c= =   Hence the desired particular 

solution is  ( ) ( )/ 3( ) 3cos / 3 5 3 sin / 3 .xy x e x x−  = +
 

 

 
23. Imposition of the initial conditions  (0) 3, (0) 1y y′= =  on the general solution  

( )3
1 2( ) cos4 sin 4xy x e c x c x= +  yields the two equations  1 1 23, 3 4 1c c c= + =  with 

solution  1 23, 2.c c= = −   Hence the desired particular solution is   
 y(x)  =  e3x(3 cos 4x - 2 sin 4x).   
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24. Imposition of the initial conditions  (0) 1, (0) 1, (0) 3y y y′ ′′= = − =  on the general 
solution  2 / 2

1 2 3( ) x xy x c c e c e−= + +  yields the three equations  
 
    1 2 3 2 3 2 31, 2 / 2 1, 4 / 4 3c c c c c c c+ + = − = − + =   
  
 with solution  1 2 37 / 2, 1/ 2, 4.c c c= − = =   Hence the desired particular solution is   
 y(x)  =  (-7 + e2x + 8e-x/2)/2. 
 
25. Imposition of the initial conditions  (0) 1, (0) 0, (0) 1y y y′ ′′= − = =  on the general 

solution  2 / 3
1 2 3( ) xy x c c x c e−= + +  yields the three equations  

 
    1 3 2 3 31, 2 / 3 0, 4 / 9 1c c c c c+ = − − = =   
  
 with solution  1 2 313/ 4, 3/ 2, 9 / 4.c c c= − = =   Hence the desired particular solution is   
 y(x)  =  (-13 + 6x + 9e-2x/3)/4.   
 
26. Imposition of the initial conditions  (0) 1, (0) 1, (0) 3y y y′ ′′= = − =  on the general 

solution  5 5
1 2 3( ) x xy x c c e c x e− −= + +  yields the three equations  

 
    1 2 2 3 2 33, 5 4, 25 10 5c c c c c c+ = − + = − =   
  
 with solution  1 2 324 / 5, 9 / 5, 5.c c c= = − = −   Hence the desired particular solution is   
 y(x)  =  (24 - 9e-5x - 25xe-5x)/5. 
 
27. First we spot the root  r  =  1.  Then long division of the polynomial 3 23 4r r+ −    
 by  r - 1  yields the quadratic factor  2 24 4 ( 2)r r r+ + = +  with roots   
 r  =  -2, -2.  Hence the general solution is  y(x)  =  c1ex + c2e-2x + c3xe-2x. 
 
28. First we spot the root  r  =  2.  Then long division of the polynomial  2r3 - r2 - 5r - 2   
 by the factor  r - 2  yields the quadratic factor  2r2 + 3r + 1  =   (2r + 1)(r + 1)  with roots   
 r  =  -1, -1/2.  Hence the general solution is  y(x)  =  c1e2x + c2e-x + c3e-x/2. 
 
29. First we spot the root  r  =  –3.  Then long division of the polynomial  3 27r +  by   

r + 3  yields the quadratic factor  2 3 9r r− +   with roots  ( )3 1 3 / 2.r i= ±   Hence the 

general solution is  y(x)  =  c1e-3x + e3x/2[c2cos(3x 3 /2) + c3 sin(3x 3 /2)]. 
 
30. First we spot the root  r  =  -1.  Then long division of the polynomial   
 
     r4 - r3 + r2 - 3r - 6  
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 by   r + 1  yields the cubic factor   r3 - 2r2 + 3r - 6.  Next we spot the root  r  =  2,  and 
another long division yields the quadratic factor  r2 + 3  with roots  r  =  3i± .  Hence 
the general solution is  y(x)  =  c1e-x + c2e2x + c3cos x 3  + c4sin x 3 . 

 
31. The characteristic equation  r3 + 3r2 + 4r - 8  =  0  has the evident root  r  =  1,  and long 

division then yields the quadratic factor  r2 + 4r + 8  =  (r + 2)2 + 4  corresponding to the 
complex conjugate roots  -2 ± 2 i.  Hence the general solution is 

 
    y(x)  =   c1ex + e-2x(c2cos 2x + c3sin 2x).  
 
32. The characteristic equation  r4 + r3 - 3r2 - 5r - 2  =  0  has root  r  =  2  that is readily 

found by trial and error,  and long division then yields the factorization 
 
     (r - 2)(r + 1)3   =   0. 
 
 Thus we obtain the general solution  y(x)  =   c1e2x + (c2 + c3x + c4x2)e-x. 
 
33. Knowing that  y  =  e3x  is one solution, we divide the characteristic polynomial   
 r3 + 3r2 - 54  by  r - 3  and get the quadratic factor   
 
    r2 + 6r + 18   =   (r + 3)2 + 9.  
 
 Hence the general solution is  y(x)  =   c1e3x + e-3x(c2cos 3x + c3sin 3x). 
 
34. Knowing that  y  =  e2x/3  is one solution, we divide the characteristic polynomial   
 3r3 - 2r2 + 12r - 8  by  3r - 2  and get the quadratic factor  r2 + 4.  Hence the general 

solution is 
    y(x)  =   c1e2x/3 + c2cos 2x + c3sin 2x. 
 
35. The fact that  y  =  cos 2x  is one solution tells us that  r2 + 4  is a factor of the 

characteristic polynomial   
 
              6r4 + 5r3 + 25r2 + 20r + 4.   
 
 Then long division yields the quadratic factor  26 5 1 (3 1)(2 1)r r r r+ + = + +  with roots 
 1/ 2, 1/ 3.r = − −   Hence the general solution is 
 
             y(x)  =   c1e-x/2 + c2e-x/3 + c3cos 2x + c4sin 2x 
 
36. The fact that  y  =  e-xsin x  is one solution tells us that  (r + 1)2 + 1  =  r2 + 2r + 2   
 is a factor of the characteristic polynomial   
 
              9r3 + 11r2 + 4r - 14.   
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 Then long division yields the linear factor  9r - 7.  Hence the general solution is 
 
             y(x)  =   c1e7x/9 + e-x(c2cos x + c3sin x). 
 
37. The characteristic equation is  4 3 3( 1) 0r r r r− = − = ,  so the general solution is 

2( ) xy x A Bx Cx D e= + + + .  Imposition of the given initial conditions yields the 
equations 
 
 18, 12, 2 13, 7A D B D C D D+ = + = + = =  
 
with solution  11, 5, 3, 7.A B C D= = = =   Hence the desired particular solution is 

 
    2( ) 11 5 3 7 xy x x x e= + + + . 
 
38. Given that  r = 5  is one characteristic root, we divide  (r – 5)  into the characteristic 

polynomial  3 25 100 500r r r− + −   and get the remaining factor  2 100r + .  Thus the  
 general solution is 
    5( ) cos10 sin10xy x Ae B x C x= + + . 
 

Imposition of the given initial conditions yields the equations 
 
  0, 5 10 10, 25 100 250A B A C A B+ = + = − =  
 
with solution  2, 2, 0.A B C= = − =   Hence the desired particular solution is 

 5( ) 2 2cos10xy x e x= − . 
 
39. 3 3 2( 2) 6 12 8r r r r− = − + − ,  so the differential equation is 
 
    6 12 8 0y y y y′′′ ′′ ′− + − = . 
 
40. 2 3 2( 2)( 4) 2 4 8r r r r r− + = − + − ,  so the differential equation is 
 
    2 4 8 0y y y y′′′ ′′ ′− + − = . 
 
41. 2 2 4( 4)( 4) 16r r r+ − = − ,  so the differential equation is   (4) 16 0y y− = . 
    
42. 2 3 6 4 2( 4) 12 48 64r r r r+ = + + + ,  so the differential equation is 
 
    (6) (4)12 48 64 0y y y y′′+ + + = . 
 
44. (a) x  =  i, -2i       (b) x  =  -i, 3i 
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45. The characteristic polynomial is the quadratic polynomial of Problem 44(b).  Hence the 

general solution is   
   
  3

1 2 1 2( ) (cos sin ) (cos3 sin 3 ).ix ixy x c e c e c x i x c x i x−= + = − + +  
 
46. The characteristic polynomial is  2 6 ( 2 )( 3 )r ir r i r i− + = + −  so the general solution is 
  
  3 2

1 2 1 2( ) (cos3 sin 3 ) (cos2 sin 2 ).ix ixy x c e c e c x i x c x i x−= + = + + −  
 

47. The characteristic roots are  2 2 3 (1 3)r i i= ± − + = ± +  so the general solution is 
 
 ( ) ( )(1 3 ) (1 3)

1 2 1 2( ) cos 3 sin 3 cos 3 sin 3i x i x x xy x c e c e c e x i x c e x i x+ − + −= + = + + −  

 
48. The general solution is  y(x)  =  Aex + Beαx + Ceßx  where  α  =  (-1 + i 3 )/2  and   
 β  =  (-1 - i 3 )/2.  Imposition of the given initial conditions yields the equations 
 

    
2 2

1
0
0

A B C
A B C
A B C

α β
α β

+ + =
+ + =
+ + =

 

 
 that we solve for  A  =  B  =  C  =  1/3.  Thus the desired particular solution is given  
 by  ( )( 1 3) / 2 ( 1 3) / 21

3( ) ,x i x xy x e e e− + − −= + +  which (using Euler's relation) reduces to the 

given real-valued solution. 
 
49. The general solution is  y  =  Ae2x + Be-x + C cos x + D sin x.  Imposition of the given 

initial conditions yields the equations 
 

    

0
2 0
4 0
8 30

A B C
A B D
A B C
A B D

+ + =
− + =
+ − =
− − =

 

  
 that we solve for  A  =  2,  B  =  -5,  C  =  3,  and  D  =  -9.  Thus 
 
    y(x)  =  2e2x - 5e-x + 3 cos x - 9 sin x. 
 
50. If  0x >  then the differential equation is  0y y′′ + =  with general solution  

cos sin .y A x B x= + .  But if  0x <  it is  0y y′′ − =  with general solution  
cosh sin .y C x D x= +   To satisfy the initial conditions  1 1(0) 1, (0) 0y y′= =  we choose  



252 Chapter 5 

1 and 0.A C B D= = = =   But to satisfy the initial conditions  2 2(0) 0, (0) 1y y′= =  we 
choose  0 and 1.A C B D= = = =   The corresponding solutions are defined by 

 

  1 2

cos if 0, sin if 0,
( ) ( )

cosh if 0; sinh if 0.
x x x x

y x y x
x x x x

≥ ≥ 
= = ≤ ≤ 

 

 
51. In the solution of Problem 51 in Section 3.1 we showed that the substitution  lnv x=  
 gives 

     1dy dyy
dx x dv

′ = =    and    
2 2

2 2 2 2
1 1 .d y dy d yy

dx x dv x dv
′′ = = − ⋅ + ⋅  

 A further differentiation using the chain rule gives 

   
3 2 3

3 3 3 2 3 3
2 3 1 .d y dy d y d yy

dx x dv x dv x dv
′′′ = = ⋅ − ⋅ + ⋅  

 Substitution of these expressions for  , , andy y y′ ′′ ′′′  into the third-order Euler equation  
 3 2 0ax y bx y cx y d y′′′ ′′ ′+ + + = and collection of coefficients quickly yields  the desired  
 constant-coefficient equation 

    
3 2

3 2( 3 ) ( 2 ) 0.d y d y dya b a c b a d y
dv dv dv

+ − + − + + =  

 
In Problems 52 through 58 we list first the transformed constant-coefficient equation, then its 
characteristic equation and roots, and finally the corresponding general solution with  lnv x=  
and  .ve x=  
 

52. 
2

2
2 9 0; 9 0; 3d y y r r i

dv
+ = + = = ±  

 1 2 1 2( ) cos(3 ) sin(3 ) cos(3ln ) sin(3ln )y x c v c v c x c x= + = +  
 

53. 
2

2
2 6 25 0; 6 25 0; 3 4d y dy y r r r i

dv dv
+ + = + + = = − ±  

 [ ] [ ]3 3
1 2 1 2( ) cos(4 ) sin(4 ) cos(4 ln ) sin(4 ln )vy x e c v c v x c x c x− −= + = +  

 

54. 
3 2

3 2
3 23 0; 3 0; 0, 0, 3d y d y r r r

dv dv
+ = + = = −  

 3 3
1 2 3 1 2 3( ) lnvy x c c v c e c c x c x− −= + + = + +  

 

55. 
3 2

3 2
3 24 4 0; 4 4 0; 0, 2, 2d y d y dy r r r r

dv dv dv
− + = − + = =  

 ( )2 2 2
1 2 3 1 2 3( ) lnv vy x c c e c ve c x c c x= + + = + +  
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56. 
3

3
3 0; 0; 0, 0, 0d y r r

dv
= = =  

 2 2
1 2 3 1 2 3( ) ln (ln )y x c c v c v c c x c x= + + = + +  

 

57. 
3 2

3 2
3 25 5 0; 4 4 0; 0, 3 3d y d y dy r r r r

dv dv dv
− + = − + = = ±  

 ( )(3 3) (3 3) 3 3 3
1 2 3 1 2 3( ) v vy x c c e c ve c x c x c x− + − += + + = + +  

 

58. 
3 2

3 2
3 23 3 0; 3 3 1 0; 1, 1, 1d y d y dy y r r r r

dv dv dv
+ + + = + + + = = − − −  

 2 1 2
1 2 3 1 2 3( ) ln (ln )v v vy x c e c ve c v e x c c x c x− − − −  = + + = + +   

 
 
 
SECTION 5.4 
 
Mechanical Vibrations 
 
In this section we discuss four types of free motion of a mass on a spring — undamped, 
underdamped, critically damped, and overdamped.  However, the undamped and underdamped 
cases — in which actual oscillations occur — are emphasized because they are both the most 
interesting and the most important cases for applications. 
 
1. Frequency:  0 / 16 / 4 2 rad / sec 1/ Hzk mω π= = = =  
 Period:  02 / 2 / 2 secP π ω π π= = =  
 
2. Frequency  0 / 48 / 0.75 8 rad / sec 4 / Hzk mω π= = = =    
 Period:  02 / 2 /8 / 4 secP π ω π π= = =  
 
3. The spring constant is  k  =  15 N/0.20 m  =  75 N/m.  The solution of  3x″ + 75x  =  0  

with  x(0)  =  0  and  x′(0)  =  -10  is  x(t)  =  -2 sin 5t.  Thus the amplitude is 2 m; the 
frequency is  0 / 75/ 3 5 rad / sec 2.5/ Hzk mω π= = = = ; and the period is  2π/5 sec. 

  
4. (a) With  m  =  1/4 kg  and  k  =  (9 N)/(0.25 m)  =  36 N/m  we find that  ω0  =  12 

rad/sec.  The solution of  x″ + 144x  =  0  with  x(0)  =  1  and  x′(0)  =  -5  is 
 
    x(t)  =  cos 12t - (5/12)sin 12t 

                  =  (13/12)[(12/13)cos 12t - (5/13)sin 12t] 

    x(t)  =  (13/12)cos(12t - α) 
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 where  α  =  2π - tan-1(5/12)  ≈  5.8884. 
 
 (b) C  =  13/12  ≈  1.0833 m  and  T  =  2π/12  ≈  0.5236 sec. 
 
5. The gravitational acceleration at distance  R  from the center of the earth is  g  =  GM /R2. 

According to Equation (6) in the text the (circular) frequency  ω  of a pendulum is given 
by  ω2  =  g /L  =  GM/R2L,  so its period is  p  =  2π/ω  =  2πR / .L GM  

 
6. If the pendulum in the clock executes  n  cycles per day (86400 sec) at Paris, then its 

period is  p1  =  86400/n sec.  At the equatorial location it takes  24 hr 2 min 40 sec  =  
86560 sec  for the same number of cycles, so its period there is  p2  =  86560/n sec.  Now 
let  R1  =  3956 mi  be the Earth′s "radius" at Paris, and  R2  its "radius" at the equator.  
Then substitution in the equation  p1/p2  =  R1/R2  of Problem 5 (with  L1  =  L2) yields  
R2  =  3963.33 mi.  Thus this (rather simplistic) calculation gives 7.33 mi as the thickness 
of the Earth's equatorial bulge. 

 
7. The period equation  p  =  3960 100.10   =  (3960 + x) 100   yields  x  ≈  1.9795 mi  ≈  

10,450 ft  for the altitude of the mountain. 
 
8. Let  n  be the number of cycles required for a correct clock with unknown pendulum 

length  1L  and period  1p  to register  24 hrs  =  86400 sec, so  1 86400.np =   The given 
clock with length  L2  =  30 in and period  2p  loses 10 min = 600 sec per day, so  

2 87000.np =   Then the formula of Problem 5 yields   
 

    1 1 1

2 2 2

86400 ,
87000

L p np
L p np

= = =    

 
 so  2

1 (30)(86400 /87000) 29.59L = ≈  in. 
 
10. The  F  =  ma  equation   ρπr2hx″  =  ρπr2hg - πr2xg  simplifies to 
 
     x″ + (g /ρh)x  =  g. 
 
 The solution of this equation with  x(0)  =  x′(0)  =  0  is 
 
     x(t)  =  ρh(1 - cos ω0t) 
 
 where  ω0  =  / .g hρ   With the given numerical values of  ρ, h, and  g, the amplitude of 

oscillation is  ρh  =  100 cm  and the period is  p  =  2π /h gρ  ≈  2.01 sec. 
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11. The fact that the buoy weighs  100 lb  means that  mg  =  100  so  m  =  100/32 slugs.  
The weight of water is  62.4 lb/ft3,  so the  F  =  ma  equation of Problem 10 is 

 
     (100/32)x''  =  100 - 62.4πr2x. 
 
 It follows that the buoy's circular frequency  ω  is given by 
 
     ω2  =  (32)(62.4π)r2 /100. 
 
 But the fact that the buoy′s period  is  p  =  2.5 sec  means that  ω  =  2π/2.5.  Equating 

these two results yields  r  ≈  0.3173 ft  ≈  3.8 in. 
 
12. (a) Substitution of  Mr  =  (r /R)3M  in  Fr  =  -GMrm/r2  yields 
   
     Fr  =  -(GMm /R3)r.   
 
 (b) Because  GM /R3  =  g/R, the equation  mr'' =  Fr  yields the differential equation 
 
     r'' + (g/R)r  =  0. 
 
 (c) The solution of this equation with  r(0)  =  R  and  r'(0)  =  0  is  r(t)  =  Rcos ω0t  

where  ω0  =  / .g R   Hence, with  g  =  32.2 ft/sec2  and  R  = (3960)(5280) ft,  we find 
that the period of the particle′s simple harmonic motion is 

 
   p  =  2π/ω0  =  2π /R g   ≈  5063.10 sec  ≈  84.38 min. 
 
13. (a) The characteristic equation  210 9 2 (5 2)(2 1) 0r r r r+ + = + + =   has roots  

2 / 5, 1/ 2.r = − −  When we impose the initial conditions  (0) 0, (0) 5x x′= =   on the 
general solution  2 / 5 / 2

1 2( ) t tx t c e c e− −= +  we get the particular solution  

( )2 /5 / 2( ) 50 .t tx t e e− −= −  
 
 (b) The derivative  ( )/ 2 2 /5 2 /5 /10( ) 25 20 5 5 4 0t t t tx t e e e e− − − −′ = − = − =  

 when  10 ln(5 / 4) 2.23144t = ≈ .  Hence the mass's farthest distance to the right  
 is given by  (10ln(5/ 4)) 512 /125 4.096x = = . 
 
14. (a) The characteristic equation  2 2 225 10 226 (5 1) 15 0r r r+ + = + + =   has roots  

( )1 15 / 5 1/ 5 3 .r i i= − ± = − ±  When we impose the initial conditions  

(0) 20, (0) 41x x′= =   on the general solution  ( )/ 5( ) cos3 sin 3tx t e A t B t−= +  we  
 get  A = 20,  B = 15.  The corresponding particular solution is given by   
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/ 5 / 5( ) (20cos3 15sin 3 ) 25 cos(3 )t tx t e t t e t α− −= + = −   where  
1tan (3/ 4) 0.6435α −= ≈ . 

 
 (b) Thus the oscillations are "bounded" by the curves  / 525 tx e−= ±   and  
 the pseudoperiod of oscillation is  2 / 3T π=   (because  3ω = ). 
 
15. With damping   The characteristic equation  2(1/ 2) 3 4 0r r+ + =  has roots  2, 4.r = − −   

When we impose the initial conditions  (0) 2, (0) 0x x′= =  on the general solution  
2 4

1 2( ) t tx t c e c e− −= +  we get the particular solution  x(t)  =  4e-2t - 2e-4t  that describes 
overdamped motion. 

 Without damping   The characteristic equation  2(1/ 2) 4 0r + =  has roots  2 2.r i= ±   
When we impose the initial conditions  (0) 2, (0) 0x x′= =  on the general solution  

( ) cos(2 2 ) sin(2 2 )u t A t B t= +  we get the particular solution  ( ) 2cos(2 2 )u t t= .  
The graphs of  ( ) and ( )x t u t   are shown in the following figure. 

 
 

 
16. With damping   The characteristic equation  23 30 63 0r r+ + =  has roots  3, 7.r = − −   

When we impose the initial conditions  (0) 2, (0) 2x x′= =  on the general solution  
3 7

1 2( ) t tx t c e c e− −= +  we get the particular solution  x(t)  =  4e-3t - 2e-7t  that describes 
overdamped motion. 

 Without damping   The characteristic equation  23 63 0r + =  has roots  21.r i= ±   
When we impose the initial conditions  (0) 2, (0) 2x x′= =  on the general solution  

( ) cos( 21 ) sin( 21 )u t A t B t= +  we get the particular solution   
 

  2 22( ) 2cos( 21 ) sin( 21 ) 2 cos( 21 0.2149)
2121

u t t t t= + ≈ − . 

 
 The graphs of  ( ) and ( )x t u t   are shown in the figure at the top of the next page. 
 

1 2 3
t

-2

2

x

u



 Section 5.4 257 

1 2
t

-2

2

x

u

 
 
17. With damping   The characteristic equation  2 8 16 0r r+ + =  has roots  4, 4.r = − −   

When we impose the initial conditions  (0) 5, (0) 10x x′= = −  on the general solution  
( ) 4

1 2( ) tx t c c t e−= +  we get the particular solution  4( ) 5 (2 1)tx t e t−= +  that describes 
critically damped motion. 

 Without damping   The characteristic equation  2 16 0r + =  has roots  4 .r i= ±   When 
we impose the initial conditions  (0) 5, (0) 10x x′= = −  on the general solution  

( ) cos(4 ) sin(4 )u t A t B t= +  we get the particular solution   
 

   5 5( ) 5cos(4 ) sin(4 ) 5 cos(4 5.8195)
2 2

u t t t t= + ≈ − . 

 
 The graphs of  ( ) and ( )x t u t   are shown in the following figure. 
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5
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18. With damping   The characteristic equation  22 12 50 0r r+ + =  has roots  3 4 .r i= − ±   

When we impose the initial conditions  (0) 0, (0) 8x x′= = −  on the general solution  
( )3( ) cos4 sin 4tx t e A t B t−= +  we get the particular solution  

3 3( ) 2 sin 4 2 cos(4 3 / 2)t tx t e t e t π− −= − = −  that describes underdamped motion. 
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 Without damping   The characteristic equation  22 50 0r + =  has roots  5 .r i= ±   When 
we impose the initial conditions  (0) 0, (0) 8x x′= = −  on the general solution   

 ( ) cos(5 ) sin(5 )u t A t B t= +  we get the particular solution    

    8 8 3( ) sin(5 ) cos 5
5 5 2

u t t t π = − = − 
 

. 

 The graphs of  ( ) and ( )x t u t   are shown in the following figure. 

1 2
t

-1

1

x

u

 
19. The characteristic equation  24 20 169 0r r+ + =  has roots  5 / 2 6 .r i= − ±   When we 

impose the initial conditions  (0) 4, (0) 16x x′= =  on the general solution   
 ( )5 / 2( ) cos6 sin 6tx t e A t B t−= + we get the particular solution 

  x(t)  =  5 / 2te− [ 4 cos 6t + 13
3

sin 6t ]  ≈  1 313
3

5 / 2te− cos(6t - 0.8254) 

 that describes underdamped motion. 
 Without damping   The characteristic equation  24 169 0r + =  has roots  13 / 2.r i= ±  
  When we impose the initial conditions  (0) 4, (0) 16x x′= =  on the general solution   
 ( ) cos(13 / 2) sin(13 / 2)u t A t B t= + we get the particular solution    

  u(t)  =  13 32 134cos sin
2 13 2

t t   +   
   

  ≈  4 13233 cos 0.5517
13 2

t − 
 

. 

1 2
t
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4

x

u
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20.  With damping  The characteristic equation  22 16 40 0r r+ + =  has roots  4 2 .r i= − ±  
 When we impose the initial conditions  (0) 5, (0) 4x x′= =  on the general solution   
 ( )4( ) cos2 sin 2tx t e A t B t−= + we get the particular solution 

  x(t)  =  e-4t(5 cos 2t + 12 sin 2t)  ≈  13 e-4tcos(2t - 1.1760) 

 that describes underdamped motion. 
 Without damping   The characteristic equation  22 40 0r + =  has roots  2 5 .r i= ±  
  When we impose the initial conditions  (0) 5, (0) 4x x′= =  on the general solution   
 ( ) cos(2 5 ) sin(2 5 )u t A t B t= + we get the particular solution    

  u(t)  =  ( ) ( )25cos 2 5 sin 2 5
5

t t+   ≈  ( )129 cos 2 5 0.1770
5

t − . 

 The graphs of  ( ) and ( )x t u t   are shown in the following figure. 
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21. With damping   The characteristic equation  2 10 125 0r r+ + =  has roots  5 10 .r i= − ±   

When we impose the initial conditions  (0) 6, (0) 50x x′= =  on the general solution   
 ( )5( ) cos10 sin10tx t e A t B t−= + we get the particular solution 

  x(t)  =  e-5t(6 cos 10t + 8 sin 10t)  ≈  10 e-5tcos(10t - 0.9273) 

 that describes underdamped motion. 
 Without damping   The characteristic equation  2 125 0r + =  has roots  5 5 .r i= ±  
  When we impose the initial conditions  (0) 6, (0) 50x x′= =  on the general solution   
 ( ) cos(5 5 ) sin(5 5 )u t A t B t= + we get the particular solution    

  u(t)  =  ( ) ( )6cos 5 5 2 5 sin 5 5t t+   ≈  ( )2 14 cos 5 5 0.6405t − . 

 The graphs of  ( ) and ( )x t u t   are shown in the figure at the top of the next page. 
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1
t

-6

6

x

u

 
 
22. (a) With  m  =  12/32  =  3/8 slug,  c  =  3 lb-sec/ft, and  k  =  24 lb/ft,  the differential 

equation is equivalent to  3x″ + 24x′ + 192x  =  0.  The characteristic equation  
23 24 192 0r r+ + =  has roots  4 4 3 .r i= − ±   When we impose the initial conditions  

(0) 1, (0) 0x x′= =  on the general solution  ( )4( ) cos4 3 sin 4 3tx t e A t B t−= +  we get  

 the particular solution 

        x(t)  =  e-4t[cos 4t 3  + (1/ 3 )sin 4t 3 ] 

                        =  (2/ 3 )e-4t[( 3 /2)cos 4t 3  + (1/2)sin 4t 3 ] 

    x(t)  =  (2/ 3 )e-4tcos(4t 3  – / 6π ). 

 
 (b) The time-varying amplitude is  2/ 3   ≈  1.15 ft;  the frequency is  4 3   ≈  6.93 

rad/sec;  and the phase angle is  / 6π . 
 
23. (a) With  m  =  100 slugs  we get  ω  =  /100k .  But we are given that 
 
    ω  =  (80 cycles/min)(2π)(1 min/60 sec)  =  8π/3, 
 
 and equating the two values yields  k  ≈  7018 lb/ft. 
 
 (b) With  ω1  =  2π(78/60) sec-1,  Equation (21) in the text yields  c  ≈  372.31 

lb/(ft/sec).  Hence  p  =  c /2m  ≈  1.8615.  Finally  e-pt  =  0.01  gives  t  ≈  2.47 sec. 
 
30. In the underdamped case we have 
 
   x(t)  =  e-pt[A cos ω1t + B sin ω1t], 

           x′(t)  =  -pept[A cos ω1t + B sin ω1t] + e-pt[-Aω1sin ω1t + Bω1cos ω1t]. 
 
 The conditions  x(0)  =  x0,  x′(0)  =  v0  yield the equations  A  =  x0  and   
 -pA + Bω1  =  v0,  whence  B  =  (v0 + px0)/ω1. 
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31. The binomial series   
 

  ( ) 2 3( 1) ( 1)( 2)1 1
2! 3!

x x x xα α α α α αα − − −+ = + + + +� 

 
converges if  1.x <   (See, for instance, Section 11.8 of Edwards and Penney, Calculus, 

6th edition, Prentice Hall, 2002.)  With  1/ 2α =  and  2 / 4x c mk= −  in Eq. (21) of 
Section 5.4 in this text, the binomial series gives 
 

 

2 2
2 2

1 0 2

2 4 2

02 2

1
4 4

1 1 .
8 128 8

k c k cp
m m m mk

k c c c
m mk m k mk

ω ω

ω

= − = − = −

   
= − − − ≈ −   

   
�

  

 
32. If  x(t)  =  Ce-ptcos(ω1t - α)  then 
 
   x′(t)  =  -pCe-ptcos(ω1t - α) + Cω1e-ptsin(ω1t - α)  =  0 
 
 yields  tan(ω1t - α)  =  -p/ω1. 
 
33. If  x1  =  x(t1)  and  x2  =  x(t2)  are two successive local maxima, then  ω1t2  =  ω1t1 + 2π  

so 
   x1  =  C exp(-pt1) cos(ω1t1 - α), 

   x2  =  C exp(-pt2) cos(ω1t2 - α)  =  C exp(-pt2) cos(ω1t1 - α). 
 
 Hence  x1/x2  =  exp[-p(t1 - t2)], and therefore   
 
    ln(x1/x2)  =  -p(t1 - t2)  =  2πp/ω1. 
 
34. With  t1  =  0.34  and  t2  =  1.17  we first use the equation  ω1t2  =  ω1t1 + 2π  from 

Problem 32 to calculate  ω1  =  2π/(0.83)  ≈  7.57 rad/sec.  Next, with  x1  =  6.73  and   
 x2  =  1.46,  the result of Problem 33 yields   
 
    p  =  (1/0.83) ln(6.73/1.46)  ≈  1.84.   
 
 Then Equation (16) in this section gives 
 
    c  =  2mp  =  2(100/32)(1.84)  ≈  11.51 lb-sec/ft, 
 
 and finally Equation (21) yields 
 
    k  =  (4m2ω1

2 + c2)/4m  ≈  189.68 lb/ft. 
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35. The characteristic equation  2 2 1 0r r+ + =  has roots  1, 1.r = − −   When we impose the 

initial conditions  (0) 0, (1) 0x x′= =  on the general solution  ( )1 2( ) tx t c c t e−= +  we get 

the particular solution  1( ) .tx t t e−=  
 
36. The characteristic equation  2 22 (1 10 ) 0nr r −+ + − =  has roots  1 10 .nr −= − ±   When we 

impose the initial conditions  (0) 0, (1) 0x x′= =  on the general solution 
 
  ( ) ( )1 1( ) exp 1 10 exp 1 10n nx t c t c t− −   = − + + − −      

 we get the equations   

  ( ) ( )1 2 1 20, 1 10 1 10 1n nc c c c− −+ = − + + − − =  
 
 with solution  1 1

1 22 5 , 2 5 .n n n nc c− −= =   This gives the particular solution 

  2
exp(10 ) exp( 10 )( ) 10 10 sinh(10 ).

2

n n
n t n t nt tx t e e t

− −
− − − − −= = 
 

 

 
37. The characteristic equation  2 22 (1 10 ) 0nr r −+ + + =  has roots  1 10 .nr i−= − ±   When we 

impose the initial conditions  (0) 0, (1) 0x x′= =  on the general solution 
 
   ( ) ( )( ) cos 10 sin 10t n nx t e A t B t− − − = +    

 we get the equations  1 1 20, 10 1nc c c−= − + =  with solution  1 20, 10 .nc c= =   This 

gives the particular solution  3( ) 10 sin(10 ).n t nx t e t− −=  

 

38. 2
sinh(10 )lim ( ) lim 10 sinh(10 ) lim and

10

n
n t n t t

nn n n

tx t e t t e t e
t

−
− − − −

−→∞ →∞ →∞
= = ⋅ =  

 3
sin(10 )lim ( ) lim 10 sin(10 ) lim

10

n
n t n t t

nn n n

tx t e t t e t e
t

−
− − − −

−→∞ →∞ →∞
= = ⋅ = , 

 using the fact that  
0 0

lim(sin ) / lim(sinh ) / 0
θ θ

θ θ θ θ
→ →

= =  (by L'Hôpital's rule, for 

instance). 
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SECTION 5.5 
 
NONHOMOGENEOUS EQUATIONS AND  
THE METHOD OF UNDETERMINED COEFFICIENTS 
 
The method of undetermined coefficients is based on "educated guessing".  If we can guess 
correctly the form of a particular solution of a nonhomogeneous linear equation with constant 
coefficients, then we can determine the particular solution explicitly by substitution in the given 
differential equation.  It is pointed out at the end of Section 5.5 that this simple approach is not 
always successful — in which case the method of variation of parameters is available if a 
complementary function is known.  However, undetermined coefficients does turn out to work 
well with a surprisingly large number of the nonhomogeneous linear differential equations that 
arise in elementary scientific applications. 
   
In each of Problems 1–20 we give first the form of the trial solution  ytrial,  then the equations in 
the coefficients we get when we substitute  ytrial  into the differential equation and collect like 
terms, and finally the resulting particular solution  yp. 
 
1. 3

trial ; 25 1;xy Ae A= = yp  =  (1/25)e3x            
 
2. trial ; 2 4, 2 3;y A Bx A B B= + − − = − = yp  =  -(5 + 6x)/4 
 
3. trial cos3 sin 3 ; 15 3 0, 3 15 2;y A x B x A B A B= + − − = − =  
  yp  =  (cos 3x - 5 sin 3x)/39   
 
4. trial ; 9 12 0, 9 3;x xy Ae B x e A B B= + + = = yp  =  (-4ex + 3xex)/9 
 
5. First we substitute  sin2x  =  (1 - cos 2x)/2  on the right-hand side of the differential 

equation.  Then: 

 trial cos2 sin 2 ; 1/ 2, 3 2 1/ 2, 2 3 0;y A B x C x A B C B C= + + = − + = − − − =  
  yp  =  (13 + 3 cos 2x - 2 sin 2x)/26 
 
6. 2

trial ; 7 4 4 0, 7 8 0, 7 1;y A B x C x A B C B C C= + + + + = + = =  
  yp  =  (4 - 56x + 49x2)/343        
 
7. First we substitute  sinh x  =  (ex - e-x)/2  on the right-hand side of the differential 

equation.  Then: 

 trial ; 3 1/ 2, 3 1/ 2;x xy Ae B e A B−= + − = − = − yp  =  (e-x - ex)/6  =  -(1/3)sinh x 
 



264 Chapter 5 

8. First we note that  cosh 2x  is part of the complementary function  

c 1 2cosh 2 sinh 2 .y c x c x= + .  Then: 

 ( )trial cosh 2 sinh 2 ; 4 0, 4 1;y x A x B x A B= + = = yp  =  (1/4)x sinh 2x 
 
9. First we note that  ex  is part of the  complementary function  yc  =  c1ex + c2e-3x.  Then: 

 trial ( ) ; 3 1, 4 2 0, 8 1;xy A x B Cx e A B C C= + + − = + = =  
  yp  =  -(1/3) + (2x2 - x)ex/16. 
 
10. First we note the duplication with the complementary function  c 1 2cos3 sin 3 .y c x c x= +  
 Then: 

 ( )trial cos3 sin 3 ; 6 2, 6 3;y x A x B x B A= + = − = yp  =  (2x sin 3x - 3x cos 3x)/6   
 
11. First we note the duplication with the complementary function  

c 1 2 3cos2 sin 2 .y c x c x c x= + +   Then: 

 ( )trial ; 4 1, 8 3;y x A B x A B= + = − = yp  =  (3x2 - 2x)/8 
 
12. First we note the duplication with the complementary function  

c 1 2 3cos sin .y c x c x c x= + +   Then: 

 ( )trial cos sin ; 2, 2 0, 2 1;y Ax x B x C x A B C= + + = − = − = −  
  yp  =  2x + (1/2)x sin x 
 
13. ( )trial cos sin ; 7 4 0, 4 7 1;xy e A x B x A B A B= + + = − + =  
  yp  =  ex(7 sin x - 4 cos x)/65 
 
14. First we note the duplication with the complementary function  

( ) ( )c 1 2 3 4 .x xy c c x e c c x e−= + + +   Then:  

 ( )2
trial ; 8 24 0, 24 1;xy x A B x e A B B= + + = = yp  =  (-3x2ex + x3ex)/24 

 
15. This is something of  a trick problem.  We cannot solve the characteristic equation  

5 45 1 0r r+ − =  to find the complementary function, but we can see that it contains no 
constant term (why?).  Hence the trial solution  trialy A=  leads immediately to the 
particular solution  yp  =  -17.    

 
16. ( )2 3

trial ;xy A B Cx Dx e= + + +  
 9 5, 18 6 2 0, 18 12 0, 18 2;A B C D C D D= + + = + = =  
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  yp  =  (45 + e3x - 6xe3x + 9x2e3x)/81 
 
17. First we note the duplication with the complementary function  c 1 2cos sin .y c x c x= +  
 Then:  

 [ ]trial ( ) cos ( )sin ;y x A Bx x C Dx x= + + +  
 2 2 0, 4 1, 2 2 1, 4 0;B C D A D B+ = = − + = − =  
  yp  =  (x2sin x - x cos x)/4 
 
18. First we note the duplication with the complementary function 
   2 2

c 1 2 3 4 .x x x xy c e c e c e c e− −= + + +   Then:  

 ytrial  =  x(Aex) + x(B + Cx) e2x;     6 1, 12 38 0, 24 1;A B C C− = + = = −  
 yp  =  -(24xex - 19xe2x + 6x2e2x)/144 
 
19. First we note the duplication with the part  1 2c c x+  of the complementary function 
  (which corresponds to the factor  2r  of the characteristic polynomial).  Then:  

 ytrial  =  x2(A + Bx + Cx2);          4 12 1, 12 48 0, 24 3;A B B C C+ = − + = =  
 yp  =  (10x2 - 4x3 + x4)/8 
 
20. First we note that the characteristic polynomial  3r r−  has the zero  r = 1  corresponding 
 to the duplicating part  ex  of the complementary function.  Then: 

 ( )trial ; 7, 3 1;xy A x Be A B= + − = = yp  =  -7 + (1/3)xex    
 
In Problems 21–30 we list first the complementary function  yc,  then the initially proposed trial 
function  yi,  and finally the actual trial function  yp  in which duplication with the 
complementary function has been eliminated. 
 
21. ( )c 1 2cos sin ;xy e c x c x= +       

 ( )i cos sinxy e A x B x= +  

 ( )p cos sinxy x e A x B x= ⋅ +  
 
22. ( ) ( ) ( )2

c 1 2 3 4 5 ;x xy c c x c x c e c e−= + + + +  

 ( ) ( )2
i

xy A Bx Cx D e= + + +  

  ( ) ( )3 2
p

xy x A Bx Cx x D e= ⋅ + + + ⋅  
 
23. c 1 2cos sin ;y c x c x= +  
 i ( ) cos2 ( )sin 2y A Bx x C Dx x= + + +  
  [ ]p ( ) cos2 ( )sin 2y x A Bx x C Dx x= ⋅ + + +  
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24. 3 4
c 1 2 3 ;x xy c c e c e−= + +  

 3
i ( ) ( ) xy A Bx C Dx e−= + + +  

  3
p ( ) ( ) xy x A Bx x C Dx e−= ⋅ + + ⋅ +  

 
25. 2

c 1 2 ;x xy c e c e− −= +  
 2

i ( ) ( )x xy A Bx e C Dx e− −= + + +  
  2

p ( ) ( )x xy x A Bx e x C Dx e− −= ⋅ + + ⋅ +  
 
26. ( )3

c 1 2cos2 sin 2 ;xy e c x c x= +  

 3 3
i ( ) cos2 ( ) sin 2x xy A Bx e x C Dx e x= + + +  

  3 3
p ( ) cos2 ( ) sin 2x xy x A Bx e x C Dx e x = ⋅ + + +   

 
27. ( ) ( )c 1 2 3 3cos sin cos2 sin 2y c x c x c x c x= + + +

 ( ) ( )i cos sin cos2 sin 2y A x B x C x D x= + + +  

  ( ) ( )p cos sin cos2 sin 2y x A x B x C x D x= ⋅ + + +    
 
28. ( ) ( )c 1 2 3 3cos3 sin 3y c c x c x c x= + + +  

 ( ) ( )2 2
i cos3 sin 3y A Bx Cx x D Ex Fx x= + + + + +  

  ( ) ( )2 2
p cos3 sin 3y x A Bx Cx x D Ex Fx x = ⋅ + + + + +   

 
29. ( )2 2 2

c 1 2 3 4 5
x x xy c c x c x e c e c e−= + + + + ;      

 ( ) 2 2
i

x x xy A Bx e C e D e−= + + +  

  ( ) ( ) ( )3 2 2
p

x x xy x A Bx e x C e x D e−= ⋅ + + ⋅ + ⋅  
 
30. ( ) ( )c 1 2 3 4

x xy c c x e c c x e−= + + +   

 ( ) ( )2 2
i p cos siny y A Bx Cx x D Ex Fx x= = + + + + +  

 
In Problems 31–40 we list first the complementary function  yc,  the trial solution  ytr  for the 
method of undetermined coefficients, and the corresponding general solution  yg = yc + yp  where 
yp  results from determining the coefficients in  ytr  so as to satisfy the given nonhomogeneous 
differential equation.  Then we list the linear equations obtained by imposing the given initial 
conditions, and finally the resulting particular solution  y(x). 
 
31. c 1 2 trcos2 sin 2 ;y c x c x y A Bx= + = +  

 g 1 2cos2 sin 2 / 2y c x c x x= + +  
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 1 21, 2 1/ 2 2c c= + =  
 ( ) cos2 (3/ 4)sin 2 / 2y x x x x= + +  
 
32. 2

c 1 2 tr;x x xy c e c e y Ae− −= + =  

 2
g 1 2 / 6x x xy c e c e e− −= + +  

 1 2 1 21/ 6 0, 2 1/ 6 3c c c c+ + = − − + =  

 ( )2( ) 15 16 / 6x x xy x e e e− −= − +  
 
33. c 1 2 trcos3 sin 3 ; cos2 sin 2y c x c x y A x B x= + = +  

 g 1 2cos3 sin 3 (1/5)sin 2y c x c x x= + +  

 1 21, 3 2 / 5 0c c= + =  
 ( )( ) 15cos3 2sin 3 3sin 2 /15y x x x x= − +  
 
34. ( )c 1 2 trcos sin ; cos siny c x c x y x A x B x= + = ⋅ +  

 1
g 1 2 2cos sin siny c x c x x x= + +  

 1
1 2 21, 1; ( ) cos sin sinc c y x x x x x= = − = − +  

 
35. ( )c 1 2 trcos sin ;xy e c x c x y A B x= + = +  

 ( )g 1 2cos sin 1 / 2xy e c x c x x= + + +  

 1 1 21 3, 1/ 2 0c c c+ = + + =  
 ( )( ) 4cos 5sin / 2 1 / 2xy x e x x x= − + +  
 
36. ( )2 2 2 2

c 1 2 3 4 tr;x xy c c x c e c e y x A B x C x−= + + + = ⋅ + +  

 2 2 2 4
g 1 2 3 4 /16 / 48x xy c c x c e c e x x−= + + + − −  

 1 3 4 2 3 4 3 4 3 41, 2 2 1, 4 4 1/8 1, 8 8 1c c c c c c c c c c+ + = − + = + − = − − + = −  

 ( )2 2 2 4( ) 234 240 9 33 12 4 /192x xy x x e e x x−= + − − − −  
 
37. ( ) ( )2

c 1 2 3 tr;x x xy c c e c x e y x A x B Cx e= + + = ⋅ + ⋅ +  

 2 3
g 1 2 3 / 2 / 6x x x xy c c e c x e x x e x e= + + + − +  
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 1 2 2 3 2 30, 1 0, 2 1 1c c c c c c+ = + + = + − =  

 ( )2 3( ) 4 24 18 3 / 6xy x x e x x x= + + − + − +  
 
38. ( )c 1 2 trcos sin ; cos3 sin 3xy e c x c x y A x B x−= + = +  

 ( ) ( )g 1 2cos sin 6cos3 7sin 3 /85xy e c x c x x x−= + − +  

 1 1 26 /185 2, 21/85 0c c c− = − + − =  

 ( ) ( )( ) 176cos 197sin 6cos3 7sin 3 /85xy x e x x x x− = + − +   
 
39. ( ) ( )2

c 1 2 3 tr;x xy c c x c e y x A Bx x Ce− −= + + = ⋅ + + ⋅  

 2 3
g 1 2 3 / 2 / 6x xy c c x c e x x x e− −= + + − + +  

 1 3 2 3 31, 1 0, 3 1c c c c c+ = − + = − =  

 ( )2 3( ) 18 18 3 / 6 (4 ) xy x x x x x e−= − + − + + +  
 
40. c 1 2 3 4 trcos sin ;x xy c e c e c x c x y A−= + + + =  

 g 1 2 3 4cos sin 5x xy c e c e c x c x−= + + + −  

 1 2 3 1 2 4 1 2 3 1 2 45 0, 0, 0, 0c c c c c c c c c c c c+ + − = − + + = + − = − + − =  

 ( )( ) 5 5 10cos 20 / 4x xy x e e x−= + + −  
 
41. The trial solution  2 3 4 5

try A Bx Cx Dx Ex Fx= + + + + +  leads to the equations 
 

   

2 2 6 24   0
2 2 6 24 120   0
2 3 12 60   0
2 4 20   0
2 5   0
2 8

A B C D E
B C D E F
C D E F
D E F
E F
F

− − − + =
− − − − + =
− − − − =
− − − =
− − =
− =

 

 
 that are readily solve by back-substitution.  The resulting particular solution is 
 
  y(x)  =  –255 - 450x + 30x2 + 20x3 + 10x4 - 4x5. 
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42. The characteristic equation  4 3 2 2 0r r r r− − − − =   has roots  1, 2,r i= − ±   so the 
complementary function is  2

c 1 2 3 4cos sin .x xy c e c e c x c x−= + + +   We find that the 
coefficients satisfy the equations 

 

   

1 2 3

1 2 4

1 2 3

1 2 4

255 0
2 450 0

4 60 0
8 120 0

c c c
c c c

c c c
c c c

+ + − =
− + + − =

+ − + =
− + − + =

 

 
 Solution of this system gives finally the particular solution  c py y y= +  where  yp  is the 

particular solution of Problem 41 and 
 
   2

c 10 35 210cos 390sin .x xy e e x x−= + + +  
 
43. (a) 3cos3 sin 3 (cos sin )x i x x i x+ = +   
  3 2 2 3cos 3 cos sin 3cos sin sinx i x x x x i x= + − −  

 When we equate real parts we get the equation 
 
  ( )( )3 2 3cos 3 cos 1 cos 4cos 3cosx x x x x− − = −  

and readily solve for  3 3 1
4 4cos cos cos3 .x x x= +   The formula for  3sin x  is derived 

similarly by equating imaginary parts in the first equation above. 
 
 (b) Upon substituting the trial solution  p cos sin cos3 sin 3y A x B x C x D x= + + +  
 in the differential equation  3 1

4 44 cos cos3 ,y y x x′′ + = +  we find that  A = 1/4, B = 0,  
 C = –1/20, D = 0.  The resulting general solution is 
 
  y(x)  =  c1cos 2x + c2sin 2x + (1/4)cos x - (1/20)cos 3x.  
 
44. We use the identity  1 1

2 2sin sin 3 cos2 cos4 ,x x x x= −   and hence substitute the trial 
solution  p cos2 sin 2 cos4 sin 4y A x B x C x D x= + + +  in the differential equation  

 1 1
2 2cos2 cos4 .y y y x x′′ ′+ + = −   We find that  A = –3/26, B = 1/13, C = –14/482,  

 D = 2/141.  The resulting general solution is 
 
  y(x)  =  e-x/2(c1 cos x 3 /2 + c2 sin x 3 /2) 

   + (-3 cos 2x + 2 sin 2x)/26 + (-15 cos 4x + 4 sin 4x)/482. 
 
45. We substitute 
        
  sin4x  =  (1 - cos 2x)2 /4 
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            =  (1 - 2 cos 2x + cos22x)/4  =  (3 - 4 cos 2x + cos 4x)/8 
 
 on the right-hand side of the differential equation, and then substitute the trial solution 
  p cos2 sin 2 cos4 sin 4 .y A x B x C x D x E= + + + +  We find that  A = –1/10, B = 0,  
 C = –1/56, D = 0, E = 1/24.  The resulting general solution is 
 
  y  =  c1cos 3x + c2sin 3x + 1/24 - (1/10)cos 2x - (1/56)cos 4x. 
   
46. By the formula for 3cos x  in Problem 43, the differential equation can be written as 

   3 1
4 4cos cos3 .y y x x x x′′ + = +  

 The complementary solution is  yc  =  c1cos x + c2sin x,  so we substitute the trial solution 
 
  ( ) ( ) ( ) ( )p cos sin cos3 sin 3 .y x A Bx x C Dx x E Fx x G Hx x= ⋅ + + + + + + +        
 
 We find that  3/16, 0, 3/16, 0, 1/ 32, 3/128, 0.A B C D E F G H= = = = = = − = =  Hence 

the general solution is given by  y  =  yc + y1 + y2  where 
 
  y1  =  (3x cos x + 3x2sin x)/16   and    y2  =  (3 sin 3x - 4x cos 3x)/128. 
 
In Problems 47–49 we list the independent solutions  1 2andy y  of the associated homogeneous 
equation, their Wronskian  1 2( , ),W W y y=  the coefficient functions   
 

 2 1
1 2

( ) ( ) ( ) ( )( ) and ( )
( ) ( )

y x f x y x f xu x dx u x dx
W x W x

= − =⌠ ⌠
 
⌡ ⌡

  

 
in the particular solution  p 1 1 2 2y u y u y= +  of Eq. (32) in the text, and finally  yp  itself. 
 
47. y1  =  e-2x,     y2  =  e-x,     W  =  e-3x 

 u1  =  -(4/3)e3x,    u2  =  2e2x,    

 yp  =  (2/3)ex 
 
48. y1  =  e-2x,     y2  =  e4x,     W  =  6e2x 

 u1  =  -x/2,     u2  =  -e-6x/12,    

 yp  =  -(6x + 1)e-2x/12 
 
49. y1  =  e2x,     y2  =  xe2x,     W  =  e4x 

 u1  =  -x2,     u2  =  2x,    

 yp  =  x2e2x 
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50. The complementary function is  y1  =  c1cosh 2x + c2sinh 2x, so the Wronskian is   
 
    W  =  2 cosh22x - 2 sinh22x  =  2,  
 
 so when we solve Equations (31) simultaneously for  1 2and ,u u′ ′   integrate each and 

substitute in  yp  =  y1u1 + y2u2,  the result is     
 
  1 1

2 2(cosh 2 ) (sinh 2 )(sinh 2 ) (sinh 2 ) (cosh 2 )(sinh 2 )py x x x dx x x x dx= − +∫ ∫ . 
 
 Using the identities  2 sinh2x  =  cosh 2x - 1  and  2 sinh x cosh x  =  sinh 2x,  we evaluate 

the integrals and find that 
 
  yp  =  (4x cosh 2x - sinh 4x cosh 2x + cosh 4x sinh 2x)/16, 

  yp  =  (4x cosh 2x - sinh 2x)/16. 
 
51. 1 2cos2 , sin 2 , 2y x y x W= = =  

 Liberal use of trigonometric sum and product identities yields 
 
 1 1(cos5 5cos ) / 20, (sin5 5sin ) / 20u x x u x x= − = −  

 yp  =  -(1/4)(cos 2x cos x - sin 2x sin x) + (1/20)(cos 5x cos 2x + sin 5x sin 2x)  

      =  -(1/5)cos 3x  (!) 
 
52.    y1  =  cos 3x,  y2  =  sin 3x,     W  =  3  

 1 1(6 sin 6 ) / 36, (1 cos6 ) / 36u x x u x= − − = − +  

 yp  =  -(x cos 3x)/6 
 
53. y1  =  cos 3x,   y2  =  sin 3x,   W  =  3 

 1u′   =  -(2/3)tan 3x,      2u′   =  2/3 

 yp  =  (2/9)[3x sin 3x + (cos 3x) ln cos3x ] 
 
54. y1  =  cos x,   y2  =  sin x,   W  =  1 

 1u′   =  -csc x,   2u′ =  cos x csc2x 

 yp  =  -1 - (cos x) ln csc cotx x−  
 
55. y1  =  cos 2x,     y2  =  sin 2x,     W  =  2 

 1u′   =  -(1/2)sin2x sin 2x  =  -(1/4)(1 - cos 2x)sin 2x 
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 2u′   =   (1/2)sin2x cos 2x  =   (1/4)(1 - cos 2x)cos 2x 

 yp  =  (1 - x sin 2x)/8  
 
56. y1  =  e-2x,     y2  =  e2x,      W  =  4 

     u1  =  -(3x - 1)e3x/36,    u2  =  -(x + 1)e-x/4  

 yp  =  -ex(3x + 2)/9 
 
57. With  y1  =  x,  y2  =  x-1,  and  f(x)  =  72x3,  Equations (31) in the text take the form 
 
    x 1u′  + x-1

2u′   =  0, 

        1u′  - x-2
2u′   =  72x3. 

  
 Upon multiplying the second equation by  x  and then adding, we readily solve first for 
 
    1u′   =  36x3, so u1  =  9x4 
 and then 
   2u′   =  -x2 1u′   =  -36x5, so u2  =  -6x6.  
 
 Then it follows that 
 
   yp  =  y1u1 + y2u2  =  (x)(9x4) + (x-1)(-6x6)  =  3x5. 
 
58. Here it is important to remember that — for variation of parameters — the differential 

equation must be written in standard form with leading coefficient  1.  We therefore 
rewrite the given equation with complementary function  yc  =  c1x2 + c2x3  as 

 
     y″ - (4/x)y′ + (6/x2)y  =  x. 
 
 Thus  f(x)  =  x, and  W  =  x4,  so simultaneous solution of Equations (31) as in Problem 

50 (followed by integration of  1u′   and  2u′ )  yields 
 

2 3 4 3 2 4

2 3 3(1/ ) (ln 1).

py x x x x dx x x x x dx

x dx x x dx x x

− −= − ⋅ ⋅ + ⋅ ⋅

= − + = −

∫ ∫

∫ ∫
 

 
59. y1  =  x2,    y2  =  x2ln x,    

 W  =  x3,     f(x)  =  x2 

 1u′   =  -x ln x,    2u′   =  x 

 yp  =  x4/4 
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60. 1/ 2
1 ,y x=   3/ 2

2y x=   

 f(x)  =  2x-2/3;    W  =  x  

 5/ 6
1 12 / 5,u x= −  1/ 6

2 12u x−= −  

 4 / 3
p 72 / 5y x= −  

 
61. y1  =  cos(ln x),    y2  =  sin(ln x),    W  =  1/x,    

      f(x)  =  (ln x)/x2 

 u1  =  (ln x)cos(ln x) - sin(ln x) 

 u2  =  (ln x)sin(ln x) + cos(ln x) 

 yp  =  ln x   (!) 
 
62. y1  =  x,     y2  =  1 + x2,    

 W  =  x2 - 1,     f(x)  =  1 

 1u′   =  (1 + x2)/(1 - x2),    2u′   =  x /(x2 - 1) 

 yp  =  -x2 + x ln|(1 + x)/(1 - x)| + (1/2)(1 + x2)ln|1 - x2| 
 
63. This is simply a matter of solving the equations in (31) for the derivatives 
 

2 1
1 2

( ) ( ) ( ) ( )and
( ) ( )

y x f x y x f xu u
W x W x

′ ′= − = , 

 
 integrating each, and then substituting the results in (32). 
 
64. Here we have  1 2( ) cos , ( ) sin , ( ) 1, ( ) 2siny x x y x x W x f x x= = = = ,  so (33) gives 
 

2

2 2

( ) (cos ) sin 2sin (sin ) cos 2sin

(cos ) (1 cos2 ) (sin ) 2(sin ) cos

(cos )( sin cos ) (sin )(sin )
cos (sin )(cos sin )

( ) cos sin

p

p

y x x x x dx x x x dx

x x dx x x x dx

x x x x x x
x x x x x

y x x x x

= − ⋅ + ⋅

= − − + ⋅

= − − +

= − + +
= − +

∫ ∫

∫ ∫
 

 
 But we can drop the term  sin x  because it satisfies the associated homogeneous 
 equation  0.y y′′ + =  
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SECTION 5.6 
 
FORCED OSCILLATIONS AND RESONANCE 
 
1. Trial of  x  =  A cos 2t  yields the particular solution  xp  =  2 cos 2t.  (Can you see that —

because the differential equation contains no first-derivative term — there is no need to 
include a  sin 2t  term in the trial solution?)  Hence the general solution is 

 
    x(t)  =  c1cos 3t + c2sin 3t + 2 cos 2t. 
 
 The initial conditions imply that  c1  =  -2  and  c2  =  0,  so  x(t)  =  2 cos 2t - 2 cos 3t. 
 The following figure shows the graph of  ( ).x t  

π 3 π 5 π

t

-3

3

2π

 
2. Trial of  x  =  A sin 3t  yields the particular solution  xp  =  -sin 3t.  Then we impose the 
 initial conditions  x(0)  =  x′(0)  =  0  on the general solution 
 
    x(t)  =  c1cos 2t + c2sin 2t - sin 3t,   
 
 and find that  x(t)  =  3

2 sin 2t - sin 3t.  The following figure shows the graph of  ( ).x t  
 
 
 
 
 
 
 
 
 
 
 

 
 
 

π 3 π 5 π

t

-2

2

2π
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3. First we apply the method of undetermined coefficients — with trial solution  
 cos5 sin5x A t B t= + — to find the particular solution 
 
   xp  =  3 cos 5t + 4 sin 5t   

        ( )3 45 cos5 sin5 5cos 5
5 5

t t t β = + = −  
 

 
 where  β  =  tan-1(4/3)  ≈  0.9273.  Hence the general solution is 
 
   x(t)  =  c1cos 10t + c2sin 10t + 3 cos 5t + 4 sin 5t. 
 
 The initial conditions  x(0)  =  375,  x′(0)  =  0  now yield  c1  =  372  and  c2  =  -2,  so 

the part of the solution with frequency  ω  =  10  is 
 
  xc  =  372 cos 10t - 2 sin 10t   

       

( )

372 2138388 cos10 sin10
138388 138388

138388 cos 10

t t

t α

 = − 
 

= −
   

 
      where  α  =  2π - tan-1(1/186)  ≈  6.2778  is a fourth-quadrant angle.  The following 
 figure shows the graph of  ( ).x t  

π

t

-375

375

πê5

 
 
4. Noting that there is no first-derivative term, we try  cos4x A t=  and find the particular 

solution  p 10cos 4 .  x t= Then imposition of the initial conditions on the general 
solution 1 2( ) cos5 sin5 10cos4x t c t c t t= + +  yields 

 
  x(t)  =  (-10 cos 5t + 18 sin 5t) + 10 cos 4t  
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          ( )2 5cos5 9sin5 10cos4t t t= − + +   

          
5 92 106 cos5 sin5 10cos4
106 106

2 106 cos(5 )

t t t

t α

 = − + + 
 

= −

 

 
 where  α  =  π - tan-1(9/5)  ≈  2.0779  is a second-quadrant angle.  The following figure 
 shows the graph of  ( ).x t   

π 3 π 5 π

t

-30

30

2π

 
 
5. Substitution of the trial solution  cosx C tω=  gives  C  =  F0/(k - mω2).  Then 

imposition of the initial conditions  0(0) , (0) 0x x x′= =   on the general solution   
 
  1 0 2 0 0( ) cos sin cos (where / )x t c t c t C t k mω ω ω ω= + + =  
 
 gives the particular solution  x(t)  =  (x0 - C)cos ω0t + C cos ωt. 
   
6. First, let's write the differential equation in the form  ( )2

0 0 0/ cos ,x x F m tω ω′′ + =  which 
is the same as Eq. (13) in the text, and therefore has the particular solution  

p 0 0 0( / 2 ) sinx F m t tω ω=  given in Eq. (14).  When we impose the initial conditions  

0(0) 0, (0)x x v′= =  on the general solution   
 
   1 0 2 0 0 0 0( ) cos sin ( / 2 ) sinx t c t c t F m t tω ω ω ω= + +  
 
 we find that  1 2 0 00, / .c c v ω= =   The resulting resonance solution of our initial value 

problem is 

    0 0
0

0

2( ) sin .
2

mv F tx t t
m

ω
ω
+=  
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In Problems 7–10 we give first the trial solution  xp  involving undetermined coefficients  A  and  
B,  then the equations that determine these coefficients, and finally the resulting steady periodic 
solution  xsp.   In each case the figure shows the graphs of  sp ( )x t  and the adjusted forcing 
function  1( ) ( ) / .F t F t mω=  
 
7. p cos3 sin 3 ; 5 12 10, 12 5 0x A t B t A B A B= + − + = + =  

 sp
50 120 10 5 12 10( ) cos3 sin 3 cos3 sin 3 cos(3 )

169 169 13 13 13 13
x t t t t t t α = − + = − + = − 

 
 

 1tan (12 / 5) 1.9656α π −= − ≈      (2nd quadrant angle) 

2 π

t

-3

3
xsp

F1

 
 
8. p cos5 sin5 ; 20 15 4, 15 20 0x A t B t A B A B= + − + = − + =  

 sp
16 12 4 4 3 4( ) cos5 sin5 cos5 sin5 cos(5 )
125 125 25 5 5 25

x t t t t t t α = − = − = − 
 

 

 12 tan (3/ 4) 5.6397α π −= − ≈      (4th quadrant angle) 

2 π

t

-1

1 xsp

F1
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9. p cos10 10sin5 ; 199 20 0, 20 199 3x A t t A B A B= + − + = + = −  

 
sp

60 597( ) cos10 sin10
40001 40001

3 20 199 3cos10 sin10 cos(10 )
40001 40001 40001 40001

x t t t

t t t α

= − −

 = − − = − 
 

 

 1tan (199 / 20) 4.6122α π −= + ≈      (3rd quadrant angle) 

2 π

t

-0.1

0.1

xsp

F1
 

10. p cos10 10sin5 ; 97 30 8, 30 97 6x A t t A B A B= + − + = + = −  

 
sp

956 342( ) cos10 sin10
10309 10309

2 257725 478 171 10cos10 sin10 61cos(10 )
10309 793257725 257725

x t t t

t t t α

= − −

 = − − = − 
 

 

 1tan (171/ 478) 3.4851α π −= + ≈      (3rd quadrant angle) 

2 π

t

-1

1
xsp

F1
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Each solution in Problems 11–14 has two parts.  For the first part, we give first the trial solution  
xp  involving undetermined coefficients  A  and  B,  then the equations that determine these 
coefficients, and finally the resulting steady periodic solution  xsp.  For the second part, we give 
first the general solution  x(t)  involving the coefficients  c1  and  c2  in the transient solution,  
then the equations that determine these coefficients, and finally the resulting transient solution  

trx  so that  tr sp( ) ( ) ( )x t x t x t= +  satisfies the given initial conditions.  For each problem, the 
graph shows the graphs of both  sp( ) and ( ).x t x t  
 
11. p cos3 sin 3 ; 4 12 10, 12 4 0x A t B t A B A B= + − + = + =  

 ( )sp
1 3 10 1 3 10( ) cos3 sin 3 cos3 sin 3 cos 3
4 4 4 410 10

x t t t t t t α = − + = − + = − 
 

 

 1tan (3) 1.8925α π −= − ≈      (2nd quadrant angle) 

 ( )2 91
1 2 sp 1 1 24 4( ) cos sin ( ); 0, 2 0tx t e c t c t x t c c c−= + + − = − + + =  

 

( )

2 2
tr

2

1 7 50 1 7( ) cos sin cos sin
4 4 4 50 50

5 2 cos
4

t t

t

x t e t t e t t

e t β

− −

−

  = − = −   
   

= −
 

 12 tan (7) 4.8543β π −= − ≈      (4th quadrant angle) 

π

t

-0.5

0.5

xsp

x

 
 
12. p cos5 sin5 ; 12 30 0, 30 12 10x A t B t A B A B= + − = + = −  

 sp
25 10( ) cos5 sin5
87 87

x t t t= − −  
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 ( )5 29 5 2 5cos3 sin 3 cos 3
87 29 29 3 29

t t t α = − − = − 
 

 

 1tan (2 / 5) 3.5221α π −= + ≈      (3rd quadrant angle) 

 ( )3
1 2 sp 1 1 2( ) cos2 sin 2 ( ); 25/87 0, 3 2 50 /87 0tx t e c t c t x t c c c−= + + − = − + − =  

 3
tr

50 125( ) cos2 sin 2
174 174

tx t e t t−  = + 
 

 

 ( )3 325 29 2 5 25cos2 sin 2 cos 2
174 29 29 6 29

t te t t e t β− − = + = − 
 

 

 1tan (5 / 2) 1.1903β −= ≈      (1st quadrant angle) 

π

t

-0.5

0.5

xsp

x

 
13. p cos10 sin10 ; 74 20 600, 20 74 0x A t B t A B A B= + − + = + =  

 sp
11100 3000( ) cos10 sin10
1469 1469

x t t t= − +  

 ( )300 37 10 300cos10 sin10 cos 10
1469 1469 1469 1469

t t t α = − + = − 
 

 

 1tan (10 / 37) 2.9320α π −= − ≈      (2nd quadrant angle) 

 ( )1 2 sp( ) cos5 sin5 ( );tx t e c t c t x t−= + +  

 1 1 211100 /1469 10, 5 30000 /1469c c c− = − + = −  

 ( )tr ( ) 25790cos5 842sin5
1469

tex t t t
−

= −  
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 2 166458266 12895 421cos5 sin5
1469 166458266 166458266

te t t−  = − 
 

 

 ( )1133142 cos 5
1469

te t β−= −  

 12 tan (421/12895) 6.2505β π −= − ≈      (4th quadrant angle) 
 

π

t

-10

10

xsp

x

 
 

 

14. p cos sin ; 24 8 200, 8 24 520x A t B t A B A B= + + = − + =  

 ( )sp
1 22( ) cos 22sin 485 cos sin 485 cos
485 485

x t t t t t t α = + = + = − 
 

 

 1tan (22) 1.5254α −= ≈      (1st quadrant angle) 

 ( )4
1 2 sp( ) cos3 sin 3 ( );tx t e c t c t x t−= + +  

 1 1 21 30, 4 3 22 10c c c+ = − − + + = −  

 ( )4
tr ( ) 31cos3 52sin 3tx t e t t−= − −  

 ( )4 431 523665 cos3 sin 3 3665 cos 3
3665 3665

t te t t e t β− − = − − = − 
 

 

 1tan (52 / 31) 4.1748β π −= + ≈      (3rd quadrant angle) 

 The figure at the top of the next page shows the graphs of  sp( ) and ( ).x t x t  
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π 2 π

t

-30

30 xsp

x

 
 
In Problems 15–18 we substitute ( ) ( ) cos ( )sinx t A t B tω ω ω ω= +  into the differential equation 

0 cosmx cx kx F tω′′ ′+ + = with the given numerical values of  0, , , and .m c k F   We give first 
the equations in  A  and  B  that result upon collection of coefficients of  cos and sin ,t tω ω  and 
then the values of  ( ) and ( )A Bω ω  that we get by solving these equations.  Finally,  

2 2C A B= + gives the amplitude of the resulting forced oscillations as a function of the 
forcing frequency  ,ω  and we show the graph of the function  ( ).C ω  
 
15. 2 2(2 ) 2 2, 2 (2 ) 0A B A Bω ω ω ω− + = − + − =  

 
( )2

4 4

2 2 4,
4 4

A B
ω ω

ω ω
−

= =
+ +

  

 4( ) 2 / 4C ω ω= +   begins with  C(0) = 1  and steadily decreases as  ω  increases.   
 Hence there is no practical resonance frequency. 

5 10
ω

1

C
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16. 2 2(5 ) 4 10, 4 (5 ) 0A B A Bω ω ω ω− + = − + − =  

 
( )2

2 4 2 4

10 5 40,
25 6 25 6

A B
ω ω

ω ω ω ω
−

= =
+ + + +

 

2 4( ) 10 / 25 6C ω ω ω= + +   begins with  C(0) = 2  and steadily decreases as  ω  
increases.  Hence there is no practical resonance frequency. 

5 10
ω

1

2

C

 
 
 

17. 2 2(45 ) 6 50, 6 (45 ) 0A B A Bω ω ω ω− + = − + − =  

 
( )2

2 4 2 4

50 45 300,
2025 54 2025 54

A B
ω ω

ω ω ω ω
−

= =
− + − +

 

 2 4( ) 50 / 2025 54C ω ω ω= − +   so, to find its maximum value, we calculate the 
derivative 

    
2

2 4 3/ 2
100 ( 27 )( ) .

(2025 54 )
C ω ωω

ω ω
− − +′ =

− +  

  
Hence the practical resonance frequency (where the derivative vanishes) is  

27 3 3.ω = =   The graph of  ( )C ω  is shown at the top of the next page. 
 
18. 2 2(650 ) 10 100, 10 (650 ) 0A B A Bω ω ω ω− + = − + − =  

 
( )2

2 4 2 4

100 650 1000,
422500 1200 422500 1200

A B
ω ω
ω ω ω ω

−
= =

− + − +
 

 2 4( ) 100 / 422500 1200C ω ω ω= − +   so, to find its maximum value,  
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10 20
ω

1

C

 
 
 
 we calculate the derivative 

    
2

2 4 3/ 2
200 ( 600 )( ) .

(422500 1200 )
C ω ωω

ω ω
− − +′ =

− +  

  
Hence the practical resonance frequency (where the derivative vanishes) is   

600 10 6.ω = =  

25 50
ω

0.4

C

 
 
 
19. m  =  100/32 slugs  and  k  =  1200 lb/ft, so the critical frequency is  0 /k mω =   

384=  rad/sec  384 / 2 3.12π= ≈  Hz. 
  
20. Let the machine have mass  m.  Then the force  F  =  mg  =  9.8m  (the machine's weight)  
 causes a displacement of  x  =  0.5 cm  =  1/200 meters, so Hooke's law   
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    , that is, (1/ 200)F kx mg k= =  
 
 gives the spring constant is  k  =  200mg  (N/m).  Hence the resonance frequency is 
 
  / 200 200 9.8 44.27 rad / sec 7.05 Hzk m gω = = ≈ × ≈ ≈ , 
 
 which is about 423 rpm (revolutions per minute). 
 
21. If  θ  is the angular displacement from the vertical, then the (essentially horizontal) 

displacement of the mass is  x  =  Lθ,  so twice its total energy  (KE + PE)  is 
 
  m(x')2 + kx2 + 2mgh  =  mL2(θ')2 + kL2θ2 + 2mgL(1 - cos θ)  =  C. 
 
 Differentiation, substitution of  θ  ≈  sin θ,  and simplification yields 
 
     θ''+ (k/m + g/L)θ  =  0 
 so      
     0 / / .k m g Lω = +  
 
22. Let  x  denote the displacement of the mass from its equilibrium position,  v  =  x′  its 

velocity, and  ω  =  v /a  the angular velocity of the pulley.  Then conservation of energy 
yields 

    mv2/2 + Iω2 /2 + kx2 /2 - mgx  =  C. 
 
 When we differentiate both sides with respect to  t  and simplify the result, we get the 

differential equation 
     (m + I /a2)x″ + kx  =  mg. 
 

 Hence  ( )2/ / .k m I aω = +  

 
23. (a) In  ft-lb-sec  units we have  m  =  1000  and  k  =  10000,  so  0 10ω =  rad/sec   
 ≈  0.50 Hz. 
 
 (b) We are given that  2 / 2.25ω π= ≈   2.79 rad/sec,  and the equation   
 mx'' + kx  =  F(t)  simplifies to 
 
    210 (1/ 4) sin .x x tω ω′′ + =  
 
 When we substitute  x(t)  =  A sin ωt  we find that the amplitude is 
 
    ( )2 2/ 4 10 0.8854 ft 10.63 in.A ω ω= − ≈ ≈  
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24. By the identity of Problem 43 in Section 5.5, the differential equation is 
 
    ( )0 3cos cos3 / 4.mx kx F t tω ω′′ + = +  
 
 Hence resonance occurs when either  or 3ω ω  equals  0 /k mω = ,  that is, when 

either  0 0or / 3.ω ω ω ω= =  
 
25. Substitution of the trial solution  cos sinx A t B tω ω= +  in the differential equation, and 

then collection of coefficients as usual yields the equations 
 
  ( ) ( ) ( ) ( )2 2

00,k m A c B c A k m B Fω ω ω ω− + = − + − =  
 

 with coefficient determinant  ( ) ( )2 22k m cω ω∆ = − +  and solution  ( ) 0 / ,A c Fω= − ∆  

( )2
0 / .B k m Fω= − ∆   Hence 

 

  ( )
2

0( ) sin cos sin ,F k m cx t t t C tω ωω ω ω α −= − = − ∆ ∆ ∆ 
 

 
 where  ( )2

0 / and sin / , cos / .C F c k mα ω α ω= ∆ = ∆ = − ∆  
 
26. Let  2 2 2 2

0 0 0 and 1/ ( ) ( ) .G E F k m cρ ω ω= + = − +    Then 
 

   

[ ]

0 0

0 0
0

0 0

0

0

( ) cos( ) sin( )

cos( ) sin( )

cos cos( ) sin sin( )
( ) cos( )

sp

sp

x t E t F t

E FG t t
G G

G t t
x t G t

ρ ω α ρ ω α

ρ ω α ω α

ρ β ω α β ω α
ρ ω α β

= − + −

 
= − + − 

 

= − + −
= − −

 

 
 where  0 0tan / .F Eβ =   The desired formula now results when we substitute the value 

of  ρ  defined above. 
 

27. The derivative of  ( ) ( )2 22
0( ) /C F k m cω ω ω= − +   is given by 

 

   
( ) ( )

2 2
0

3/ 22 22

( 2 ) 2( )( ) .
2
F c km mC

k m c

ω ωω
ω ω

− +′ = −
 − +  
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 (a) Therefore, if  2 2 ,c km≥  it is clear from the numerator that  ( ) 0C ω′ <   for all  ω,  

so  C(ω)  steadily decreases as  ω  increases. 

 (b) But if  2 2 ,c km<  then the numerator (and hence ( )C ω′ ) vanishes when

 2 2
0/ / 2 / .m k m c m k mω ω ω= = − < =   Calculation then shows that 

 

   
( )

3 2
0

3/ 23 2

16 ( 2 )( ) 0,
4

m
F m c kmC

c km c
ω −′′ = <

−
 

 
 so it follows from the second-derivative test that  ( )mC ω  is a local maximum value. 
 
28. (a) The given differential equation corresponds to Equation (17) with  2

0 .F mAω=    
It therefore follows from Equation (21) that the amplitude of the steady periodic 
vibrations at frequency  ω  is 

 
2

0
2 2 2 2 2 2

( ) .
( ) ( ) ( ) ( )

F mAC
k m c k m c

ωω
ω ω ω ω

= =
− + − +

 

 
 (b) Now we calculate 
 

   
( ) ( )

2 2 2

3/ 22 22

2 (2 )
( ) ,

mA k mk c
C

k m c

ω ω
ω

ω ω

 − − ′ =
 − +  

 

 
 and we see that the numerator vanishes when 
 

   
2

02 2

2 2 .
2 2

k k mk k
mk c m mk c m

ω ω = = > = − − 
 

 
29. We need only substitute  0 0andE ac F akω= =  in the result of Problem 26. 
 
30. When we substitute the values  42 / , 800, 7 10 , 3000v L m k cω π= = = × =  and 
 10, 0.05L a= = in the formula of Problem 29, simplify, and square, we get the function 
 

  
( )

( )
2 2

24 4 2 2

25 9 122500
( )

16 16 64375 76562500

v
Csq v

v v

π

π π

+
=

− +
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giving the square of the amplitude  C  (in meters) as a function of the velocity  v  (in 
meters per second).  Differentiation gives 
 

 
2 4 4 2 2

4 4 2 2 2
50 (9 245000 535937500)( ) .

(16 64375 76562500)
v v vCsq v

v v
π π π

π π
+ −′ = −

− −
 

 
Because the principal factor in the numerator is a quadratic in  v2,  it is easy to solve the 
equation  ( ) 0Csq v′ =  to find where the maximum amplitude occurs; we find that the 
only positive solution is  14.36 m/sec 32.12 mi/hr.v ≈ ≈   The corresponding 
amplitude of the car's vibrations is  (14.36) 0.1364 m = 13.64 cm.Csq ≈  
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CHAPTER 6 
  
EIGENVALUES AND EIGENVECTORS 
 
 
SECTION 6.1 
 
INTRODUCTION TO EIGENVALUES 
 
In each of Problems 1–32 we first list the characteristic polynomial  ( )p λ λ= −A I   of the given 
matrix  A, and then the roots of  ( )p λ  — which are the eigenvalues of  A.  All of the eigenvalues 
that appear in Problems 1–26 are integers, so each characteristic polynomial factors readily.  For 
each eigenvalue  jλ  of the matrix  A,  we determine the associated eigenvector(s) by finding a basis 

for the solution space of the linear system  ( ) .jλ− =A I v 0   We write this linear system in scalar 

form in terms of the components of  [ ] .Ta b=v �   In most cases an associated eigenvector is 
then apparent.  If  A  is a 2 2×  matrix, for instance, then our two scalar equations will be multiples 
one of the other, so we can substitute a convenient numerical value for the first component  a  of  v  
and then solve either equation for the second component  b  (or vice versa). 
 

1. Characteristic polynomial:  2( ) 5 6 ( 2)( 3)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 22, 3λ λ= =  

 With  1 2 :λ =  
2 2 0

0
a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 3 :λ =    
2 0
2 0

a b
a b

− = 
− = 

  2

2
1
 

=  
 

v  

 

2. Characteristic polynomial:  2( ) 2 ( 1)( 2)p λ λ λ λ λ= − − = + −  

 Eigenvalues: 1 21, 2λ λ= − =  

 With  1 1:λ = −  
6 6 0
3 3 0
a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =  
3 6 0
3 6 0
a b
a b

− = 
− = 

  2

2
1
 

=  
 

v  
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3. Characteristic polynomial:  2( ) 7 10 ( 2)( 5)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 22, 5λ λ= =  

 With  1 2 :λ =  
6 6 0
3 3 0
a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 5 :λ =  
3 6 0
3 6 0
a b
a b

− = 
− = 

  2

2
1
 

=  
 

v  

 

4. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 22, 5λ λ= =  

 With  1 1:λ =   
3 3 0
2 2 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =  
2 3 0
2 3 0

a b
a b

− = 
− = 

  2

3
2
 

=  
 

v  

 

5. Characteristic polynomial:  2( ) 5 4 ( 1)( 4)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 4λ λ= =  

 With  1 1:λ =   
9 9 0
6 6 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 4 :λ =  
6 9 0
6 9 0

a b
a b

− = 
− = 

  2

3
2
 

=  
 

v  

 

6. Characteristic polynomial:  2( ) 5 6 ( 2)( 3)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 4λ λ= =  

 With  1 2 :λ =  
4 4 0
3 3 0
a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 3 :λ =  
3 4 0
3 4 0
a b
a b

− = 
− = 

  2

4
3
 

=  
 

v  

 

7. Characteristic polynomial:  2( ) 6 8 ( 2)( 4)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 22, 4λ λ= =  
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 With  1 2 :λ =  
8 8 0
6 6 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 4 :λ =  
6 8 0
6 8 0

a b
a b

− = 
− = 

  2

4
3
 

=  
 

v  

 
8. Characteristic polynomial:  2( ) 3 2 ( 2)( 1)p λ λ λ λ λ= + + = + +  

 Eigenvalues: 1 22, 1λ λ= − = −  

 With  1 2 :λ = −  
9 6 0

12 8 0
a b
a b
− = 

− = 
 1

2
3
 

=  
 

v  

 With  2 1:λ = −  
8 6 0

12 9 0
a b
a b
− = 

− = 
 2

3
4
 

=  
 

v  

 
9. Characteristic polynomial:  2( ) 7 12 ( 3)( 4)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 23, 4λ λ= =  

 With  1 3:λ =   
5 10 0
2 4 0
a b
a b
− = 

− = 
 1

2
1
 

=  
 

v  

 With  2 4 :λ =  
4 10 0
2 5 0
a b
a b
− = 

− = 
 2

5
2
 

=  
 

v  

 
10. Characteristic polynomial:  2( ) 9 20 ( 4)( 5)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 24, 5λ λ= =  

 With  1 4 :λ =  
5 10 0
2 4 0
a b
a b
− = 

− = 
 1

2
1
 

=  
 

v  

 With  2 5 :λ =  
4 10 0
2 5 0
a b
a b
− = 

− = 
 2

5
2
 

=  
 

v  

 
11. Characteristic polynomial:  2( ) 9 20 ( 4)( 5)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 24, 5λ λ= =  

 With  1 4 :λ =  
15 10 0
21 14 0

a b
a b

− = 
− = 

 1

2
3
 

=  
 

v  

 With  2 5 :λ =  
14 10 0
21 15 0

a b
a b

− = 
− = 

 2

5
7
 

=  
 

v  
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12. Characteristic polynomial:  2( ) 7 212 ( 3)( 4)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 23, 4λ λ= =  

 With  1 3:λ =   
10 15 0
6 9 0

a b
a b

− = 
− = 

 1

3
2
 

=  
 

v  

 With  2 4 :λ =  
9 15 0
6 10 0

a b
a b

− = 
− = 

 2

5
3
 

=  
 

v  

 
13. Characteristic polynomial:  3 2( ) 3 2 ( 1)( 2)p λ λ λ λ λ λ λ= − + − = − − −  

 Eigenvalues: 1 2 30, 1, 2λ λ λ= = =  

 With  1 0 :λ =   
2 0

2 2 0
2 6 3 0

a
a b c
a b c

= 
− − = 
− + + = 

  1

0
1

2

 
 = − 
  

v  

 With  2 1:λ =   
0

2 3 0
2 6 2 0

a
a b c
a b c

= 
− − = 
− + + = 

  2

0
1

3

 
 = − 
  

v  

 With  3 2 :λ =  
0 0

2 4 0
2 6 0
a b c
a b c

= 
− − = 
− + + = 

  3

1
0
2

 
 =  
  

v  

 
14. Characteristic polynomial:  3 2( ) 7 10 ( 2)( 5)p λ λ λ λ λ λ λ= − + − = − − −  

 Eigenvalues: 1 2 30, 2, 5λ λ λ= = =  

 With  1 0 :λ =   
5 0

4 4 2 0
2 12 6 0

a
a b c
a b c

= 
− − = 
− + + = 

  1

0
1

2

 
 = − 
  

v  

 With  2 2 :λ =  
3 0

4 6 2 0
2 12 4 0

a
a b c
a b c

= 
− − = 
− + + = 

  2

0
1

3

 
 = − 
  

v  

 With  3 5 :λ =  
0 0

4 9 2 0
2 12 0
a b c
a b c

= 
− − = 
− + + = 

  3

1
0
2

 
 =  
  

v  
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15. Characteristic polynomial:  3 2( ) 3 2 ( 1)( 2)p λ λ λ λ λ λ λ= − + − = − − −  

 Eigenvalues: 1 2 30, 1, 2λ λ λ= = =  

 With  1 0 :λ =   
2 2 0

2 2 0
2 2 3 0

a b
a b c
a b c

− = 
− − = 
− + + = 

  1

1
1
0

 
 =  
  

v  

 With  2 1:λ =   
2 0

2 3 0
2 2 2 0

a b
a b c
a b c

− = 
− − = 
− + + = 

  2

2
1
1

 
 =  
  

v  

 With  3 2 :λ =  
2 0

2 4 0
2 2 0

b
a b c
a b c

− = 
− − = 
− + + = 

  3

1
0
2

 
 =  
  

v  

 

16. Characteristic polynomial:  3 2( ) 4 3 ( 1)( 3)p λ λ λ λ λ λ λ= − + − = − − −  

 Eigenvalues: 1 2 30, 1, 3λ λ λ= = =  

 With  1 0 :λ =   
0

2 3 0
6 6 0

a c
a b c

a b

− = 
− + − = 
− + = 

  1

1
1
1

 
 =  
  

v  

 With  2 1:λ =   
0

2 2 0
6 6 0

c
a b c
a b c

− = 
− + − = 
− + − = 

  2

1
1
0

 
 =  
  

v  

 With  3 3:λ =  
2 0
2 0

6 6 3 0

a c
a c

a b c

− − = 
− − = 
− + − = 

  3

1
0
2

− 
 =  
  

v  

 

17. Characteristic polynomial:  3 2( ) 6 11 6 ( 1)( 2)( 3)p λ λ λ λ λ λ λ= − + − + = − − − −  

 Eigenvalues: 1 2 31, 2, 3λ λ λ= = =  

 With  1 1:λ =   
2 5 2 0

0
2 0

a b c
b
b

+ − = 
= 
= 

  1

1
0
1

 
 =  
  

v  
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 With  2 2 :λ =  
5 2 0
0 0

2 0

a b c

b c

+ − = 
= 
− = 

  2

1
1
2

− 
 =  
  

v  

 With  3 3:λ =  
5 2 0

0
2 2 0

b c
b

b c

− = 
− = 
− = 

   3

1
0
0

 
 =  
  

v  

 
18. Characteristic polynomial:  3 2( ) 6 11 6 ( 1)( 2)( 3)p λ λ λ λ λ λ λ= − + − + = − − − −  

 Eigenvalues: 1 2 31, 2, 3λ λ λ= = =  

 With  1 1:λ =   
0 0

6 7 2 0
12 15 4 0

a b c
a b c

= 
− + + = 
− − = 

  1

1
0
3

 
 =  
  

v  

 With  2 2 :λ =  
0

6 6 2 0
12 15 5 0

a
a b c
a b c

− = 
− + + = 
− − = 

  2

0
1

3

 
 = − 
  

v  

 With  3 3:λ =  
2 0

6 5 2 0
12 15 6 0

a
a b c

a b c

− = 
− + + = 
− − = 

  3

0
2

5

 
 = − 
  

v  

 
19. Characteristic polynomial:  3 2 2( ) 5 7 3 ( 1) ( 3)p λ λ λ λ λ λ= − + − + = − − −  

 Eigenvalues: 1 2 31, 3λ λ λ= = =  

 With  1 1:λ =   
2 6 2 0

0 0
0 0

a b c+ − = 
= 
= 

  1

1
0
1

 
 =  
  

v , 2

3
1
0

− 
 =  
  

v  

 The eigenspace of  1 1λ =  is 2-dimensional.  We get the eigenvector  v1  with  0, 1,b c= =  
 and the eigenvector  v2  with  1, 0.b c= =  

 With  3 3:λ =  
6 2 0

2 0
2 0

b c
b
c

− = 
− = 
− = 

   3

1
0
0

 
 =  
  

v  

 
20. Characteristic polynomial:  3 2 2( ) 4 5 2 ( 1) ( 2)p λ λ λ λ λ λ= − + − + = − − −  

 Eigenvalues: 1 2 31, 2λ λ λ= = =  
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With  1 1:λ =   
0 0

4 6 2 0
10 15 5 0

a b c
a b c

= 
− + + = 
− − = 

  1

1
0
2

 
 =  
  

v , 2

3
2
0

 
 =  
  

v  

 The eigenspace of  1 1λ =  is 2-dimensional.  We get the eigenvector  v1  with   
0, 2,b c= =   and the eigenvector  v2  with  2, 0.b c= =  

 With  3 2 :λ =  
0

4 5 2 0
10 15 5 0

a
a b c
a b c

− = 
− + + = 
− − = 

  3

0
2

5

 
 = − 
  

v  

 

21. Characteristic polynomial:  3 2 2( ) 5 8 4 ( 1)( 2)p λ λ λ λ λ λ= − + − + = − − −  

 Eigenvalues: 1 2 31, 2λ λ λ= = =  

 With  1 1:λ =   
3 3 0
2 2 0

0

a b c
a b c

c

− + = 
− + = 
= 

  1

1
1
0

 
 =  
  

v   

 With  2 2 :λ =  
2 3 0
2 3 0

0 0

a b c
a b c

− + = 
− + = 
= 

  2

3
2
0

 
 =  
  

v  3

1
0
2

− 
 =  
  

v  

 The eigenspace of  2 2λ =  is 2-dimensional.  We get the eigenvector  v2  with   
2, 0,b c= =   and the eigenvector  v3  with  0, 2.b c= =  

 

22. Characteristic polynomial:  3 2( ) 3 2 ( 1) ( 2)p λ λ λ λ λ= − + + = − + −  

 Eigenvalues: 1 2 31, 2λ λ λ= = − =  

 With  1 1:λ = −  
6 6 3 0
6 6 3 0
6 6 3 0

a b c
a b c
a b c

− + = 
− + = 
− + = 

  1

1
1
0

 
 =  
  

v , 2

1
0
2

− 
 =  
  

v  

 The eigenspace of  1 1λ =  is 2-dimensional.  We get the eigenvector  v1  with   
1, 0,b c= =   and the eigenvector  v2  with  0, 2.b c= =  

 With  3 2 :λ =  
3 6 3 0
6 9 3 0

6 6 0

a b c
a b c

a b

− + = 
− + = 
− = 

  3

1
1
1

 
 =  
  

v  
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23. Characteristic polynomial:  ( ) ( 1)( 2)( 3)( 4)p λ λ λ λ λ= − − − −  

 Eigenvalues: 1 2 3 41, 2, 3, 4λ λ λ λ= = = =  

 With  1 1:λ =   

2 2 2 0
2 2 0

2 2 0
3 0

b c d
b c d

c d
d

+ + = 
+ + = 
+ = 
= 

  1

1
0
0
0

 
 
 =
 
 
 

v  

 With  2 2 :λ =  

2 2 2 0
2 2 0

2 0
2 0

a b c d
c d

c d
d

− + + + = 
+ = 
+ = 
= 

 2

2
1
0
0

 
 
 =
 
 
 

v  

 With  3 3:λ =  

2 2 2 2 0
2 2 0
2 0

0

a b c d
b c d

d
d

− + + + = 
+ + = 
= 
= 

 3

3
2
1
0

 
 
 =
 
 
 

v  

 With  4 4 :λ =  

3 2 2 2 0
2 2 2 0

2 0
0 0

a b c d
b c d

c d

− + + + = 
− + + = 
− + = 
= 

 4

4
3
2
1

 
 
 =
 
 
 

v  

 
24. Characteristic polynomial:  2 2( ) ( 1) ( 3)p λ λ λ= − −  

 Eigenvalues: 1 2 3 41, 3λ λ λ λ= = = =  

 With  1 1:λ =   

4 0
4 0
2 0
2 0

c
c
c
d

= 
= 
= 
= 

  1

1
0
0
0

 
 
 =
 
 
 

v , 2

0
1
0
0

 
 
 =
 
 
 

v  

 The eigenspace of  1 1λ =  is 2-dimensional.  We note that  c = d = 0,  but  a  and  b  are  
arbitrary. 

 With  3 3:λ =  

2 4 0
2 4 0

0 0
0 0

a c
b c

− + = 
− + = 
= 
= 

 3

0
0
0
1

 
 
 =
 
 
 

v , 4

2
2
1
0

 
 
 =
 
 
 

v  

 The eigenspace of  3 3λ =  is 2-dimensional.  We get the eigenvector  v3  with   
0, 1,b c= =   and the eigenvector  v2  with  1, 0.b c= =  
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25. Characteristic polynomial:  2 2( ) ( 1) ( 2)p λ λ λ= − −  

 Eigenvalues: 1 2 3 41, 2λ λ λ λ= = = =  

 With  1 1:λ =   

0
0
0
0

c
c
c
d

= 
= 
= 
= 

  1

1
0
0
0

 
 
 =
 
 
 

v , 2

0
1
0
0

 
 
 =
 
 
 

v  

 The eigenspace of  1 1λ =  is 2-dimensional.  We note that  c = d = 0,  but  a  and  b  are  
arbitrary. 

 With  3 2 :λ =  

0
0

0 0
0 0

a c
b c

− + = 
− + = 
= 
= 

  3

0
0
0
1

 
 
 =
 
 
 

v , 4

1
1
1
0

 
 
 =
 
 
 

v  

 The eigenspace of  3 2λ =  is 2-dimensional.  We get the eigenvector  v3  with   
0, 1,b c= =   and the eigenvector  v4  with  1, 0.b c= =  

 
 
26. Characteristic polynomial:  

 4 2 2 2( ) 5 4 ( 1)( 4) ( 1)( 1)( 2)( 2)p λ λ λ λ λ λ λ λ λ= − + = − − = + − + −  

 Eigenvalues: 1 2 3 42, 1, 1, 2λ λ λ λ= − = − = =  

 With  1 2 :λ = −  

6 3 0
4 0

0
6 3 0

a d
b
c

a d

− = 
= 
= 
− = 

  1

1
0
0
2

 
 
 =
 
 
 

v  

 With  2 1:λ = −  

5 3 0
3 0
0 0

6 4 0

a d
b

a d

− = 
= 
= 
− = 

  2

0
0
1
0

 
 
 =
 
 
 

v  

 With  3 1:λ =   

3 3 0
0

2 0
6 6 0

a d
b

c
a d

− = 
= 
− = 
− = 

  3

1
0
0
1

 
 
 =
 
 
 

v  
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 With  4 2 :λ =  

2 3 0
0 0
3 0

6 7 0

a d

c
a d

− = 
= 
− = 
− = 

  4

0
1
0
0

 
 
 =
 
 
 

v  

 
27. Characteristic polynomial:  2( ) 1p λ λ= +  

 Eigenvalues: 1 2,i iλ λ= − = +  

 With  1 :iλ = −  
0
0

i a b
a i b

+ = 
− + = 

  1 1
i 

=  
 

v  

 With  2 :iλ = +   
0
0

i a b
a i b

− + = 
− − = 

  2 1
i− 

=  
 

v  

 
28. Characteristic polynomial:  2( ) 36p λ λ= +  

 Eigenvalues: 1 26 , 6i iλ λ= − = +  

 With  1 6 :iλ = −  
6 6 0
6 6 0
i a b
a i b

− = 
+ = 

 1 1
i− 

=  
 

v  

 With  2 6 :iλ = +   
6 6 0

6 6 0
i a b
a ib

− − = 
− = 

 2 1
i 

=  
 

v  

 
29. Characteristic polynomial:  2( ) 36p λ λ= +  

 Eigenvalues: 1 26 , 6i iλ λ= − = +  

 With  1 6 :iλ = −  
6 3 0

12 6 0
i a b
a ib

− = 
+ = 

 1 2
i− 

=  
 

v  

 With  2 6 :iλ = +   
6 3 0

12 6 0
i a b
a i b

− − = 
− = 

 2 2
i 

=  
 

v  

 
30. Characteristic polynomial:  2( ) 144p λ λ= +  

 Eigenvalues: 1 212 , 12i iλ λ= − = +  

 With  1 12 :iλ = −  
12 12 0
12 12 0

i a b
a i b

− = 
+ = 

 1 1
i− 

=  
 

v  

 With  2 12 :iλ = +   
12 12 0

12 12 0
i a b

a i b
− − = 

− = 
 2 1

i 
=  

 
v  
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31. Characteristic polynomial:  2( ) 144p λ λ= +  

 Eigenvalues: 1 212 , 12i iλ λ= − = +  

 With  1 12 :iλ = −  
12 24 0

6 12 0
i a b
a ib

+ = 
− + = 

 1

2
1
i 

=  
 

v  

 With  2 12 :iλ = +   
12 24 0
6 12 0

i a b
a ib

− + = 
− − = 

 2

2
1

i− 
=  

 
v  

 
32. Characteristic polynomial:  2( ) 144p λ λ= +  

 Eigenvalues: 1 212 , 12i iλ λ= − = +  

 With  1 12 :iλ = −  
12 4 0

36 12 0
i a b

a i b
− − = 

+ = 
 1 3

i− 
=  

 
v  

 With  2 12 :iλ = +   
12 4 0

36 12 0
i a b

a i b
− − = 

− = 
 2 3

i 
=  

 
v  

 
33. If  λ=Av v  and we assume that  1 1n nλ− −=A v v  — meaning that  1nλ −  is an eigenvalue 

of  1n−A  with associated eigenvector  v,  then multiplication by  A  yields 
 
  1 1 1 1 .n n n n n nλ λ λ λ λ− − − −= ⋅ = ⋅ = ⋅ = ⋅ =A v A A v A v Av v v  
 
 Thus  nλ  is an eigenvalue of the matrix  nA  with associated eigenvector  v. 
 
34. By the remark following Example 6, any eigenvalue of an invertible matrix is nonzero.  If  

0λ ≠  is an eigenvalue of the invertible matrix  A  with associated eigenvalue  v,  then 
 

    1 1

1 1

,
,

.

λ
λ λ

λ

− −

− −

=

= ⋅ = ⋅
=

Av v
v A v A v
A v v

 

 
 Thus  1λ−  is an eigenvalue of  1−A  with associated eigenvector  v. 
 
35. (a) Note first that  ( ) ( )T Tλ λ− = −A I A I   because  .T =I I   Since the determinant of a 

square matrix equals the determinant of its transpose, it follows that   
 

.Tλ λ− = −A I A I  

Thus the matrices  A  and  AT  have the same characteristic polynomial, and therefore have  
the same eigenvalues. 
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(b) Consider the matrix   
1 0

1 1

 =   
A   with characteristic equation  2( 1) 0λ − =  and the 

single eigenvalue  1.λ =   Then  
0 0

1 0

 − =   
A I   and it follows that the only associated 

eigenvector is a multiple of  [ ]0 1 .T   The transpose  
1 1

0 1

T  =   
A  has the same 

characteristic equation and eigenvalue, but we see similarly that its only eigenvector is a 
multiple of  [ ]1 0 .T   Thus  A  and  AT  have the same eigenvalue but different 
eigenvectors. 

 
36. If the n n×  matrix  ija =  A   is either upper or lower triangular, then obviously its 

characteristic equation is 
 
   ( ) ( ) ( )11 22 0.nna a aλ λ λ− − ⋅ ⋅ − =�  
 
 This observation makes it clear that the eigenvalues of the matrix  A  are its diagonal 

elements  11 22, , , .nna a a�  
 
37. If  1

1 1 0( 1)n n n
nc c cλ λ λ λ−

−− = − + + + +A I � ,  then substitution of  0λ =  yields 

 0 0c = − =A I A   for the constant term in the characteristic polynomial. 
 

38. The characteristic polynomial of the 2 2×  matrix  
a b

c d

 =   
A   is  

( )( ) 0,a d bcλ λ− − − =   that is,  2 ( ) ( ) 0.a d ad bcλ λ− + + − =   Thus the coefficient of  
λ   in the characteristic equation is  ( ) trace .a d− + = − A  

 
39. If the characteristic equation of the n n×  matrix  A  with eigenvalues  1 2, , , nλ λ λ�  (not 

necessarily distinct) is written in the factored form 
 
    1 2( )( ) ( ) 0,nλ λ λ λ λ λ− − ⋅ ⋅ − =�  
 

then it should be clear that upon multiplying out the factors the coefficient of  1nλ −  will be  
( )1 2 .nλ λ λ− + + +�   But according to Problem 38, this coefficient also equals  (trace ).− A   

Therefore  1 2 11 22trace .n nna a aλ λ λ+ + + = = + +A� �  
 
40. We find that  trace A = 12  and  det A = 60,  so the characteristic polynomial of the given 

matrix  A  is  
    3 2

1( ) 12 60.p cλ λ λ λ= − + + +  
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 Substitution of  1λ =   and   

31 67 47
(1) 7 15 13 24

7 15 7
p

−
= − = − =

− −
A I  

 yields  1 47,c = −  so the characteristic equation of  A  is (after multiplication by –1) 
 
    3 212 47 60 0.λ λ λ− + − =  
 
 Trying  1, 2, 3λ = ± ± ±  (all divisors of 60) in turn, we discover the eigenvalue  1 3.λ =  
 Then division of the cubic by  ( 3)λ −  yields 
 
    2 9 20 ( 4)( 5),λ λ λ λ− + = − −  
 

so the other two eigenvalues are  2 34 and 5.λ λ= =   We proceed to find the eigenvectors  
associated with these three eigenvalues. 
 

 With  1 3:λ =    
29 67 47 0 3 0
7 17 13 0 2 0
7 15 9 0 0 0

a b c a c
a b c b c
a b c

− + = − = 
 − + = → − = 
 − + − = = 

      1

3
2
1

 
 =  
  

v  

 
 With  2 4 :λ =   

28 67 47 0 (5 / 7) 0
7 18 13 0 0
7 15 10 0 0 0

a b c a c
a b c b c
a b c

− + = − = 
 − + = → − = 
 − + − = = 

 2

5
7
7

 
 =  
  

v  

 
 With  3 5 :λ =   

27 67 47 0 (1/ 2) 0
7 19 13 0 (1/ 2) 0
7 15 11 0 0 0

a b c a c
a b c b c
a b c

− + = + = 
 − + = → − = 
 − + − = = 

 3

1
1
2

− 
 =  
  

v  

 
 
41. We find that  trace A = 8  and  det A = –60,  so the characteristic polynomial of the given 

matrix  A  is  
    4 3 2

2 1( ) 8 60.p c cλ λ λ λ λ= − + + −  
 
 Substitution of  1, (1) det( ) 24pλ = = − = −A I  and  1, ( 1) det( ) 72pλ = − − = + = −A I    

yields the equations 
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   2 1 2 143, 21c c c c+ = − = −  
 
that we solve readily for  1 232, 11.c c= =   Hence the characteristic equation of  A  is 
 

    4 3 28 11 32 60 0.λ λ λ λ− + + − =  

Trying  1, 2λ = ± ±   in turn, we discover the eigenvalues  1 22 and 2.λ λ= − =   Then  
division of the quartic by  2( 4)λ −  yields 
 

    2 8 15 ( 3)( 5),λ λ λ λ− + = − −  
 

so the other two eigenvalues are  3 43 and 5.λ λ= =   We proceed to find the eigenvectors  
associated with these four eigenvalues. 
 
With  1 2 :λ = −    
24 9 8 8 0 (1/ 2) 0

10 5 14 2 0 0
10 10 10 0 (1/ 2) 0

29 9 3 13 0 0 0

a b c d a d
a b c d b

a c d c d
a b c d

− − − = − = 
 − − + = = → + − = − = 
 − − − = = 

      1

1
0
1
2

 
 
 =
 
 
 

v  

 
With  2 2 :λ =    
20 9 8 8 0 0

10 9 14 2 0 (4 / 3) 0
10 6 10 0 0

29 9 3 17 0 0 0

a b c d a d
a b c d b d

a c d c
a b c d

− − − = − = 
 − − + = − = → + − = = 
 − − − = = 

      2

3
4
0
3

 
 
 =
 
 
 

v  

 
With  3 3:λ =    

19 9 8 8 0 (3/ 4) 0
10 10 14 2 0 (1/ 4) 0

10 5 10 0 (1/ 2) 0
29 9 3 18 0 0 0

a b c d a d
a b c d b d

a c d c d
a b c d

− − − = − = 
 − − + = − = → + − = − = 
 − − − = = 

      3

3
1
2
4

 
 
 =
 
 
 

v  

 
With  4 5 :λ =    

17 9 8 8 0 0
10 12 14 2 0 0

10 3 10 0 0
29 9 3 20 0 0 0

a b c d a d
a b c d b d

a c d c
a b c d

− − − = − = 
 − − + = − = → + − = = 
 − − − = = 

       4

1
1
0
1

 
 
 =
 
 
 

v  
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SECTION 6.2 
 
DIAGONALIZATION OF MATRICES 
 
In Problems 1–28 we first find the eigenvalues and associated eigenvectors of the given n n×   
matrix  A.  If  A  has  n  linearly independent eigenvectors, then we can proceed to set up the desired 
diagonalizing matrix  [ ]1 2 n=P v v v�   and diagonal matrix  D  such that  P–1AP = D.  If 
you write the eigenvalues in a different order on the diagonal of  D,  then naturally the eigenvector 
columns of  P  must be rearranged in the same order. 
 

1. Characteristic polynomial:  2( ) 4 3 ( 1)( 3)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 3λ λ= =  

 With  1 1:λ =   
4 4 0
2 2 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 3 :λ =    
2 4 0
2 4 0

a b
a b

− = 
− = 

 2

2
1
 

=  
 

v  

 
1 2 1 0

,
1 1 0 3
   

= =   
   

P D  

 

2. Characteristic polynomial:  2( ) 2 ( 2)p λ λ λ λ λ= − = −  

 Eigenvalues: 1 20, 2λ λ= =  

 With  1 0 :λ =   
6 6 0
4 4 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =   
4 6 0
4 6 0

a b
a b

− = 
− = 

  2

3
2
 

=  
 

v  

 
1 3 0 0

,
1 2 0 2
   

= =   
   

P D  

 

3. Characteristic polynomial:  2( ) 5 6 ( 2)( 3)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 22, 3λ λ= =  

 With  1 2 :λ =  
3 3 0
2 2 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  
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 With  2 3 :λ =   
2 3 0
2 3 0

a b
a b

− = 
− = 

  2

3
2
 

=  
 

v  

 
1 3 2 0

,
1 2 0 3
   

= =   
   

P D  

 

4. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 2λ λ= =  

 With  1 1:λ =   
4 4 0
3 3 0
a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =   
3 4 0
3 4 0
a b
a b

− = 
− = 

  2

4
3
 

=  
 

v  

 
1 4 1 0

,
1 3 0 2
   

= =   
   

P D  

 

5. Characteristic polynomial:  2( ) 4 3 ( 1)( 3)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 3λ λ= =  

 With  1 1:λ =   
8 8 0
6 6 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 3 :λ =   
6 8 0
6 8 0

a b
a b

− = 
− = 

  2

4
3
 

=  
 

v  

 
1 4 1 0

,
1 3 0 3
   

= =   
   

P D  

 
6. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 2λ λ= =  

 With  1 1:λ =   
9 6 0

12 8 0
a b
a b
− = 

− = 
  1

2
3
 

=  
 

v  

 With  2 2 :λ =   
8 6 0

12 9 0
a b
a b
− = 

− = 
  2

3
4
 

=  
 

v  

 
2 3 1 0

,
3 4 0 2
   

= =   
   

P D  
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7. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 2λ λ= =  

 With  1 1:λ =   
5 10 0
2 4 0
a b
a b
− = 

− = 
  1

2
1
 

=  
 

v  

 With  2 2 :λ =   
4 10 0
2 5 0
a b
a b
− = 

− = 
  2

5
2
 

=  
 

v  

 
2 5 1 0

,
1 2 0 2
   

= =   
   

P D  

 

8. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 2λ λ= =  

 With  1 1:λ =   
10 15 0
6 9 0

a b
a b

− = 
− = 

  1

3
2
 

=  
 

v  

 With  2 2 :λ =   
9 15 0
6 10 0

a b
a b

− = 
− = 

  2

5
3
 

=  
 

v  

 
3 5 1 0

,
2 3 0 2
   

= =   
   

P D  

 

9. Characteristic polynomial:  2 2( ) 2 1 ( 1)p λ λ λ λ= − + = −  

 Eigenvalues: 1 21, 1λ λ= =  

 With  1 1:λ =   
4 2 0
2 0
a b
a b
− = 

− = 
  1

2
1
 

=  
 

v  

 Because the given matrix  A  has only the single eigenvector  v1,  it is not diagonalizable. 
 

10. Characteristic polynomial:  2 2( ) 4 4 ( 2)p λ λ λ λ= − + = −  

 Eigenvalues: 1 22, 2λ λ= =  

 With  1 2 :λ =  
0
0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 Because the given matrix  A  has only the single eigenvector  v1,  it is not diagonalizable. 
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11. Characteristic polynomial:  2 2( ) 4 4 ( 2)p λ λ λ λ= − + = −  

 Eigenvalues: 1 22, 2λ λ= =  

 With  1 2 :λ =  
3 0
9 3 0
a b
a b

+ = 
− − = 

 1

1
3
− 

=  
 

v  

 Because the given matrix  A  has only the single eigenvector  v1,  it is not diagonalizable. 
 
12. Characteristic polynomial:  2 2( ) 2 1 ( 1)p λ λ λ λ= + + = +  

 Eigenvalues: 1 21, 1λ λ= − = −  

 With  1 1:λ = −  
12 9 0
16 12 0

a b
a b

+ = 
− − = 

 1

3
4

− 
=  

 
v  

 Because the given matrix  A  has only the single eigenvector  v1,  it is not diagonalizable. 
 
13. Characteristic polynomial:  3 2 2( ) 5 8 4 ( 1)( 2)p λ λ λ λ λ λ= − + − + = − − −  

 Eigenvalues: 1 2 31, 2, 2λ λ λ= = =  

 With  1 1:λ =   
3 0

0
0

b
b
c

= 
= 
= 

  1

1
0
0

 
 =  
  

v  

 With  2 2 :λ =  
3 0

0 0
0 0

b a− = 
= 
= 

  2 3

0 3
0 , 1
1 0

   
   = =   
      

v v  

 The eigenspace of  2 2λ =  is 2-dimensional.  We get the eigenvector  v2  with   
0, 1,b c= =   and the eigenvector  v3  with  1, 0.b c= =  

 
1 0 3 1 0 0
0 0 1 , 0 2 0
0 1 0 0 0 2

   
   = =   
      

P D  

 
14. Characteristic polynomial:  3 2 2( ) ( 1)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2 30, 0, 1λ λ λ= = =  

 With  1 0 :λ =   
2 2 0
2 2 0
2 2 0

a b c
a b c
a b c

− + = 
− + = 
− + = 

 1 2

1 1
0 , 1
2 0

−   
   = =   
      

v v  
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 The eigenspace of  1 0λ =  is 2-dimensional.  We get the eigenvector  v  with   
0, 2,b c= =   and the eigenvector  v2  with  1, 0.b c= =  

 With  3 1:λ =   
2 0

2 3 0
2 2 0

a b c
a b c

a b

− + = 
− + = 
− = 

 3

1
1
1

 
 =  
  

v  

  

 
1 1 1 0 0 0

0 1 1 , 0 0 0
2 0 1 0 0 1

−   
   = =   
      

P D  

 
15. Characteristic polynomial:  3 2 2( ) 2 ( 1)p λ λ λ λ λ λ= − + − = − −  

 Eigenvalues: 1 2 30, 1, 1λ λ λ= = =  

 With  1 0 :λ =   
3 3 0
2 2 0

0

a b c
a b c

c

− + = 
− + = 
= 

 1

1
1
0

 
 =  
  

v  

 With  2 1:λ =   
2 3 0
2 3 0

0 0

a b c
a b c

− + = 
− + = 
= 

 2 3

1 3
0 , 2
2 0

−   
   = =   
      

v v  

 The eigenspace of  2 2λ =  is 2-dimensional.  We get the eigenvector  v2  with   
0, 2,b c= =   and the eigenvector  v3  with  2, 0.b c= =  

 
1 1 3 0 0 0
1 0 2 , 0 1 0
0 2 0 0 0 1

−   
   = =   
      

P D  

 
16. Characteristic polynomial:  3 2 2( ) 5 7 3 ( 1) ( 3)p λ λ λ λ λ λ= − + − + = − − −  

 Eigenvalues: 1 2 31, 1, 3λ λ λ= = =  

 With  1 1:λ =   
2 2 0

0 0
4 4 0

a b

a b

− = 
= 
− = 

  1 2

0 1
0 , 1
1 0

   
   = =   
      

v v  

 The eigenspace of  1 1λ =  is 2-dimensional.  We get the eigenvector  v2  with   
0, 1,b c= =   and the eigenvector  v3  with  1, 0.b c= =  
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 With  3 3:λ =  
2 0
2 0

4 4 2 0

b
b

a b c

− = 
− = 
− + − = 

  3

1
0
2

− 
 =  
  

v  

 
0 1 1 1 0 0
0 1 0 , 0 1 0
1 0 2 0 0 3

−   
   = =   
      

P D  

 

17. Characteristic polynomial:  3 2( ) 2 2 ( 1)( 1)( 2)p λ λ λ λ λ λ λ= − + + − = − + − −  

 Eigenvalues: 1 2 31, 1, 2λ λ λ= − = =  

 With  1 1:λ = −  
8 8 3 0
6 6 3 0
2 2 3 0

a b c
a b c
a b c

− + = 
− + = 
− + = 

  1

1
1
0

 
 =  
  

v  

 With  2 1:λ =   
6 8 3 0
6 8 3 0
2 2 0

a b c
a b c
a b c

− + = 
− + = 
− + = 

  2

1
0
2

− 
 =  
  

v  

 With  3 2 :λ =  
5 8 3 0
6 9 3 0

2 2 0

a b c
a b c

a b

− + = 
− + = 
− = 

  3

1
1
1

 
 =  
  

v  

 
1 1 1 1 0 0
1 0 1 , 0 1 0
0 2 1 0 0 2

− −   
   = =   
      

P D  

 
 
18. Characteristic polynomial:  3 2( ) 6 11 6 ( 1)( 2)( 3)p λ λ λ λ λ λ λ= − + − + = − − − −  

 Eigenvalues: 1 2 31, 2, 3λ λ λ= = =  

 With  1 1:λ =   
5 5 2 0
4 4 2 0
2 2 2 0

a b c
a b c
a b c

− + = 
− + = 
− + = 

  1

1
1
0

 
 =  
  

v  

 With  2 2 :λ =  
4 5 2 0
4 5 2 0
2 2 0

a b c
a b c
a b c

− + = 
− + = 
− + = 

  2

1
0
2

− 
 =  
  

v  
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 With  3 3:λ =  
3 5 2 0
4 6 2 0

2 2 0

a b c
a b c

a b

− + = 
− + = 
− = 

  3

1
1
1

 
 =  
  

v  

 
1 1 1 1 0 0
1 0 1 , 0 2 0
0 2 1 0 0 3

−   
   = =   
      

P D  

 

19. Characteristic polynomial:  3 2( ) 6 11 6 ( 1)( 2)( 3)p λ λ λ λ λ λ λ= − + − + = − − − −  

 Eigenvalues: 1 2 31, 2, 3λ λ λ= = =  

 With  1 1:λ =   
0

2 3 0
4 4 0

b c
a b c

a b

− = 
− + − = 
− + = 

  1

1
1
1

 
 =  
  

v  

 With  2 2 :λ =  
0

2 2 0
4 4 0

a b c
a b c
a b c

− + − = 
− + − = 
− + − = 

  2

1
1
0

 
 =  
  

v  

 With  3 3:λ =  
2 0
2 0

4 4 2 0

a b c
a b c

a b c

− + − = 
− + − = 
− + − = 

  3

1
0
2

− 
 =  
  

v  

 
1 1 1 1 0 0
1 1 0 , 0 2 0
1 0 2 0 0 3

−   
   = =   
      

P D  

 
 
20. Characteristic polynomial:  3 2( ) 13 52 60 ( 2)( 5)( 6)p λ λ λ λ λ λ λ= − + − + = − − − −  

 Eigenvalues: 1 2 32, 5, 6λ λ λ= = =  

 With  1 2 :λ =  
0 0

6 9 2 0
6 15 2 0

a b c
a b c

= 
− + + = 
− − = 

  1

1
0
3

 
 =  
  

v  

 With  2 5 :λ =  
3 0

6 6 2 0
6 15 5 0

a
a b c

a b c

− = 
− + + = 
− − = 

  2

0
1

3

 
 = − 
  

v  
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 With  3 6 :λ =  
4 0

6 5 2 0
6 15 6 0

a
a b c

a b c

− = 
− + + = 
− − = 

  3

0
2

5

 
 = − 
  

v  

 
1 0 0 2 0 0
0 1 2 , 0 5 0
3 3 5 0 0 6

   
   = − − =   
      

P D  

 

21. Characteristic polynomial:  3 2 3( ) 3 3 1 ( 1)p λ λ λ λ λ= − + − + = − −  

 Eigenvalues: 1 2 31, 1, 1λ λ λ= = =  

 With  1 1:λ =   
0
0
0

b a
b a
b a

− = 
− = 
− = 

  1 2

0 1
0 , 1
1 0

   
   = =   
      

v v  

 The eigenspace of  1 1λ =  is 2-dimensional.  We get the eigenvector  v1  with   
0, 1,b c= =   and the eigenvector  v2  with  1, 0.b c= =   Because the given matrix  A  has 

only two linearly independent eigenvectors, it is not diagonalizable. 
 

22. Characteristic polynomial:  3 2 3( ) 3 3 1 ( 1)p λ λ λ λ λ= − + − + = − −  

 Eigenvalues: 1 2 31, 1, 1λ λ λ= = =  

 With  1 1:λ =   
2 0

0
5 7 2 0

a b c
a b

a b c

− + = 
− + = 
− + − = 

  1

1
1
1

 
 =  
  

v  

The eigenspace of  1 1λ =  is 1-dimensional.  Because the given matrix  A  has only one 
eigenvector, it is not diagonalizable. 

 

23. Characteristic polynomial:  3 2 2( ) 4 5 2 ( 1) ( 2)p λ λ λ λ λ λ= − + − + = − − −  

 Eigenvalues: 1 2 31, 1, 2λ λ λ= = =  

 With  1 1:λ =   
3 4 0
3 4 0

0

a b c
a b c

a b

− + − = 
− + − = 
− + = 

  1

1
1
1

 
 =  
  

v  
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 With  3 2 :λ =  
4 4 0
3 3 0

0

a b c
a b c
a b c

− + − = 
− + − = 
− + − = 

  2

1
1
0

 
 =  
  

v  

The given matrix  A  has only the two linearly independent eigenvectors  v1  and  v2,  and 
therefore is not diagonalizable. 

 
 
24. Characteristic polynomial:  3 2 2( ) 5 8 4 ( 1)( 2)p λ λ λ λ λ λ= − + − + = − − −  

 Eigenvalues: 1 2 31, 2, 2λ λ λ= = =  

 With  1 1:λ =   
2 2 0

0
0

a b c
a b c
a b c

− + = 
− + = 
− + + = 

  1

1
1
0

 
 =  
  

v  

 With  2 2 :λ =  
2 0
2 0

0

a b c
a b c

a b

− + = 
− + = 
− + = 

  2

1
1
1

 
 =  
  

v  

The given matrix  A  has only the two linearly independent eigenvectors  v1  and  v2,  and 
therefore is not diagonalizable. 

 
 
25. Characteristic polynomial:  2 2( ) ( 1) ( 1)p λ λ λ= + −  

 Eigenvalues: 1 2 3 41, 1, 1, 1λ λ λ λ= − = − = =  

 With  1 1:λ = −  

2 2 0
2 2 0

0 0
0 0

a c
b c

− = 
− = 
= 
= 

  1 2

0 1
0 1

,
0 1
1 0

   
   
   = =
   
   
   

v v  

 The eigenspace of  1 1λ = −  is 2-dimensional.  We get the eigenvector  v1  with   
0, 1,c d= =   and the eigenvector  v2  with  1, 0.c d= =    

 With  3 1:λ =   

2 0
2 0
2 0
2 0

c
c
c
d

− = 
− = 
− = 
− = 

  3 4

0 1
1 0

,
0 0
0 0

   
   
   = =
   
   
   

v v  

 The eigenspace of  3 1λ =  is also 2-dimensional.  We get the eigenvector  v3  with   
0, 1,a b= =   and the eigenvector  v4  with  1, 0.a b= =    
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0 1 0 1 1 0 0 0
0 1 1 0 0 1 0 0

,
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

−   
   −   = =
   
   
   

P D  

 
 
26. Characteristic polynomial:  3( ) ( 1) ( 2)p λ λ λ= − −  

 Eigenvalues: 1 2 3 41, 1, 1, 2λ λ λ λ= = = =  

 With  1 1:λ =   

0
0
0
0

d
d
d
d

= 
= 
= 
= 

  1 2 3

0 0 1
0 1 0

, ,
1 0 0
0 0 0

     
     
     = = =
     
     
     

v v v  

The eigenspace of  1 1λ =  is 3-dimensional, and  we have taken advantage of the fact that 
 we can select  a, b, and c  independently.   

 With  4 2 :λ =   

0
0
0

0 0

d a
d b
d c

− = 
− = 
− = 
= 

  4

1
1
1
1

 
 
 =
 
 
 

v  

 

0 0 1 1 1 0 0 0
0 1 0 1 0 1 0 0

,
1 0 0 1 0 0 1 0
0 0 0 1 0 0 0 2

   
   
   = =
   
   
   

P D  

 
 
27. Characteristic polynomial:  3( ) ( 1) ( 2)p λ λ λ= − −  

 Eigenvalues: 1 2 3 41, 1, 1, 2λ λ λ λ= = = =  

 With  1 1:λ =   

0
0
0
0

b
c
d
d

= 
= 
= 
= 

  1

1
0
0
0

 
 
 =
 
 
 

v  

The eigenspace of  1 1λ =  is 1-dimensional, with only a single associated eigenvector.   
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 With  4 2 :λ =   

0
0
0

0 0

b a
c b
d c

− = 
− = 
− = 
= 

  4

1
1
1
1

 
 
 =
 
 
 

v  

The given matrix  A  has only the two linearly independent eigenvectors  v1  and  v4,  and 
therefore is not diagonalizable. 

 

28. Characteristic polynomial:  2 2( ) ( 1) ( 2)p λ λ λ= − −  

 Eigenvalues: 1 2 3 41, 1, 2, 2λ λ λ λ= = = =  

 With  1 1:λ =   

0
0
0

0

b d
c d
c d

d

+ = 
+ = 
+ = 
= 

  1

1
0
0
0

 
 
 =
 
 
 

v  

The eigenspace of  1 1λ =  is 1-dimensional, with only a single associated eigenvector.   

 With  3 2 :λ =   

0
0

0
0 0

b a d
c b d

d

− + = 
− + = 
= 
= 

 3

1
1
1
0

 
 
 =
 
 
 

v  

The eigenspace of  3 2λ =  is also 1-dimensional, with only a single associated eigenvector.  
Thus the given matrix  A  has only the two linearly independent eigenvectors  v1  and  v4,  
and therefore is not diagonalizable. 

 

29. If  A  is similar to  B  and  B is similar to  C,  so  A = P–1BP  and  B = Q–1CQ,  then 
 
  A  =  P–1(Q–1CQ)P  =  (P–1Q–1)C(QP)  =  (QP)–1C(QP)  =  R–1CR 
 
 with  R = QP,  so  A  is similar to  C. 
 

30. If  A  is similar to  B  so  A = P–1BP  then 
 

  

1 1 1 1 1

1 1 1 1 1

1

1

( )( )( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n

n

− − − − −

− − − − −

−

−

= ⋅ ⋅
= ⋅ ⋅
= ⋅ ⋅
=

A P BP P BP P BP P BP P BP
P B PP B PP B PP B PP BP
P B I B I B I B I BP
P B P

�

�

�

 

 
 so we see that  An  is similar to  Bn.   
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31. If  A  is similar to  B  so  A = P–1BP  then  A–1  =  (P–1BP)–1  =  P–1B–1P,  so  A–1  is similar 

to  B–1.  
 
32. If  A  is similar to  B  so  A = P–1BP,  then  1 1 1− −= = =P P P P I   so 
 

  
1 1

1 1

( )

.

λ λ λ

λ λ

− −

− −

− = − = −

= − = −

A I P A I P P A I P

P AP P IP B I
 

 
 Thus  A  and  B  have the same characteristic polynomial. 
 

33. If  A  and  B  are similar with  A = P–1BP,  then   
 

11 1 .−− −= = = =A P BP P B P P B P B  
 

Moreover, by Problem 32 the two matrices have the same eigenvalues, and by Problem 39 
in Section 6.1, the trace of a square matrix with real eigenvalues is equal to the sum of those 
eigenvalues.  Therefore  trace A = (eigenvalue sum) = trace B. 

 

34. The characteristic equation of the 2 2×  matrix  
a b

c d

 =   
A   is  

2 ( ) ( ) 0,a d ad bcλ λ− + + − =   and the discriminant of this quadratic equation is 
 
   2 2( ) 4( ) ( ) 4 .a d ad bc a d bc∆ = + − − = − +  
 
 (a) If  0,∆ >   then  A  has two distinct eigenvalues and hence has two linearly  

independent eigenvectors, and is therefore diagonalizable. 

(b) If  0,∆ <   then  A  has no (real) eigenvalues and hence no real eigenvectors, and  
therefore is not diagonalizable. 

(c) Finally, note that 0∆ =  for both 

   
1 0 1 1

and ,
0 1 0 1
   

= =   
   

I A  

but  A  has only the single eigenvalue  1λ =   and the single eigenvector  [ ]1 0 ,T=v  and is  
therefore not diagonalizable. 

 

35. Three eigenvectors associated with three distinct eigenvalues can be arranged in six different 
orders as the column vectors of the diagonalizing matrix  [ ]1 2 3 .T=P v v v  
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36. The fact that the matrices  A  and  B  have the same eigenvalues (with the same 
multiplicities) implies that they are both similar to the same diagonal matrix  D  having these 
eigenvalues as its diagonal elements.  But two matrices that are similar to a third matrix are 
(by Problem 29) similar to one another. 

 

37. If  A = PDP–1  with  P  the eigenvector matrix of  A  and  D  its diagonal matrix of 
eigenvalues, then  2 1 1 1 1 2 1( )( ) ( ) .− − − − −= = =A PDP PDP PD P P DP PD P   Thus the same 
(eigenvector) matrix  P  diagonalizes  A2,  but the resulting diagonal (eigenvalue) matrix  D2  
is the square of the one for  A.  The diagonal elements of  D2  are the eigenvalues of  A2  and 
the diagonal elements of  D  are the eigenvalues of  A,  so the former are the squares of the 
latter. 

 
38. If the n n×  matrix  A  has n linearly independent eigenvectors associated with the single 

eigenvalue  λ,  then  A = PDP–1 with  D = λI,  so  1 1( ) .λ λ λ− −= = = =A P I P PP I D  
 

39. Let the n n×  matrix  A  have  k ≤ n  distinct eigenvalues  1 2, , , .kλ λ λ�   Then the definition 
of algebraic multiplicity and the fact that all solutions of the nth degree polynomial equation   

0λ− =A I   are real imply that the sum of the multiplicities of the eigenvalues equals  n,   

    1 2 .kp p p n+ + + =�  

 Now Theorem 4 in this section implies that  A  is diagonalizable if and only if   

    1 2 kq q q n+ + + =�  

 where  iq  denotes the geometric multiplicity of  ( 1, 2, , ).i i kλ = �  But, because  i ip q≥  for  
each  1,2, ,i k= � , the two equations displayed above can both be satisfied if and only if   

i ip q=  for each  i.   
 
 
 
SECTION 6.3 
 
APPLICATIONS INVOLVING  
POWERS OF MATRICES 
 
In Problems 1–10 we first find the eigensystem of the given matrix  A  so as to determine its 
eigenvector matrix  P  and its diagonal eigenvalue matrix  D.  Then we calculate the matrix  
power  A5 = PD5P–1. 
 
1. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 2λ λ= =  
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 With  1 1:λ =   
2 2 0

0
a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =   
2 0
2 0

a b
a b

− = 
− = 

  2

2
1
 

=  
 

v  

 

1

5

1 2 1 0 1 2
, ,

1 1 0 2 1 1

1 2 1 0 1 2 63 62
1 1 0 32 1 1 31 30

− −     
= = =     −     

− −       
= =       − −       

P D P

A
 

 

2. Characteristic polynomial:  2( ) 2 ( 1)( 2)p λ λ λ λ λ= − − = + −  

 Eigenvalues: 1 21, 2λ λ= − =  

 With  1 1:λ = −  
6 6 0
3 3 0
a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =   
3 6 0
3 6 0
a b
a b

− = 
− = 

  2

2
1
 

=  
 

v  

 

1

5

1 2 1 0 1 2
, ,

1 1 0 2 1 1

1 2 1 0 1 2 65 66
1 1 0 32 1 1 33 34

−− −     
= = =     −     

− − −       
= =       − −       

P D P

A
 

 

3. Characteristic polynomial:  2( ) 2 ( 2)p λ λ λ λ λ= − = −  

 Eigenvalues: 1 20, 2λ λ= =  

 With  1 0 :λ =   
6 6 0
4 4 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =   
4 6 0
4 6 0

a b
a b

− = 
− = 

 2

3
2
 

=  
 

v  

 

1

5

1 3 0 0 2 3
, ,

1 2 0 2 1 1

1 3 0 0 2 3 96 96
1 2 0 32 1 1 64 64

− −     
= = =     −     

− −       
= =       − −       

P D P

A
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4. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 2λ λ= =  

 With  1 1:λ =   
3 3 0
2 2 0

a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =   
2 3 0
2 3 0

a b
a b

− = 
− = 

  2

3
2
 

=  
 

v  

 11 3 1 0 2 3
, ,

1 2 0 2 1 1
− −     

= = =     −     
P D P  

 5 1 3 1 0 2 3 94 93
1 2 0 32 1 1 62 61

− −       
= =       − −       

A  

 
 
5. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 2λ λ= =  

 With  1 1:λ =   
4 4 0
3 3 0
a b
a b

− = 
− = 

  1

1
1
 

=  
 

v  

 With  2 2 :λ =    
3 4 0
3 4 0

a b
a b

− = 
− = 

  2

4
3
 

=  
 

v  

 

1

5

1 4 1 0 3 4
, ,

1 3 0 2 1 1

1 4 1 0 3 4 125 124
1 3 0 32 1 1 93 92

− −     
= = =     −     

− −       
= =       − −       

P D P

A
 

 
 
6. Characteristic polynomial:  2( ) 3 2 ( 1)( 2)p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 21, 2λ λ= =  

 With  1 1:λ =   
5 10 0
2 4 0
a b
a b
− = 

− = 
 1

2
1
 

=  
 

v  

 With  2 2 :λ =   
4 10 0
2 5 0
a b
a b
− = 

− = 
 2

5
2
 

=  
 

v  
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1

5

2 5 1 0 2 5
, ,

1 2 0 2 1 2

2 5 1 0 2 5 156 310
1 2 0 32 1 2 62 123

− −     
= = =     −     

− −       
= =       − −       

P D P

A
 

 
 
7. Characteristic polynomial:  2( ) ( 1)( 2)p λ λ λ= − − −  

 Eigenvalues: 1 2 31, 2, 2λ λ λ= = =  

 With  1 1:λ =   
3 0

0
0

b
b
c

= 
= 
= 

  1

1
0
0

 
 =  
  

v  

 With  2 2 :λ =   
3 0

0 0
0 0

b a− = 
= 
= 

  2 3

0 3
0 , 1
1 0

   
   = =   
      

v v  

 

 

1

5

1 0 3 1 0 0 1 3 0
0 0 1 , 0 2 0 , 0 0 1
0 1 0 0 0 2 0 1 0

1 0 3 1 0 0 1 3 0 1 93 0
0 0 1 0 32 0 0 0 1 0 32 0
0 1 0 0 0 32 0 1 0 0 0 32

−

−     
     = = =     
          

−       
       = =       
              

P D P

A

 

 
 
8. Characteristic polynomial:  3 2 2( ) 4 5 2 ( 1) ( 2)p λ λ λ λ λ λ= − + − + = − − −  

 Eigenvalues: 1 2 31, 1, 2λ λ λ= = =  

 With  1 1:λ =   
2 0

0 0
2 0

c b

c b

− = 
= 
− = 

  1 2

0 1
1 , 0
2 0

   
   = =   
      

v v  

 With  3 2 :λ =   
2 0

0
2 0

a b c
b
b

− − + = 
− = 
− = 

 3

1
0
1

 
 =  
  

v  
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1

5

0 1 1 1 0 0 0 1 0
1 0 0 , 0 1 0 , 1 2 1
2 0 1 0 0 2 0 2 1

0 1 1 1 0 0 0 1 0 1 62 31
1 0 0 0 1 0 1 2 1 0 1 0
2 0 1 0 0 32 0 2 1 0 62 32

−

     
     = = = −     
     −     

−       
       = − =       
       − −       

P D P

A

 

 
 
9. Characteristic polynomial:  2( ) ( 1)( 2)p λ λ λ= − − −  

 Eigenvalues: 1 2 31, 2, 2λ λ λ= = =  

 With  1 1:λ =   
3 0

0
0

c b
b
c

− = 
= 
= 

  1

1
0
0

 
 =  
  

v  

 With  2 2 :λ =   
3 0
0 0
0 0

a b c− − + = 
= 
= 

 2 3

1 3
0 , 1
1 0

−   
   = =   
      

v v  

 

 

1

5

1 1 3 1 0 0 1 3 1
0 0 1 , 0 2 0 , 0 0 1
0 1 0 0 0 2 0 1 0

1 1 3 1 0 0 1 3 1 1 93 31
0 0 1 0 32 0 0 0 1 0 32 0
0 1 0 0 0 32 0 1 0 0 0 32

−

− −     
     = = =     
          

− − −       
       = =       
              

P D P

A

 

 
 
10. Characteristic polynomial:  2( ) ( 1)( 2)p λ λ λ= − − −  

 Eigenvalues: 1 2 31, 2, 2λ λ λ= = =  

 With  1 1:λ =   
3 3 0
2 2 0

0

a b c
a b c

c

− + = 
− + = 
= 

  1

1
1
0

 
 =  
  

v  

 With  2 2 :λ =   
2 3 0
2 3 0

0 0

a b c
a b c

− + = 
− + = 
= 

 2 3

1 3
0 , 2
2 0

−   
   = =   
      

v v  
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1

5

1 1 3 1 0 0 4 6 2
11 0 2 , 0 2 0 , 0 0 1
2

0 2 0 0 0 2 2 2 1

1 1 3 1 0 0 4 6 2 94 93 31
11 0 2 0 32 0 0 0 1 62 61 31
2

0 2 0 0 0 32 2 2 1 0 0 32

−

− − −     
     = = =     
     −     

− − − −       
       = = −       
       −       

P D P

A

 

 
 
11. Characteristic polynomial:  3( ) ( 1)( 1)p λ λ λ λ λ λ= − + = − + −  

 Eigenvalues: 1 2 31, 0, 1λ λ λ= − = =  

 With  1 1:λ = −  
2 0

6 6 2 0
21 15 5 0

a
a b c
a b c

= 
+ + = 
− − = 

  1

0
1

3

 
 = − 
  

v  

 With  2 0 :λ =   
0

6 5 2 0
21 15 6 0

a
a b c
a b c

= 
+ + = 
− − = 

  2

0
2

5

 
 = − 
  

v  

 With  3 1:λ =    
0 0

6 4 2 0
21 15 7 0

a b c
a b c

= 
+ + = 
− − = 

  3

1
42

87

− 
 = − 
  

v  

 

 

1

10

0 0 1 1 0 0 36 5 2
1 2 42 , 0 0 0 , 39 3 1

3 5 87 0 0 1 1 0 0

0 0 1 1 0 0 36 5 2 1 0 0
1 2 42 0 0 0 39 3 1 78 5 2

3 5 87 0 0 1 1 0 0 195 15 6

−

− − −     
     = − − − = = − −     
     −     

− −       
       = − − − − − = − −       
       − −       

P D P

A

 

 
 
12. Characteristic polynomial:  2 2( ) (1 )( 1) ( 1)( 1)p λ λ λ λ λ= − − = − + −  

 Eigenvalues: 1 2 31, 1, 1λ λ λ= − = =  

 With  1 1:λ = −  
12 6 2 0
20 10 4 0

2 0

a b c
a b c

c

− − = 
− − = 
= 

  1

1
2
0

 
 =  
  

v  
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 With  2 1:λ =    
10 6 2 0
20 12 4 0

0 0

a b c
a b c

− − = 
− − = 
= 

  2 3

1 3
0 , 5
5 0

   
   = =   
      

v v  

 

 

1

10

1 1 3 1 0 0 25 15 5
12 0 5 , 0 1 0 , 0 0 1
5

0 5 0 0 0 1 10 5 2

1 1 3 1 0 0 25 15 5 1 0 0
12 0 5 0 1 0 0 0 1 0 1 0
5

0 5 0 0 0 1 10 5 2 0 0 1

−

− −     
     = = =     
     − −     

−       
       = =       
       − −       

P D P

A

 

 
 
13. Characteristic polynomial:  3( ) ( 1)( 1)p λ λ λ λ λ λ= − + = − + −  

 Eigenvalues: 1 2 31, 0, 1λ λ λ= − = =  

 With  1 1:λ = −  
2 0
2 0

4 4 2 0

a b c
a b c

a b c

− + = 
− + = 
− + = 

  1

1
0
2

− 
 =  
  

v  

 With  2 0 :λ =   
0

2 2 0
4 4 0

a b c
a b c
a b c

− + = 
− + = 
− + = 

  2

1
1
0

 
 =  
  

v  

 With  3 1:λ =    
0

2 3 0
4 4 0

b c
a b c

a b

− + = 
− + = 
− = 

  3

1
1
1

 
 =  
  

v  

 

 

1

10

1 1 1 1 0 0 1 1 0
0 1 1 , 0 0 0 , 2 3 1
2 0 1 0 0 1 2 2 1

1 1 1 1 0 0 1 1 0 3 3 1
0 1 1 0 0 0 2 3 1 2 2 1
2 0 1 0 0 1 2 2 1 0 0 1

−

− − −     
     = = = − −     
     −     

− − −       
       = − − = −       
       −       

P D P

A

 

 
 
14. Characteristic polynomial:  3( ) ( 1)( 1)p λ λ λ λ λ λ= − + = − + −  

 Eigenvalues: 1 2 31, 0, 1λ λ λ= − = =  



322 Chapter 6 

 With  1 1:λ = −  
6 5 3 0
2 0

4 4 2 0

a b c
a b c

a b c

− − = 
− − = 
− − = 

  1

1
0
2

 
 =  
  

v  

 With  2 0 :λ =   
5 5 3 0
2 2 0
4 4 3 0

a b c
a b c
a b c

− − = 
− − = 
− − = 

  2

1
1
0

 
 =  
  

v  

 With  3 1:λ =    
4 5 3 0
2 3 0

4 4 4 0

a b c
a b c

a b c

− − = 
− − = 
− − = 

  3

2
1
1

 
 =  
  

v  

 

 1

1 1 2 1 0 0 1 1 1
0 1 1 , 0 0 0 , 2 3 1
2 0 1 0 0 1 2 2 1

−

− −     
     = = = −
     

− −          

P D P  

 10

1 1 2 1 0 0 1 1 1 3 3 1
0 1 1 0 0 0 2 3 1 2 2 1
2 0 1 0 0 1 2 2 1 0 0 1

− − −       
       = − = − −
       

− −              

A  

 
 
15. 2 2( ) 3 2 so 3 2 0p λ λ λ= − + − + =A A I  

 

( )

2

3 2

4 3 2

1

5 4 1 0 13 12
3 2 3 2

3 2 0 1 9 8

13 12 5 4 29 28
3 2 3 2

9 8 3 2 21 20

29 28 13 12 61 60
3 2 3 2

21 20 9 8 45 44

5 4 1 01 13 3
3 2 0 12 2

−

− −     
= − = − =     − −     

− − −     
= − = − =     − − −     

− − −     
= − = − =     − − −     

−  
= − + = − + − 

A A I

A A A

A A A

A A I
2 41
3 52

  −  
=    −    

 

 
16. 2 2( ) 3 2 so 3 2 0p λ λ λ= − + − + =A A I  

 

2

3 2

6 10 1 0 16 30
3 2 3 2

2 3 0 1 6 11

16 30 6 10 36 70
3 2 3 2

6 11 2 3 14 27

− −     = − = − =     − −     

− − −     = − = − =     − − −     

A A I

A A A
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( )

4 3 2

1

36 70 16 30 76 150
3 2 3 2

14 27 6 11 30 59

6 10 1 0 3 101 1 13 3
2 3 0 1 2 62 2 2

−

− − −     = − = − =     − − −     

− −      = − + = − + =      − −      

A A A

A A I
 

 
 
17. 3 2 3 2( ) 5 8 4 so 5 8 4p λ λ λ λ= − + − + − + − + =A A A I 0  

 

2 3 2

4 3 2

1 9 0 1 21 0
0 4 0 , 5 8 4 0 8 0
0 0 4 0 0 8

1 45 0
5 8 4 0 16 0

0 0 16

   
   = = − + =   
      

 
 = − + =  
  

A A A A I

A A A A

 

 ( )1 2

2 3 0
1 15 8 0 1 0
4 2

0 0 1

−

− 
 = − + =  
  

A A A I  

 
 
18. 3 2 3 2( ) 4 5 2 so 4 5 2p λ λ λ λ= − + − + − + − + =A A A I 0  

 

2 3 2

4 3 2

1 6 3 1 14 7
0 1 0 , 4 5 2 0 1 0
0 6 4 0 14 8

1 30 15
4 5 2 0 1 0

0 30 16

− −   
   = = − + =   
   − −   

− 
 = − + =  
 − 

A A A A I

A A A A

 

 ( )1 2

2 2 1
1 14 5 0 2 0
2 2

0 2 1

−

− 
 = − + =  
  

A A A I  

 
 
19. 3 2 3 2( ) 5 8 4 so 5 8 4p λ λ λ λ= − + − + − + − + =A A A I 0  

 2 3 2

1 9 3 1 21 7
0 4 0 , 5 8 4 0 8 0
0 0 4 0 0 8

− −   
   = = − + =
   
      

A A A A I  
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 4 3 2

1 45 15
5 8 4 0 16 0

0 0 16

− 
 = − + =
 
  

A A A A  

 ( )1 2

2 3 1
1 15 8 0 1 0
4 2

0 0 1

−

− 
 = − + =  
  

A A A I  

 
 
20. 3 2 3 2( ) 5 8 4 so 5 8 4p λ λ λ λ= − + − + − + − + =A A A I 0  

 

2 3 2

4 3 2

10 9 3 22 21 7
6 5 3 , 5 8 4 14 13 7
0 0 4 0 0 8

46 45 15
5 8 4 30 29 15

0 0 16

− −   
   = − = − + = −   
      

− 
 = − + = − 
  

A A A A I

A A A A

 

 ( )1 2

1 3 1
1 15 8 2 4 1
4 2

0 0 1

−

− − 
 = − + = − − 
  

A A A I  

 
 
21. 3 3( ) sop λ λ λ= − + − + =A A 0  

 

2 3

4 2

1 0 0 1 0 0
78 5 2 , 6 5 2
195 15 6 21 15 6

1 0 0
78 5 2
195 15 6

   
   = − − = =   
   − − −   

 
 = = − − 
 − 

A A A

A A

 

 Because  0λ =  is an eigenvalue,  A  is singular and  A–1 does not exist. 
 
 
22. 3 2 3 2( ) 1 sop λ λ λ λ= − + + − − + + − =A A A I 0  

 2 3 2

1 0 0 11 6 2
0 1 0 , 20 11 4
0 0 1 0 0 1

− −   
   = = = + − = − − =
   
      

A I A A A I A  
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 4 3 2

1 0 0
0 1 0
0 0 1

 
 = + − = =
 
  

A A A A I  

 1 2

11 6 2
20 11 4
0 0 1

−

− − 
 = − + + = − − = 
  

A A A I A  

 

23. 3 3( ) sop λ λ λ= − + − + =A A 0  

 

2 3

4 2

3 3 1 1 1 1
2 2 1 , 2 2 1
0 0 1 4 4 1

3 3 1
2 2 1
0 0 1

− −   
   = − = = −   
   −   

− 
 = = − 
  

A A A

A A

 

 Because  0λ =  is an eigenvalue,  A  is singular and  A–1 does not exist. 
 

24. 3 3( ) sop λ λ λ= − + − + =A A 0  

 

2 3

4 2

3 3 1 5 5 3
2 2 1 , 2 2 1
0 0 1 4 4 3

3 3 1
2 2 1
0 0 1

− − − −   
   = − − = = − −   
   − −   

− − 
 = = − − 
  

A A A

A A

 

 Because  0λ =  is an eigenvalue,  A  is singular and  A–1 does not exist. 
 
 
In Problems 25–30 we first find the eigensystem of the given transition matrix  A  so as to 
determine its eigenvector matrix  P  and its diagonal eigenvalue matrix  D.  Then we determine how 
the matrix power  Ak = PDkP–1 behaves as  .k → ∞   For simpler calculations of eigenvalues and 
eigenvectors, we write the entries of  A  in fractional rather than decimal form. 
 

25. Characteristic polynomial:  2 9 4 1( ) ( 1)(5 4)
5 5 5

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
41,
5

λ λ= =  
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 With  1 1:λ =   

1 1 0
10 10
1 1 0

10 10

a b

a b

− + = 

− =


  1

1
1
 

=  
 

v  

 With  2
4 :
5

λ =   

1 1 0
10 10
1 1 0

10 10

a b

a b

+ = 

+ =


  2

1
1
− 

=  
 

v  

 

( )

1

0 0

0
0 0 0

0

1 1 1 0 1 11, ,
1 1 0 4 / 5 1 12

1 1 1 0 1 11
1 1 0 4 / 5 1 12

1 1 1 0 1 1 1 1 1/ 21 1
1 1 0 0 1 1 1 1 1/ 22 2

k
k

k

C
C S

S

−−     
= = =     −     

−     
= =      −     

−           
→ = = +          −          

P D P

x A x x

x

 

 
 as  .k → ∞   Thus the long-term distribution of population is 50% city, 50% suburban. 
 
 

26. Characteristic polynomial:  2 9 4 1( ) ( 1)(5 4)
5 5 5

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
41,
5

λ λ= =  

 With  1 1:λ =   

3 1 0
20 20
3 1 0
20 20

a b

a b

− + = 

− =


  1

1
3
 

=  
 

v  

 With  2
4 :
5

λ =   

1 1 0
20 20
3 3 0
20 20

a b

a b

+ = 

+ =


  2

1
1
− 

=  
 

v  

 

( )

1

0 0

0
0 0 0

0

1 1 1 0 1 11, ,
3 1 0 4 / 5 3 14

1 1 1 0 1 11
3 1 0 4 / 5 3 14

1 1 1 0 1 1 1 1 1/ 41 1
3 1 0 0 3 1 3 3 3/ 44 4

k
k

k

C
C S

S

−−     
= = =     −     

−     
= =      −     

−           
→ = = +          −          

P D P

x A x x

x
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 as  .k → ∞   Thus the long-term distribution of population is 25% city, 75% suburban. 
 

27. Characteristic polynomial:  2 8 3 1( ) ( 1)(5 3)
5 5 5

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
31,
5

λ λ= =  

 With  1 1:λ =   

1 3 0
4 20

1 3 0
4 20

a b

a b

− + = 

− =


  1

3
5
 

=  
 

v  

 With  2
3 :
5

λ =   

3 3 0
20 20
1 1 0
4 4

a b

a b

+ = 

+ =


  2

1
1
− 

=  
 

v  

 13 1 1 0 1 11, ,
5 1 0 3/ 5 5 38

−−     
= = =     −     

P D P  

 0 0

3 1 1 0 1 11
5 1 0 3/ 5 5 38

k
k

k

−     
= =      −     

x A x x  

 ( )0
0 0 0

0

3 1 1 0 1 1 3 3 3/81 1
5 1 0 0 5 3 5 5 5 /88 8

C
C S

S
−           

→ = = +          −          
x  

 
 as  .k → ∞   Thus the long-term distribution of population is 3/8 city, 5/8 suburban. 
 
 

28. Characteristic polynomial:  2 17 7 1( ) ( 1)(10 7)
10 10 10

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
71,

10
λ λ= =  

 With  1 1:λ =   

1 1 0
5 10

1 1 0
5 10

a b

a b

− + = 

− =


  1

1
2
 

=  
 

v  

 With  2
7 :

10
λ =   

1 1 0
10 10
1 1 0
5 5

a b

a b

+ = 

+ =


  2

1
1
− 

=  
 

v  
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( )

1

0 0

0
0 0 0

0

1 1 1 0 1 11, ,
2 1 0 7 /10 2 13

1 1 1 0 1 11
2 1 0 7 /10 2 13

1 1 1 0 1 1 1 1 1/ 31 1
2 1 0 0 2 1 2 2 2 / 33 3

k
k

k

C
C S

S

−−     
= = =     −     

−     
= =      −     

−           
→ = = +          −          

P D P

x A x x

x

 

 
 as  .k → ∞   Thus the long-term distribution of population is 1/3 city, 2/3 suburban. 
 

29. Characteristic polynomial:  2 37 17 1( ) ( 1)(20 17)
20 20 20

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
171,
20

λ λ= =  

 With  1 1:λ =   

1 1 0
10 20
1 1 0

10 20

a b

a b

− + = 

− =


  1

1
2
 

=  
 

v  

 With  2
17 :
20

λ =   

1 1 0
20 20
1 1 0

10 10

a b

a b

+ = 

+ =


  2

1
1
− 

=  
 

v  

 

 11 1 1 0 1 11, ,
2 1 0 17 / 20 2 13

−−     
= = =     −     

P D P  

 0 0

1 1 1 0 1 11
2 1 0 17 / 20 2 13

k
k

k

−     
= =      −     

x A x x  

 ( )0
0 0 0

0

1 1 1 0 1 1 1 1 1/ 31 1
2 1 0 0 2 1 2 2 2 / 33 3

C
C S

S
−           

→ = = +          −          
x  

 
 as  .k → ∞   Thus the long-term distribution of population is 1/3 city, 2/3 suburban. 
 
 

30. Characteristic polynomial:  2 33 13 1( ) ( 1)(20 13)
20 20 20

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
131,
20

λ λ= =  
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 With  1 1:λ =   

1 3 0
5 20

1 3 0
5 20

a b

a b

− + = 

− =


  1

3
4
 

=  
 

v  

 With  2
13 :
20

λ =   

3 3 0
20 20

1 1 0
5 5

a b

a b

+ = 

+ =


  2

1
1
− 

=  
 

v  

 

( )

1

0 0

0
0 0 0

0

3 1 1 0 1 11, ,
4 1 0 13/ 20 4 37

3 1 1 0 1 11
4 1 0 13/ 20 4 37

3 1 1 0 1 1 3 3 3/ 71 1
4 1 0 0 4 3 4 4 4 / 77 7

k
k

k

C
C S

S

−−     
= = =     −     

−     
= =      −     

−           
→ = = +          −          

P D P

x A x x

x

 

 
 as  .k → ∞   Thus the long-term distribution of population is 3/7 city, 4/7 suburban. 
 
 
In the following three problems, just as in Problems 25–30, we first write the elements of  A  in 
fractional rather than decimal form, with  r = 4/25 in Problem 31,  r = 7/40 in Problem 32, and 
r = 27/200 in Problem 33. 
 

31. Characteristic polynomial:  2 9 4 1( ) ( 1)(5 4)
5 5 5

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
41,
5

λ λ= =  

With  1 1:λ =   

2 1 0
5 2
4 1 0
25 5

a b

a b

− + = 

− + =


  1

5
4
 

=  
 

v  

 With  2
4 :
5

λ =   

1 1 0
5 2
4 2 0
25 5

a b

a b

− + = 

− + =


  2

5
2
 

=  
 

v  

 15 5 1 0 2 51, ,
4 2 0 4 / 5 4 510

− −     = = =     −     
P D P  
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0 0

0 0 0
0

0 0 0

5 5 1 0 2 51
4 2 0 4 / 5 4 510

2.55 5 1 0 2 5 10 251 1
2 0.84 2 0 0 4 5 8 2010 10

k
k

k

F R F
R R F

−     = =      −     

−− −           → = =           −− −           

x A x x

x

 

 
as  .k → ∞   Thus the fox-rabbit population approaches a stable situation with  0 02.5R F−  
foxes and  0 02 0.8R F−  rabbits. 
 

32. Characteristic polynomial:  2 9 63 1( ) (20 21)(4 3)
5 80 80

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
19 17,
20 20

λ λ= =  

 With  1
21 :
20

λ =  

9 1 0
20 2

27 3 0
200 20

a b

a b

− + = 

− + =


  1

10
9

 
=  

 
v  

 With  2
3 :
4

λ =   

3 1 0
20 2

27 9 0
200 20

a b

a b

− + = 

− + =


  2

10
3

 
=  

 
v  

 

1

0 0

10 10 21/ 20 0 3 101, ,
9 3 0 3/ 4 9 1060

10 10 21/ 20 0 3 101
9 3 0 3/ 4 9 1060

k
k

k

− −     
= = =     −     

−     
= =      −     

P D P

x A x x

 

 
( )

( )

0
0

0

0 0

10 10 1 0 3 10 30 1001 21 1 1.05
9 3 0 0 9 10 27 9060 20 60

101 1.05 (10 3
960

k
k

k

F
R

R F

− −          ≈ =          − −           

 
= −  

 

x
 

when  k  is sufficiently large.  Thus the fox and rabbit populations are both increasing at 5% 
per year, with 10 foxes for each 9 rabbits. 

 

33. Characteristic polynomial:  2 9 323 1( ) (20 19)(20 17)
5 400 400

p λ λ λ λ λ= − + = − −  

 Eigenvalues: 1 2
19 17,
20 20

λ λ= =  
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 With  1
19 :
20

λ =   

7 1 0
20 2
7 1 0
40 4

a b

a b

− + = 

− + =


  1

10
7

 
=  

 
v  

 With  2
17 :
20

λ =   

1 1 0
4 2

7 0
40 20

a b

a b

− + = 

− + =


7
  2

2
1
 

=  
 

v  

 

1

0 0

0
0

0

10 2 19 / 20 0 1 21, ,
7 1 0 17 / 20 7 104

10 2 19 / 20 0 1 21
7 1 0 17 / 20 7 104

10 2 0 0 1 2 0 0 01
7 1 0 0 7 10 0 0 04

k
k

k

F
R

− −     
= = =     −     

−     
= =      −     

−           
→ = =          −          

P D P

x A x x

x

 

 
as  .k → ∞   Thus the fox and rabbit population both die out. 

 

34. 1 3 5 1 0 7 5 41 30
4 7 0 1 4 3 56 41

− − −       
= = =       − − −       

A PDP  

 If  n  is even then  n =D I   so  1 1 .n n − −= = =A PD P PIP I   If  n  is odd then 
 1 .n n−= = =A A A IA A   Thus  99 100and .= =A A A I  
 

35. The fact that each  1, so 1,λ λ= = ±  implies that  n =D I  if  n  is even, in which case  
1 1 .n n − −= = =A PD P PIP I  

 

36. We find immediately that  2 3 2 4 3 2, so , ,= = = = = = =A I A A A IA A A A A A I  and so 
forth. 

 

37. We find immediately that  2 3 2 4 3 2, so , ,= − = = − = − = = − =A I A A A IA A A A A A I  and 
so forth. 

 

38. If  21 1 1 0 0 1
, then ,

1 0 0 1 0 0
     

= = + = + =     
     

A I B B 0  so it follows that 
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 1 1 21
2

1
( ) ( 1) .

0 1
n n n n n n

n n n n− −  
= + = + + − + = + =  

 
A I B I I B I B I B�  

 
39. The characteristic equation of  A  is 
 

  
2( )( ) (1 )(1 ) ( ) ( 1)

( 1)[ ( 1)],
p q p q p q p q

p q
λ λ λ λ

λ λ
− − = − − = − + + + −

= − − + −
 

 
 so the eigenvalues of  A  are  1 21 and 1.p qλ λ= = + −  
 

40. The fact that the column sums of  A  are each 1 implies that the row sums of the transpose 
matrix  AT  are each 1, so it follows readily  that  ATv = v.  Thus  1λ =  is an eigenvalue of  
AT.  But  A  and  AT  have the same eigenvalues (by Problem 35 in Section 6.1). 



 Section 7.1 333 

 
CHAPTER 7 
 
LINEAR SYSTEMS OF  
DIFFERENTIAL EQUATIONS 
 
 
SECTION 7.1 
 
FIRST-ORDER SYSTEMS AND APPLICATIONS 
    
1. Let  2

1 2 1 2and , so 7 3 .x x x x x x x x x t′ ′ ′ ′′ ′= = = = = − − +    

Equivalent system: 

1x′   =  x2, 2x′   =  -7x1 - 3x2 + t2 
   
2. Let  1 2 1 3 2 4 3, , , , sox x x x x x x x x x x′ ′ ′ ′′ ′ ′′′= = = = = = = (4)

4 3 6 cos3 .x x x x x t′ ′ ′′= = + − +   

Equivalent system: 

1x′   =  x2,         2x′   =  x3,         3x′   =  x4,  4x′   =  -x1 + 3x2 - 6x3 + cos 3t 
 
3. Let  ( )2 2

1 2 1 2and , so 1 / .x x x x x x x t x tx t ′ ′ ′ ′′ ′= = = = = − −     

Equivalent system: 

1x′   =  x2,   t2 2x′   =  (1 - t2)x1 - tx2 
 
4. Let  ( )2 3

1 2 1 3 2 3, , , so 5 3 2 ln /x x x x x x x x x x x tx t x t t′ ′ ′ ′′ ′ ′′′ ′ ′′= = = = = = = − − − + .  

Equivalent system: 

1x′   =  x2,        2x′   =  x3, t3 3x′   =  -5x1 - 3tx2 + 2t2x3 + ln t 
 
5. Let  ( )2

1 2 1 3 2 3, , , so cos .x x x x x x x x x x x x′ ′ ′ ′′ ′ ′′′ ′= = = = = = = +  

Equivalent system: 

1x′   =  x2,    2x′   =  x3,  3x′   =  x2
2 + cos x1 

 
6. Let  1 2 1 1 2 1 2 2, , , so 5 4 , 4 5 .x x x x x y y y y y x x x y y y x y′ ′ ′ ′ ′ ′′ ′ ′′= = = = = = = = − = = − +  

 Equivalent system: 
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1x′   =  x2,     2x′   =     5x1 - 4y1     

1y′   =  y2,        2y′   =  -4x1 + 5y1 
 
7. Let  2 2 3/ 2

1 2 1 1 2 1 2, , , so /( ) ,x x x x x y y y y y x x kx x y′ ′ ′ ′ ′ ′′= = = = = = = = − +  
 2 2 3/ 2

2 /( ) .y y ky x y′ ′′= = − +  

Equivalent system: 

1x′   =  x2,         2x′   =  ( )3/ 22 2
1 1 1/kx x y− +  

 1y′   =  y2,          2y′   =  ( )3/ 22 2
1 1 1/ky x y− +  

 
8. Let  1 2 1 1 2 1 2, , , so 4 2 3 ,x x x x x y y y y y x x x y x′ ′ ′ ′ ′ ′′ ′= = = = = = = = − + −  
 2 3 2 cos .y y x y y t′ ′′ ′= = − − +  

Equivalent system: 

 1x′   =  x2,        2x′   =  -4x1 + 2y1 - 3x2 

 1y′   =  y2 ,          2y′   =     3x1 -  y1 - 2y2 + cos t 
 
9. Let  1 2 1 1 2 1 1 2 1, , , , , , sox x x x x y y y y y z z z z z′ ′ ′ ′ ′ ′= = = = = = = = =  
 2 3 2 ,x x x y z′ ′′= = − + 2 24 , 5 .y y x y z z z x y z′ ′′ ′ ′′= = + − = = − −  

 Equivalent system: 

 1x′   =  x2,          2x′   =  3x1 - y1 + 2z1 

 1y′   =  y2,         2y′   =   x1 +  y1 - 4z1 

 1z′   =  z2,          2z′   =  5x1 - y1 -  z1 
 
10. Let  1 2 1 1 2 1 2, , , so (1 ),x x x x x y y y y y x x x y′ ′ ′ ′ ′ ′′= = = = = = = = − 2 (1 ).y y y x′ ′′= = −  

Equivalent system: 

 1x′   =  x2,         2x′   =  x1(1 - y1) 

 1y′   =  y2 2y′   =  y1(1 - x1) 
 
11. The computation  x''  =  y'  =  -x  yields the single linear second-order equation   
 x'' + x  =  0  with characteristic equation  r2 + 1  =  0  and general solution 
 
    x(t)  =  A cos t + B sin t. 
 
 Then the original first equation  y  =  x'  gives 
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    y(t)  =  B cos t - A sin t. 
 
 The figure on the left below shows a direction field and typical solution curves (obviously 
 circles?) for the given  system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12. The computation  x''  =  y'  =  x  yields the single linear second-order equation   
 x'' - x  =  0  with characteristic equation  r2 - 1  =  0  and general solution 
 
    x(t)  =  A et + B e-t. 
 
 Then the original first equation  y  =  x'  gives 
 
    y(t)  =  A et - B e-t. 
 
 The figure on the right above shows a direction field and some typical solution curves of this 
 system.  It appears that the typical solution curve is a branch of a hyperbola.   

 

13. The computation  x''  =  -2y'  =  -4x  yields the single linear second-order equation   
 x'' + 4x  =  0  with characteristic equation  r2 + 4  =  0  and general solution 
 
    x(t)  =  A cos 2t + B sin 2t. 
 
 Then the original first equation  y  =  -x'/2  gives 
 
    y(t)  =  -B cos 2t + A sin 2t. 
 
 Finally, the condition  x(0)  =  1  implies that  A  =  1, and then the condition  y(0)  =  0  

gives  B  =  0.  Hence the desired particular solution is given by 
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    x(t)  =  cos 2t,  y(t)  =  sin 2t. 
 
 The figure on the left below shows a direction field and some typical circular solution 
 curves for the given system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14. The computation  x''  =  10y'  =  -100x  yields the single linear second-order equation  
 x'' + 100x  =  0  with characteristic equation  r2 + 100  =  0  and general solution 
 
    x(t)  =  A cos 10t + B sin 10t. 
 
 Then the original first equation  y  =  x'/10  gives 
 
    y(t)  =  B cos 10t - A sin 10t. 
 
 Finally, the condition  x(0)  =  3  implies that  A  =  3, and then the condition  y(0)  =  4  

gives  B  =  4.  Hence the desired particular solution is given by 
 
    x(t)  =  3 cos 10t + 4 sin 10t,   

    y(t)  =  4 cos 10t - 3 sin 10t. 
 
 The typical solution curve is a circle.  See the figure on the right above. 

 

15. The computation  x''  =  y'/2  =  -4x  yields the single linear second-order equation   
 x'' + 4x  =  0  with characteristic equation  r2 + 4  =  0  and general solution 
 
    x(t)  =  A cos 2t + B sin 2t. 
 
 Then the original first equation  y  =  2x'  gives 
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    y(t)  =  4B cos 2t - 4A sin 2t. 
 
 The figure on the left below shows a direction field and some typical elliptical 
 solution curves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16. The computation  x''  =  8y'  =  -16x  yields the single linear second-order equation   
 x'' + 16x  =  0  with characteristic equation  r2 + 16  =  0  and general solution 
 
    x(t)  =  A cos 4t + B sin 4t. 
 
 Then the original first equation  y  =  x'/8  gives 
 
    y(t)  =  (B/2)cos 4t - (A/2)sin 4t. 
      
 The typical solution curve is an ellipse.  The figure on the right above shows a direction 
 field and some typical solution curves. 

 
17. The computation  x''  =   y'  =  6 x - y  =  6 x - x'  yields the single linear second-order 

equation  x'' + x' - 6 x  =  0  with characteristic equation  r2 + r - 6  =  0  and characteristic 
roots  r  =  -3  and  2,  so the general solution 

 
    x(t)  =  A e-3t + B e2t. 
 
 Then the original first equation  y  =   x'  gives 
 
    y(t)  =  -3A e-3t + 2B e2t. 
 
 Finally, the initial conditions   
 
   x(0)  =  A + B  =  1,   y(0)  =  -3A + 2B  =  2 
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 imply that  A  =  0  and  B  =  1,  so the desired particular solution is given by 
 
    x(t)  =  e-3t,  y(t)  =  2 e2t. 
 
 The figure on the left below shows a direction field and some typical solution curves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18. The computation  x''  =  -y'  =  -10x + 7y  =  -10x - 7x'  yields the single linear second-

order equation  x'' + 7x' + 10x  =  0  with characteristic equation  r2 + 7r + 10  =  0,  
characteristic roots  r  =  -2  and  -5,  and general solution 

 
    x(t)  =  A e-2t + B e-5t. 
 
 Then the original first equation  y  =  -x'  gives 
 
    y(t)  =  2A e-2t + 5B e-5t. 
 
 Finally, the initial conditions   
 
   x(0)  =  A + B  =  2,     y(0)  =  2A + 5B  =  -7 
 
 imply that  A  =  17/3,  B  =  -11/3,  so the desired particular solution is given by 
 
  x(t)  =  (17 e-2t - 11 e-5t)/3,        y(t)  =  (34e-2t – 55e-5t)/3. 
 
 It appears that the typical solution curve is tangent to the straight line  2 .y x=  See the 
 right-hand figure above for a direction field and typical solution curves. 

 
19. The computation  x''  =  -y'  =  -13x - 4y  =  -13x + 4x'  yields the single linear second-

order equation  x'' - 4x' + 13x  =  0  with characteristic equation  r2 - 4r + 13  =  0  and 
characteristic roots  r  =  2 ± 3i,  hence the general solution is 
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    x(t)  =  e2t(A cos 3t + B sin 3t). 
 
 The initial condition  x(0)  =  0  then gives  A  =  0,  so  x(t)  =  B e2tsin 3t.  Then the original 

first equation  y  =  -x'  gives 
 
    y(t)  =  -e2t(3B cos 3t + 2B sin 3t). 
 
 Finally, the initial condition  y(0)  =  3  gives  B  =  -1,  so the desired particular solution is 

given by 
 
   x(t)  =  -e2tsin 3t, y(t)  =  e2t(3 cos 3t + 2 sin 3t). 
 
 The figure below shows a direction field and some typical solution curves. 
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20. The computation  x''  =  y'  =  -9x + 6y  =  -9x + 6x'  yields the single linear second-order 

equation  x'' - 6 x' + 9 x  =  0  with characteristic equation  r2 - 6 r + 9  =  0  and repeated 
characteristic root  r  =  3, 3,  so its general solution is given by 

 
     x(t)  =  (A + Bt)e3t. 
 
 Then the original first equation  y  =  x'  gives 
 
     y(t)  =  (3A + B + 3Bt)e3t. 
 
 It appears that the typical solution curve is tangent to the straight line  3 .y x=  The figure 
 at the top of the next page shows a direction field and some typical solution curves. 
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21. (a) Substituting the general solution found in Problem 11 we get 
  
   x2 + y2  =  (A cos t + B sin t)2 + (B cos t - A sin t)2 

        =  (A2 + B2)(cos2t + sin2t)  =  A2 + B2 

   x2 + y2  =  C2, 
  
 the equation of a circle of radius  C  =  (A2 + B2)1/2. 
  
 (b) Substituting the general solution found in Problem 12 we get 
  
   x2 - y2  =  (Aet + Be-t)2 - (Aet - Be-t)2  =  4AB, 
  
 the equation of a hyperbola. 
 

22. (a) Substituting the general solution found in Problem 13 we get 
  
   x2 + y2  =  (A cos 2t + B sin 2t)2 + (-B cos 2t + A sin 2t)2 

        =  (A2 + B2)(cos22t + sin22t)  =  A2 + B2 

   x2 + y2  =  C2, 
  
 the equation of a circle of radius  C  =  (A2 + B2)1/2. 
  
 (b) Substituting the general solution found in Problem 15 we get 
   16x2 + y2  =  16(A cos 2t + B sin 2t)2 + (4B cos 2t - 4A sin 2t)2   
           =  16(A2 + B2)(cos22t + sin22t)  =  16(A2 + B2) 
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   16x2 + y2  =  C2, 
  
 the equation of an ellipse with semi-axes  1  and  4.  
 

23. When we solve Equations (20) and (21) in the text for  e-t  and  e2t  we get 
 
   2x - y  =  3Ae-t and  x + y  =  3Be2t. 
 Hence 
   (2x - y)2(x + y)  =  (3Ae-t)2(3Be2t)  =  27A2B  =  C. 
 
 Clearly  y  =  2x  or  y  =  -x  if  C  =  0,  and expansion gives the equation   
 4x3 - 3xy2 + y3  =  C. 
 

24. Looking at Fig. 7.1.9 in the text, we see that the first spring is stretched by  1,x  the second 
spring is stretched by  2 1,x x−  and the third spring is compressed by  2.x   Hence Newton's 
second law gives  1 1 1 1 2 2 1( ) ( )m x k x k x x′′ = − + −   and  2 2 2 2 1 3 2( ) ( ).m x k x x k x′′ = − − −  

 

25. Looking at Fig. 7.1.10 in the text, we see that  
 
  1 1 2 1 2 1 2 1sin sin tan tan / ( ) /my T T T T Ty L T y y Lθ θ θ θ′′= − + ≈ − + = − + − , 

  2 2 3 2 3 2 1 2sin sin tan tan ( ) / / .my T T T T T y y L Ty Lθ θ θ θ′′ = − − ≈ − − = − − −  
 

We get the desired equations when we multiply each of these equations by  L/T and set  
/ .k mL T=  

 
26. The concentration of salt in tank i  is  /100i ic x=  for  i = 1, 2, 3 and each inflow-outflow 

rate is  r = 10.  Hence 
 
  ( )1

1 1 3 1 310 ,x rc rc x x′ = − + = − +  

  ( )1
2 1 2 1 210 ,x rc rc x x′ = + − = −  

  ( )1
3 2 3 2 310 .x rc rc x x′ = + − = −    

 
27. If  θ   is the polar angular coordinate of the point  ( ),x y  and we write  

( )2 2 2/ / ,F k x y k r= + =  then Newton's second law gives 
 
  2 3cos ( / )( / ) / ,mx F k r x r kx rθ′′ = − = − = −  
  2 3sin ( / )( / ) / ,my F k r y r ky rθ′′ = − = − = −  
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28. If we write  (x', y')  for the velocity vector and  ( ) ( )2 2v x y′ ′= +   for the speed, then  
(x'/v, y'/v)  is a unit vector pointing in the direction of the velocity vector, and so the 
components of the air resistance force  Fr  are given by  

 
    Fr  =  -kv2(x'/v, y'/v)  =  (-kvx', -kvy'). 
 

29. If  ( , , )x y z=r  is the particle's position vector, then Newton's law  m ′′ =r F  gives 
 

  ( ), ,0 .
0 0

m q q x y z qBy qBx qB y x
B

′′ ′ ′ ′ ′ ′ ′ ′= = = + − = −
i j k

r v×B i j  

 
and the characteristic equation  (r2 + 2)[(r2 + 2)2 - 2]  =  0  has roots  2 andi±  

2 2i± ± . 
 
 
 
 
SECTION 7.2 
 
MATRICES AND LINEAR SYSTEMS 
 

1. 
2 3 2 3 4 2 2 3

3 4 2 3 4 2 3 2 3

4 6 4 8 1 8 18 1 2 12 32
( )

3 4 3 3 4 8 3 4
t t t t t t t t t t t t

t t t t t t t t t t t

′   − + + − + − + + − +′ = =   + − + + + − + +   
AB  

 

 

2 3 22 3
2

2 3 2 2 3

2 3 2 3 3 3

2 2 3

2 3 2

1 2 2 11 1 1 1
1 13 4 6 123

1 6 1 8 7 12 12 24
3 3 3 4 3 3 6 12

1 8 18 1 2 12 32
3 3 4 8 3 4

t tt t
t t t tt t

t t
t t t t t t t t t
t t t t t t t t

t t t t t
t t t t t

−   − + −      ′ ′+ = +      −          

   − + + + − + − +
= +   − + − − + + − +   

− + + − +
=

+ − + +

A B AB

3

 
 
 

 

 

2. 

3 2

4 3

3 3 2 9 3 2 2
( ) 3 3

3 24 2 12 24 2

t t t t t

t t

t e t e t e e t e
t

t t e t e

− − −

− −

′   + + + + −
   ′ = =   
   + − + +   

AB  
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2

2 3

2 2 2

3 3 3

1 2 3 0
1 0 0 2 0 2 2

8 0 3 3 8 1 3

6 3 2 3 2 9 3 2 2
3 6 3

24 9 3 2 12 24 2

t t

t t

t t t t t t

t t

e t e t t
e t e

t t t t

t e e t t e t e e t e

t t e t e

− −

− − − −

− −

      
      ′ ′+ = − + − −      
      −      

     + + − + + −
     = − + =     
     + + + +     

A B AB

 

 

3. 
0 3 0

, ( ) , ( )
3 0 0

x
t t

y
−     

= = =     
     

x P f  

 

4. 
3 2 0

, ( ) , ( )
2 1 0

x
t t

y
−     

= = =     
     

x P f  

 

5. 2

2 4 3
, ( ) , ( )

5 1

tx e
t t

y t
    

= = =     − −     
x P f  

 

6. 2

cos
, ( ) , ( )

sin

t

t

x tt e
t t

y te t−

 −   
= = =    −    

x P f  

 

7. 
0 1 1 0

, ( ) 1 0 1 , ( ) 0
1 1 0 0

x
y t t
z

     
     = = =     
          

x P f  

 

8. 
2 3 0 0

, ( ) 1 1 2 , ( ) 0
0 5 7 0

x
y t t
z

−     
     = = =     
     −     

x P f  

 

9. 2

3

3 4 1
, ( ) 1 0 3 , ( )

0 6 7

x t
y t t t
z t

−     
     = = − =     
     −     

x P f  
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10. 2

3

1 0
, ( ) 2 1 , ( ) 0

3 0

t

t

x t e
y t t t
z e t t−

 −   
    = = − =    
        

x P f  

 

11. 

1

2

3

4

0 1 0 0 0
0 0 2 0 0

, ( ) , ( )
0 0 0 3 0
4 0 0 0 0

x
x

t t
x
x

     
     
     = = =
     
     
      

x P f  

 

12. 

1

2
2

3
3

4

0 1 1 0 0
0 0 1 1

, ( ) , ( )
1 0 0 1
1 1 0 0

x
x t

t t
x t
x t

     
     
     = = =
     
     
      

x P f  

 

13. 
2

3
2

2
( ) 0

3

t t
t

t t

e e
W t e

e e
= = ≠

− −
 

 1 1

4 22 2 2
3 13 3 3

t t t

t t t

e e e
e e e

′      ′ = = = =      − −− − −      
x Ax  

 
2 2 2

2 22 2 2

4 22
3 12

t t t

t t t

e e e
e e e

′      ′ = = = =      − −− − −      
x Ax  

 
22

1 2
1 1 2 2 1 2 22

1 2

22
( )

33

t tt t

t tt t

c e c ee e
t c c c c

c e c ee e
     +

= + = + =      − −− −     
x x x  

 

In most of Problems 14-22, we omit the verifications of the given solutions.  In each case, this is 
simply a matter of calculating both the derivative  i′x  of the given solution vector and the product  

iAx   (where  A  is the coefficient matrix in the given differential equation)  to verify that  

i i′ =x Ax  (just as in the verification of the solutions  1 2andx x  in Problem 13 above). 
 

14. 
3 2

3
3 2

2
( ) 5 0

3

t t
t

t t

e e
W t e

e e

−

−
= = − ≠  

 
3 23 2

1 2
1 1 2 2 1 2 3 23 2

1 2

22
( )

33

t tt t

t tt t

c e c ee e
t c c c c

c e c ee e

−−

−−

     +
= + = + =      +     

x x x  
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15. 
2 2

2 2( ) 4 0
5

t t

t t

e e
W t

e e

−

−
= = ≠  

 
2 2

2 2 1 2
1 1 2 2 1 2 2 2

1 2

1 1
( )

1 5 5

t t
t t

t t

c e c e
t c c c e c e

c e c e

−
−

−

 +   
= + = + =      +     

x x x  

 

16. 
3 2

5
3 2( ) 0

2

t t
t

t t

e e
W t e

e e
= = ≠

− −
 

 
3 2

3 2 1 2
1 1 2 2 1 2 3 2

1 2

1 1
( )

1 2 2

t t
t t

t t

c e c e
t c c c e c e

c e c e
 +   

= + = + =     − − − −     
x x x   

 

17. 
2 5

3
2 5

3
( ) 7 0

2 3

t t
t

t t

e e
W t e

e e

−
−

−
= = ≠  

 
2 52 5

1 2
1 1 2 2 1 2 2 52 5

1 2

33
( )

2 32 3

t tt t

t tt t

c e c ee e
t c c c c

c e c ee e

−−

−−

     +
= + = + =      +     

x x x  

 

18. 

3 5

5 9

3 5

2 2 2
( ) 2 0 2 16 0

t t t

t t t

t t t

e e e
W t e e e

e e e

−
= − = ≠  

 

3 5
1 2 3

3 5 5
1 1 2 2 3 3 1 2 3 1 3

3 5
1 2 3

2 2 2 2 2 2
( ) 2 0 2 2 2

1 1 1

t t t

t t t t t

t t t

c e c e c e
t c c c c e c e c e c e c e

c e c e c e

 − − +     
      = + + = + + − = −      
       + +       

x x x x  

 

19. 

2

2

2

0
( ) 0 3 0

t t

t t

t t t

e e
W t e e

e e e

−

−

− −

= = ≠
− −

 

 

2
1 2

2 2
1 1 2 2 3 3 1 2 3 1 3

2
1 2 3

1 1 0
( ) 1 0 1

1 1 1

t t

t t t t t

t t t

c e c e
t c c c c e c e c e c e c e

c e c e c e

−

− − −

− −

 +     
      = + + = + + = +      
      − − − −       

x x x x  

 1 1

2 0 1 1 1
2 1 0 1 1
2 1 1 0 1

t te e
     
     ′ = = =     
          

x Ax  
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 2 2

1 0 1 1 1
0 1 0 1 0
1 1 1 0 1

t te e− −

−     
     ′ = = =     
     −     

x Ax  

 3 3

0 0 1 1 0
1 1 0 1 1

1 1 1 0 1

t te e−

     
     ′ = − = =     
     −     

x Ax  

  

20. 

3 4

3 4 7

3 4

1 2
( ) 6 3 2 84 0

13 2

t t

t t t

t t

e e
W t e e e

e e

−
= = − ≠

− −
 

 

3 4
1 2 3

3 4 3 4
1 1 2 2 3 3 1 2 3 1 2 3

3 4
1 2 3

1 2 1 2
( ) 6 3 2 6 3 2

13 2 1 13 2

t t

t t t t

t t

c c e c e
t c c c c c e c e c c e c e

c c e c e

 − + −     
      = + + = + + = + +      
      − − − − +       

x x x x  

 

21. 

2 3

2 3 2

2

3
( ) 2 0

2 0

t t t

t t t t

t t

e e e
W t e e e e

e e

−

−

−

= − − − = ≠  

 

2 3
1 2 3

2 3 2 3
1 1 2 2 3 3 1 2 3 1 2 3

2
1 2

3 1 1 3
( ) 2 1 1 2

2 1 0 2

t t t

t t t t t t

t t

c e c e c e
t c c c c e c e c e c e c e c e

c e c e

−

− −

−

 + +     
      = + + = − + − + − = − − −      
       +       

x x x x  

 

22. 1

0 0
0

0 0 0 0
( ) 0 0 1 0

0 0 3 2
2 0

0 2 0

t t
t t

t t
t t

t t t t
t t

t t

e e e e
e e

W t e e
e e e e

e e
e e

−
−

−
−

−
−

= = − = − = ≠
−

−
−

 

 

1 4

3
1 2 3 4

2 4

1 3

1 0 0 1
0 0 1 0

( )
0 1 0 3 3
1 0 2 0 2

t t

t
t t t t

t t

t t

c e c e
c e

t c e c e c e c e
c e c e
c e c e

−

− −
−

−

 +       
        
        = + + + =
         +
        − −          

x  

 

In Problems 23–26 (and similarly in Problems 27–32) we give first the scalar components  
1 2( ) and ( )x t x t  of a general solution, then the equations in the coefficients  1 2andc c  that are 
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obtained when the given initial conditions are imposed, and finally the resulting particular 
solution of the given system. 
 

23. 3 2 3 2
1 1 2 2 1 2( ) 2 , ( ) 3t t t tx t c e c e x t c e c e− −= + = +  

 1 2 1 2
3 2 3 2

1 2

2 0, 3 5
( ) 2 2 , ( ) 6t t t t

c c c c
x t e e x t e e− −

+ = + =

= − = −
 

 

24. 2 2 2 2
1 1 2 2 1 2( ) , ( ) 5t t t tx t c e c e x t c e c e− −= + = +  

 1 2 1 2
2 2 2 2

1 2

5, 5 3
( ) 7 2 , ( ) 7 10t t t t

c c c c
x t e e x t e e− −

+ = + = −

= − = −
 

 

25. 3 2 3 2
1 1 2 2 1 2( ) , ( ) 2t t t tx t c e c e x t c e c e= + = − −  

 1 2 1 2
3 2 3 2

1 2

11, 2 7
( ) 15 4 , ( ) 15 8t t t t

c c c c
x t e e x t e e

+ = − − = −

= − = − +
 

 

26. 2 5 2 5
1 1 2 2 1 2( ) 3 , ( ) 2 3t t t tx t c e c e x t c e c e− −= + = +  

 ( ) ( )
1 2 1 2

2 5 2 5
1 2

3 8, 2 3 0
8 48( ) 9 2 , ( )
7 7

t t t t

c c c c

x t e e x t e e− −

+ = + =

= − = −
 

 

27. 3 5 5 3 5
1 1 2 3 2 1 3 3 1 2 3( ) 2 2 2 , ( ) 2 2 , ( )t t t t t t t tx t c e c e c e x t c e c e x t c e c e c e= − + = − = + +  

 1 2 3 1 3 1 2 3

3 5 5 3 5
1 2 3

2 2 2 0, 2 2 0, 4

( ) 2 4 2 , ( ) 2 2 , ( ) 2t t t t t t t t

c c c c c c c c
x t e e e x t e e x t e e e

− + = − = + + =

= − + = − = + +
 

 

28. 2 2 2
1 1 2 2 1 3 3 1 2 3( ) , ( ) , ( )t t t t t t tx t c e c e x t c e c e x t c e c e c e− − − −= + = + = − −  

 1 2 1 3 1 2 3

2 2 2
1 2 3

10, 12, 1

( ) 7 3 , ( ) 7 5 , ( ) 7 8t t t t t t

c c c c c c c
x t e e x t e e x t e e− − −

+ = + = − − = −

= + = + = −
 

 

29. 2 3 2 3 2
1 1 2 3 2 1 2 3 3 1 2( ) 3 , ( ) 2 , ( ) 2t t t t t t t tx t c e c e c e x t c e c e c e x t c e c e− − −= + + = − − − = +  

 1 2 3 1 2 3 1 2

2 3 2 3 2
1 2 3

3 1, 2 2, 2 3

( ) 9 3 5 , ( ) 6 3 5 , ( ) 6 3t t t t t t t t

c c c c c c c c
x t e e e x t e e e x t e e− − −

+ + = − − − = + =

= − − = − + + = −
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30. 2 3 2 3 2
1 1 2 3 2 1 2 3 3 1 2( ) 3 , ( ) 2 , ( ) 2t t t t t t t tx t c e c e c e x t c e c e c e x t c e c e− − −= + + = − − − = +  

 1 2 3 1 2 3 1 2

2 3 2 3 2
1 2 3

3 5, 2 7, 2 11

( ) 6 15 4 , ( ) 4 15 4 , ( ) 4 15t t t t t t t t

c c c c c c c c
x t e e e x t e e e x t e e− − −

+ + = − − − = − + =

= − + − = − + = − +
 

 

31. 1 1 4 2 3 3 2 4 4 1 3( ) , ( ) , ( ) 3 , ( ) 2t t t t t t tx t c e c e x t c e x t c e c e x t c e c e− − −= + = = + = −  

 1 4 3 2 4 1 3

1 2 3 4

1, 1, 3 1, 2 1

( ) 3 2 , ( ) , ( ) 7 6 , ( ) 3 2t t t t t t t

c c c c c c c
x t e e x t e x t e e x t e e− − −

+ = = + = − =

= − = = − = −
  

 

32. 1 1 4 2 3 3 2 4 4 1 3( ) , ( ) , ( ) 3 , ( ) 2t t t t t t tx t c e c e x t c e x t c e c e x t c e c e− − −= + = = + = −  

 1 4 3 2 4 1 3

1 2 3 4

1, 3, 3 4, 2 7

( ) 13 12 , ( ) 3 , ( ) 40 36 , ( ) 13 6t t t t t t t

c c c c c c c
x t e e x t e x t e e x t e e− − −

+ = = + = − =

= − = = − = −
 

 

33. (a)   x2  =  tx1,  so neither is a constant multiple of the other. 
 
 (b) W(x1, x2)  =  0,  whereas Theorem 2 would imply that  W ≠ 0  if  x1  and  x2  were 

independent solutions of a system of the indicated form. 
 

34. If  x12(t)  =  c x11(t)  and  x22(t)  =  c x21(t)  then  
 
  W(t)  =    x11(t)x22(t) - x12(t)x21(t)  =  c x11(t)x21(t) -  cx11(t)x21(t)  =  0. 
 

35. Suppose  11 22 12 21( ) ( ) ( ) ( ) ( ) 0.W a x a x a x a x a= − =    Then the coefficient determinant of 
the homogeneous linear system  1 11 2 12 1 21 2 22( ) ( ) 0, ( ) ( ) 0c x a c x a c x a c x a+ = + =  
vanishes.  The system therefore has a non-trivial solution  1 2{ , }c c  such that  

1 1 2 2( ) ( ) .c a c a+ =x x 0   Then  1 1 2 2( ) ( ) ( )t c t c t= +x x x   is a solution of  ′ =x Px  such 
that  ( ) .a =x 0   It therefore follows (by uniqueness of solutions) that  ( ) ,t ≡x 0  that is,  

1 1 2 2( ) ( ) 0c t c t+ ≡x x  with  1 2andc c  not both zero.  Thus the solution vectors  x1  and  
x2  are linearly dependent. 

 

36. The argument is precisely the same, except with  n  solution vectors each having  n  
component functions (rather than 2 solution vectors each having 2 component functions). 

 

37. Suppose that  1 1 2 2( ) ( ) ( ) .n nc t c t c t+ + + ≡x x x 0�   Then the ith scalar component of this 
vector equation is   1 1 2 2( ) ( ) ( ) 0.i i n inc x t c x t c x t+ + + ≡�   Hence the fact that the scalar 
functions  1 2( ), ( ), , ( )i i inx t x t x t�  are linear linearly independent implies that  
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1 2 0.nc c c= = =�   Consequently the vector functions  1 2( ), ( ), , ( )nt t tx x x�  are linearly 
independent. 

 
 
 
SECTION 7.3 
 
THE EIGENVALUE METHOD 
FOR LINEAR SYSTEMS 
 
In each of Problems 1–16 we give the characteristic equation, the eigenvalues  λ1  and  λ2  of the 
coefficient matrix of the given system, the corresponding equations determining the associated 
eigenvectors  T T

1 1 1 2 2 2[ ] and [ ] ,a b a b= =v v   these eigenvectors, and the resulting scalar 
components  x1(t)  and  x2(t)  of a general solution  1 2

1 1 2 2( ) t tt c e c eλ λ= +x v v  of the system.   
 
1. Characteristic equation     2 2 3 0λ λ− − =  

 Eigenvalues   λ1  =  -1  and  λ2  =  3 

 Eigenvector equations  1 2

1 2

2 2 0 2 2 0
and

2 2 0 2 2 0
a a
b b

−          = =          −          
 

 Eigenvectors  v1  =  [1    -1]T  and  v2  =  [1     1]T 

 x1(t)  =     c1e-t + c2e3t,     x2(t)  =  -c1e-t + c2e3t 

 The left-hand figure below shows a direction field and some typical solution curves 
 for the system in Problem 1. 
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2. Characteristic equation     2 3 4 0λ λ− − =  

 Eigenvalues   λ1  =  -1  and  λ2  =  4 

 Eigenvector equations  1 2

1 2

3 3 0 2 3 0
and

2 2 0 2 3 0
a a
b b

−          = =          −          
 

 Eigenvectors  v1  =  [1   -1]T  and  v2  =  [3     2]T 

 x1(t)  =     c1e-t + 3c2e4t,     x2(t)  =  -c1e-t + 2c2e4t 

 The right-hand figure at the bottom of the preceding page shows a direction field and 
 some typical solution curves. 
 
3. Characteristic equation     2 5 6 0λ λ− − =  

 Eigenvalues   λ1  =  -1  and  λ2  =  6 

 Eigenvector equations  1 2

1 2

4 4 0 3 4 0
and

3 3 0 3 4 0
a a
b b

−          = =          −          
 

 Eigenvectors  v1  =  [1   -1]T  and  v2  =  [4    3]T 

 x1(t)  =     c1e-t + 4c2e6t,     x2(t)  =  -c1e-t + 3c2e6t 

 The equations 
    x1(0)  =    c1 + 4c2  =  1 

                      x2(0)  = -c1 + 3c2  =  1 
 
 yield  c1  =  -1/7  and  c2  =  2/7,  so the desired particular solution is given by 
 
   x1(t)  =  1

7 (-e-t + 8e6t),     x2(t)  =  1
7 ( e-t + 6e6t).  

 The left-hand figure below shows a direction field and some typical solution curves. 
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4. Characteristic equation     2 3 10 0λ λ− − =  

 Eigenvalues   λ1  =  -2  and  λ2  =  5 

 Eigenvector equations  1 2

1 2

6 1 0 1 1 0
and

6 1 0 6 6 0
a a
b b

−          = =          −          
 

 Eigenvectors  v1  =  [1  -6]T  and  v2  =  [1    1]T 
 
 x1(t)  =  c1e-2t + c2e5t,     x2(t)  =  -6c1e-2t + c2e5t 

  The right-hand figure at the bottom of the preceding page shows a direction field and 
 some typical solution curves. 
 

5. Characteristic equation     2 4 5 0λ λ− − =  

 Eigenvalues   λ1  =  -1  and  λ2  =  5 

 Eigenvector equations  1 2

1 2

7 7 0 1 7 0
and

1 1 0 1 7 0
a a
b b

− −          = =          − −          
 

 Eigenvectors  v1  =  [1    1]T  and  v2  =  [7    1]T 
 
 x1(t)  =  c1e-t + 7c2e5t,     x2(t)  =  c1e-t +   c2e5t 

 The left-hand figure below shows a direction field and some typical solution curves. 
 
 

 

 

 

 

 

 

 

 

 

 

6. Characteristic equation     2 7 12 0λ λ− + =  

 Eigenvalues   λ1  =  3  and  λ2  =  4 
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 Eigenvector equations  1 2

1 2

6 5 0 5 5 0
and

6 5 0 6 6 0
a a
b b
          = =          − − − −          

 

 Eigenvectors  v1  =  [5   -6]T  and  v2  =  [1   -1]T 
 
 x1(t)  =   5c1e3t + c2e4t,     x2(t)  = -6c1e3t - c2e4t 

 
 The initial conditions yield  c1  =  -1  and  c2  =  6,  so 
 
   x1(t)  =  -5e3t + 6e4t,     x2(t)  =  6e3t - 6e4t. 
    
 The right-hand figure at the bottom of the preceding page shows a direction field and 
 some typical solution curves. 
 

7. Characteristic equation     2 8 9 0λ λ+ − =  

 Eigenvalues   λ1  =  1  and  λ2  =  -9 

 Eigenvector equations  1 2

1 2

4 4 0 6 4 0
and

6 6 0 6 4 0
a a
b b

−           = =          −          
 

 Eigenvectors  v1  =  [1    1]T  and  v2  =  [2   -3]T 
  
 x1(t)  =  c1et + 2c2e-9t,     x2(t)  =  c1et - 3c2e-9t 
 
  The left-hand figure below shows a direction field and some typical solution curves. 
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8. Characteristic equation  λ2 + 4  =  0 

 Eigenvalue  λ  =  2i 

 Eigenvector equation  
1 2 5 0

1 1 2 0
i a

i b
− −     =     − −     

 

 Eigenvector  v  =  [5     1-2i]T 

 2 5cos2 5 sin 2
( )

(cos2 2sin 2 ) (sin 2 2cos2 )
i t t i t

t e
t t i t t

+ = =  + + − 
x v  

 x1(t)  =  5c1cos 2t + 5c2sin 2t 

 x2(t)  =  c1(cos 2t + 2 sin 2t) + c2(sin 2t - 2 cos 2t) 

          =  (c1 - 2c2)cos 2t + (2c1 + c2)sin 2t 
 
 The right-hand figure at the bottom of the preceding page shows a direction field and 
 some typical solution curves. 
 

9. Characteristic equation   λ2 + 16  =  0 

 Eigenvalue  λ  =  4i 

 Eigenvector equation  
2 4 5 0

4 2 4 0
i a

i b
− −     =     − −     

 

 Eigenvector  v  =  [5     2-4i]T 
  
 The real and imaginary parts of 
 

           4 5cos4 5 sin 4
( )

(2cos4 4sin 4 ) (2sin 4 4cos4 )
i t t i t

t e
t t i t t

+ = =  + + − 
x v  

 yield the general solution 
 
   x1(t)  =  5c1cos 4t + 5c2sin 4t 

   x2(t)  =  c1(2 cos 4t + 4 sin 4t) + c2(2 sin 4t - 4 cos 4t). 
 
 The initial conditions  x1(0)  =  2  and  x2(0)  =  3  give  c1  =  2/5  and  c2  =  -11/20,  so 

the desired particular solution is 
 
            x1(t)  =  2 cos 4t - 11

4 sin 4t 
           x2(t)  =  3 cos 4t +  1

2 sin 4t. 
 
 The left-hand figure at the top of the next page shows a direction field and some typical 
 solution curves. 
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10. Characteristic equation   λ2 + 9  =  0 

 Eigenvalue  λ  =  3i 

 Eigenvector equation  
3 3 2 0

9 3 3 0
i a

i b
− − −     =     −     

 

 Eigenvector  v  =  [-2     3+3i]T 

           3 2cos3 2 sin 3
( )

(3cos3 3sin 3 ) (3sin 3 3cos3 )
i t t i t

t e
t t i t t

− − = =  − + + 
x v  

 x1(t)  =  -2c1cos 3t - 2c2sin 3t 

 x2(t)  =   c1(3 cos 3t - 3 sin 3t) + c2(3 cos 3t + 3 sin 3t) 

          =  (3c1 + 3c2)cos 3t + (3c2 - 3c1)sin 3t 
 
 The right-hand figure above shows a direction field and some typical solution curves for 
 this system. 
 

11.   Characteristic equation   2 2 5 0λ λ− + =  

 Eigenvalue  λ  =  1 - 2i 

 Eigenvector equation  
2 2 0
2 2 0
i a

i b
−     =     

     
 

 Eigenvector  v  =  [1     i]T 
  
 The real and imaginary parts of 
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      x(t)  =  [1     i]T et(cos 2t - i sin 2t) 

                  =  et  [cos 2t    sin 2t]T + iet [-sin 2t     cos 2t]T 
 
 yield the general solution 
 
          x1(t)  =  et(c1cos 2t - c2sin 2t) 

          x2(t)  =  et(c1sin 2t  + c2cos 2t). 
 
 The particular solution with  x1(0)  =  0  and  x2(0)  =  4  is obtained with  c1  =  0  and   
 c2  =  4,  so  
            x1(t)  =  -4etsin 2t,  x2(t)  =   4etcos 2t.  
 
 The figure below shows a direction field and some typical solution  curves. 
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12. Characteristic equation   λ2 - 4λ + 8  =  0 

 Eigenvalue   λ  =  2 + 2i 

 Eigenvector equation  
1 2 5 0

1 1 2 0
i a

i b
− − −     =     −     

 

 Eigenvector  v  =  [-5     1+2i]T  

 (2 2 ) 2 5cos2 5 sin 2
( )

(cos2 2sin 2 ) (sin 2 2cos2 )
i t t t i t

t e e
t t i t t

+ − − = =  − + + 
x v  

 x1(t)  =  e2t(-5c1cos 2t - 5c2sin 2t) 
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 x2(t)  =  e2t  [c1(cos 2t - 2 sin 2t) + c2(2 cos 2t + sin 2t)] 

          =  e2t  [(c1 + 2c2)cos 2t + (-2c1 + c2)sin 2t] 
 
 The left-hand figure below shows a direction field and some typical solution curves. 
 

 
 

 

 

 

 

 

 

 

 

 

 

13. Characteristic equation   λ2 - 4λ + 13  =  0 

 Eigenvalue  λ  =  2 - 3i 

 Eigenvector equation  
3 3 9 0

2 3 3 0
i a

i b
+ −     =     − +     

 

 Eigenvector  v  =  [3     1+i]T 

 (2 3 ) 2 3cos3 3 sin 3
( )

(cos3 sin 3 ) (cos3 sin 3 )
i t t t i t

t e e
t t i t t

− − = =  + + − 
x v  

 x1(t)  =  3e2t(c1cos 3t - c2sin 3t) 

 x2(t)  =   e2t  [(c1 + c2)cos 3t + (c1 - c2)sin 3t)]. 
 
 The right-hand figure above shows a direction field and some typical solution curves. 
 

14. Characteristic equation  2 2 5 0λ λ− + =  

 Eigenvalue  λ  =  3 + 4i 

 Eigenvector equation  
4 4 0
4 4 0

i a
i b

− −     =     −     
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 Eigenvector  v  =  [1    -i]T 

 (3 4 ) 3 cos4 sin 4
( )

sin 4 cos4
i t t t i t

t e e
t i t

+ + = =  − 
x v  

 x1(t)  =  e3t(c1cos 4t + c2sin 4t) 

 x2(t)  =  e3t(c1sin 4t - c2cos 4t) 
 
 The figure below shows a direction field and some typical solution curves. 
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15. Characteristic equation   λ2 - 10λ + 41  =  0 

 Eigenvalue  λ  =  5 - 4i 

 Eigenvector equation  
2 4 5 0

4 2 4 0
i a

i b
+ −     =     − +     

 

 Eigenvector  v  =  [5     2+4i]T 

 (5 4 ) 5 5cos4 5 sin 4
( )

(2cos4 4sin 4 ) (4cos4 2sin 4 )
i t t t i t

t e e
t t i t t

− − = =  + + − 
x v  

 x1(t)  =  5e5t(c1cos 4t - c2sin 4t) 

 x2(t)  =   e5t [(2c1 + 4c2)cos 4t + (4c1 - 2c2)sin 4t)] 
 

 The left-hand figure at the top of the next page shows a direction field and some typical 
 solution curves. 
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16. Characteristic equation   λ2 + 110λ +1000  =  0 

 Eigenvalues   λ1  =  -10  and  λ2  =  -100 

 Eigenvector equations  1 2

1 2

40 20 0 50 20 0
and

100 50 0 100 40 0
a a
b b

−           = =          −          
 

 Eigenvectors  v1  =  [1     2]T  and  v2  =  [2   -5]T  
 
 x1(t)  =   c1e-10t + 2c2e-100t  

 x2(t)  =  2c1e-10t - 5c2e-100t  
 
 The right-hand figure above shows a direction field and some typical solution curves. 
 

17. Characteristic equation  3 215 54 0λ λ λ− + − =  

 Eigenvalues   λ1  =  9,   λ2  =  6,   λ3  =  0 

Eigenvector equations  

1 2 3

1 2 3

1 2 3

5 1 4 0 2 1 4 0 4 1 4 0
1 2 1 0 , 1 1 1 0 , 1 7 1 0
4 1 5 0 4 1 2 0 4 1 4 0

a a a
b b b
c c c

− −                 
                 − = = =
                 

− −                                  

 

 Eigenvectors  v1  =  [1   1   1]T,  v2  =  [1  -2   1]T,   v3  =  [1    0  -1]T 
 
 x1(t)  =   c1e9t  +  c2e6t  +  c3 

 x2(t)  =   c1e9t  - 2c2e6t 

 x3(t)  =   c1e9t  +  c2e6t  -  c3  
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18. Characteristic equation  3 215 54 0λ λ λ− + − =  

 Eigenvalues   λ1  =  9,   λ2  =  6,   λ3  =  0 

Eigenvector equations  

1 2 3

1 2 3

1 2 3

8 2 2 0 5 2 2 0 1 2 2 0
2 2 1 0 , 2 1 1 0 , 2 7 1 0
2 1 2 0 2 1 1 0 2 1 7 0

a a a
b b b
c c c

− −                 
                 − = = =
                 

−                                  

 

 Eigenvectors  v1  =  [1   2   2]T,   v2  =  [0    1  -1]T,   v3  =  [4   -1  -1]T 

 x1(t)  =   c1e9t              + 4c3 

 x2(t)  =  2c1e9t  +  c2e6t  -  c3 

 x3(t)  =  2c1e9t  -  c2e6t  -  c3  
 
 
19. Characteristic equation  3 212 45 54 0λ λ λ− + − + =  

 Eigenvalues   λ1  =  6,   λ2  =  3,   λ3  =  3 

Eigenvector equations  

1 2 3

1 2 3

1 2 3

2 1 1 0 1 1 1 0 1 1 1 0
1 2 1 0 , 1 1 1 0 , 1 1 1 0
1 1 2 0 1 1 1 0 1 1 1 0

a a a
b b b
c c c

−                 
                 − = = =
                 

−                                  

 

 Eigenvectors  v1  =  [1    1   1]T,    v2  =  [1  -2    1]T,   v3  =  [1    0  -1]T 

  

 x1(t)  =   c1e6t  +  c2e3t  +  c3e3t 

 x2(t)  =   c1e6t  - 2c2e3t 

 x3(t)  =   c1e6t  +  c2e3t  -  c3e3t  
 
 
20. Characteristic equation  3 217 84 108 0λ λ λ− + − + =  

 Eigenvalues   λ1  =  9,   λ2  =  6,   λ3  =  2 

Eigenvector equations  

1 2 3

1 2 3

1 2 3

4 1 3 0 1 1 3 0 3 1 3 0
1 2 1 0 , 1 1 1 0 , 1 5 1 0
3 1 4 0 3 1 1 0 3 1 3 0

a a a
b b b
c c c

− −                 
                 − = = =
                 

− −                                  

 

 Eigenvectors  v1  =  [1    1    1]T,   v2  =  [1  -2    1]T,   v3  =  [1    0  -1]T 
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 x1(t)  =   c1e9t  +  c2e6t  +  c3e2t 

 x2(t)  =   c1e9t  - 2c2e6t 

 x3(t)  =   c1e9t  +  c2e6t  -  c3e2t  
 
 
21. Characteristic equation  3 0λ λ− + =  

 Eigenvalues   λ1  =  0,   λ2  =  1,   λ3  =  -1 

Eigenvector equations  

1 2 3

1 2 3

1 2 3

5 0 6 0 4 0 6 0 6 0 6 0
2 1 2 0 , 2 2 2 0 , 2 0 2 0
4 2 4 0 4 2 5 0 4 2 3 0

a a a
b b b
c c c

− − −                 
                 − − = − − = − =
                 

− − − − − −                                  

 

 Eigenvectors  v1  =  [6    2    5]T,    v2  =  [3    1    2]T,   v3  =  [2    1    2]T  

  x1(t)  =   6c1  +  3c2et  +  2c3e-t 

     x2(t)  =   2c1  +   c2et  +   c3e-t 

      x3(t)  =   5c1  +  2c2et  +  2c3e-t  
 
 
22. Characteristic equation  3 22 5 6 0λ λ λ− + + − =  

 Distinct eigenvalues λ1  =  - 2,   λ2  =  1,   λ3  =  3 

Eigenvector equations  

1 2 3

1 2 3

1 2 3

5 2 2 0 2 2 2 0 0 2 2 0
5 2 2 0 , 5 5 2 0 , 5 7 2 0

5 5 5 0 5 5 2 0 5 5 0 0

a a a
b b b
c c c

                 
                 − − − = − − − = − − − =
                 
                                  

 

Eigenvectors  v1  =  [0    1  -1]T,    v2  =  [1  -1    0]T, v3  =  [1  -1    1]T 

 x1(t)  =                 c2et  + c3e3t 

 x2(t)  =     c1e-2t - c2et - c3e3t 

 x3(t)  =  -c1e-2t           + c3e3t 
 
 
23. Characteristic equation  3 23 4 12 0λ λ λ− + + − =  

 Eigenvalues  λ1  =  2,  λ2  =  -2,  λ3  =  3 
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Eigenvector equations  

1 2 3

1 2 3

1 2 3

1 1 1 0 5 1 1 0 0 1 1 0
5 5 1 0 , 5 1 1 0 , 5 6 1 0

5 5 1 0 5 5 5 0 5 5 0 0

a a a
b b b
c c c

                 
                 − − − = − − − = − − − =
                 
                                  

 

 Eigenvectors  v1  =  [1  -1    0]T,    v2  =  [0    1  -1]T, v3  =  [1  -1    1]T 

  
 x1(t)  =   c1e2t              + c3e3t 

 x2(t)  = -c1e2t + c2e-2t - c3e3t 

 x3(t)  =           - c2e-2t + c3e3t 
 
 
24. Characteristic equation  3 2 4 4 0λ λ λ− + − + =  

 Eigenvalues  λ  =  1  and  λ  =  ±2i 

 With  λ  =  1  the eigenvector equation   
 

  
1

1

1

1 1 1 0
4 4 1 0

4 4 1 0

a
b
c

−     
     − − − =
     
          

    gives eigenvector  v1  =  [1  -1    0]T.  

 To find an eigenvector  v  =  [a   b  c]T  associated with  λ  =  2i  we must find a nontrivial 
solution of the equations 

 
        (2 - 2i)a +               b   -          c  =  0 

                     -4a + (-3 - 2i)b  -           c  =  0 

                          4a  +            4b + (2 - 2i)c  =  0. 
  
 Subtraction of the first two equations yields 
 
    (6 - 2i)a + (4 + 2i)b  =  0, 
 
 so we take  a  =  2 + i  and  b  =  -3 + i.  Then the first equation gives  c  =  3 - i.   
 Thus  v  =  [2+i    -3+i     3-i]T.  Finally 
 
  (2 + i)e2it  =  (2 cos 2t - sin 2t) + i (cos 2t + 2 sin 2t) 

  (3 - i)e2it  =  (3 cos 2t + sin 2t) + i (3 sin 2t - cos 2t), 
 
 so the solution is 
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  x1(t)  =   c1et + c2(2 cos 2t - sin 2t) + c3(cos 2t + 2 sin 2t) 

  x2(t)  = -c1et - c2(3 cos 2t + sin 2t) + c3(cos 2t - 3 sin 2t) 

  x3(t)  =             c2(3 cos 2t + sin 2t) + c3(3 sin 2t - cos 2t). 
 
 
25. Characteristic equation  3 24 13 0λ λ λ− + − =  

 Eigenvalues  λ  =  0  and  2 ± 3i 

 With  λ  =  1  the eigenvector equation   
 

  
1

1

1

5 5 2 0
6 6 5 0

6 6 5 0

a
b
c

     
     − − − =
     
          

    gives eigenvector  v1  =  [1  -1    0]T.  

 With  λ  =  2 + 3i  we solve  the eigenvector equation   
 

  
3 3 5 2 0

6 8 3 5 0
6 6 3 3 0

i a
i b

i c

−     
     − − − − =
     

−          

     

to find the complex-valued eigenvector  v  =  [1+i    –2    2]T.  The corresponding 
complex-valued solution is  
 

 (2 3 ) 2

(cos3 sin 3 ) (cos3 sin 3
( ) 2cos3 2 sin 3 .

2cos3 2 sin 3

i t t

t t i t t
t e e t i t

t i t

+

− + + 
 = = − −
 

+  

x v  

The scalar components of the resulting general solution are 

 
  x1(t)  =   c1 +  e2t [(c2 + c3)cos 3t + (–c2 + c3)sin 3t] 

  x2(t)  = -c1 + 2e2t(–c2cos 3t - c3sin 3t) 

  x3(t)  =            2e2t(c2cos 3t + c3sin 3t) 
 
 
26. Characteristic equation  3 2 4 6 0λ λ λ− + + + =  

 Eigenvalues  λ  =  3  and  λ  =  -1 ± i 

 With  λ  =  3  the eigenvector equation   
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1

1

1

0 0 1 0
9 4 2 0
9 4 4 0

a
b
c

     
     − =
     
− −          

    gives eigenvector  v1  =  [4  9    0]T.  

 With  λ  =  –1 + i  we solve  the eigenvector equation   
 

   
4 0 1 0

9 2 0
9 4 0

i a
i b

i c

−     
     =
     

−          

     

to find the complex-valued eigenvector  v  =  [1    2–i    –4+i ]T.  The corresponding 
complex-valued solution is  
 

  ( 1 )

cos sin
( ) (2cos sin ) ( cos 2sin )

( 4cos sin ) (cos 4sin )

i t t

t i t
t e e t t i t t

t t i t t

− + −

+ 
 = = + + − +
 

− − + −  

x v    

 with real and imaginary parts  x2(t)  and  x3(t).  Assembling the general solution   
 x  =  c1x1 + c2x2 +c3x3,  we get the scalar equations 
 
  x1(t)  =  4c1e3t + e-t  [c2cos t + c3sin t] 

  x2(t)  =  9c1e3t + e-t  [(2c2 - c3)cos t  + (c2 + 2c3)sin t] 

  x3(t)  =               e-t [(-4c2 + c3)cos t + (-c2 - 4c3)sin t]. 
 
 Finally, the given initial conditions yield the values  c1  =  1,  c2  =  -4,  c3  =  1,  so the 

desired particular solution is 
 
   x1(t)  =  4e3t - e-t(4 cos t -   sin t) 

   x2(t)  =  9e3t - e-t(9 cos t + 2 sin t) 

   x3(t)  =  17e-tcos t. 
 

27. The coefficient matrix 

    
0.2 0

0.2 0.4
− =  − 

A  

 
 has characteristic equation  2 0.6 0.08 0λ λ+ + =  with eigenvalues  λ1  =  -0.2  and   
 λ2  =  -0.4.  We find easily that the associated eigenvectors are   v1  =  [1     1]T  and   
 v2  =  [0     1]T,  so we get the general solution 
 
   0.2 0.2 0.4

1 1 2 1 2( ) , ( ) .t t tx t c e x t c e c e− − −= = +  
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 The initial conditions  1 2(0) 15, (0) 0x x= =   give  1 215 and 15,c c= = −  so we get  
 
   x1(t)  =  15e-0.2t,     x2(t)  =  15e-0.2t - 15e-0.4t. 
 

To find the maximum value of  x2(t),  we solve the equation  2 ( ) 0x t′ =   for  t = 5 ln 2, 
which gives the maximum value  x2(5 ln 2) =  3.75 lb. The following figure shows the 
graphs of  1 2( ) and ( ).x t x t  
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28. The coefficient matrix 

    
0.4 0

0.4 0.25
− =  − 

A  

 
 has characteristic equation  2 0.65 0.10 0λ λ+ + =  with eigenvalues λ1  =  -0.4  and   
 λ2  =  -0.25.  We find easily that the associated eigenvectors are  v1  =  [3   -8]T  and   
 v2  =  [0     1]T,  so we get the general solution 
 
   0.2 0.2 0.4

1 1 2 1 2( ) 3 , ( ) 8 .t t tx t c e x t c e c e− − −= = − +  
 
 The initial conditions  1 2(0) 15, (0) 0x x= =   give  1 25 and 40,c c= =  so we get  
 
   x1(t)  =  15e-0.4t,   x2(t)  =  -40e-0.4t + 40e-0.25t. 
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 To find the maximum value of  x2(t),  we solve the equation  2 ( ) 0x t′ =   for   
tm = 20 8

3 5ln , which gives the maximum value  2 ( ) 6.85mx t ≈  lb.  The following figure 
shows the graphs of  1 2( ) and ( ).x t x t  
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29. The coefficient matrix 

    
0.2 0.4

0.2 0.4
− =  − 

A  

 
 has eigenvalues  λ1  =  0  and  λ2  =  -0.6,  with eigenvectors  v1  =  [2     1]T  and   
 v2  =  [1   -1]T  that yield the general solution 
 
   0.6 0.6

1 1 2 2 1 2( ) 2 , ( ) .t tx t c c e x t c c e− −= + = −  
 
 The initial conditions  1 2(0) 15, (0) 0x x= =   give  1 2 5,c c= =  so we get  
   
   0.6 0.6

1 2( ) 10 5 , ( ) 5 5 .t tx t e x t e− −= + = −  
 

The figure at the top of the next page shows the graphs of  1 2( ) and ( ).x t x t  
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30. The coefficient matrix 

    
0.4 0.25

0.4 0.25
− =  − 

A  

 
 has eigenvalues  λ1  =  0  and  λ2  =  -0.65,  with eigenvectors  v1  =  [5     8]T  and   
 v2  =  [1   -1]T  that yield the general solution 
 
   0.65 0.65

1 1 2 2 1 2( ) 5 , ( ) 8 .t tx t c c e x t c c e− −= + = −  
 
 The initial conditions  1 2(0) 15, (0) 0x x= =   give  1 215 /13, 120 /13,c c= =  so we get 
 
    x1(t)  =  ( 75 + 120e-0.65t)/13 

    x2(t)  =  (120 - 120e-0.65t)/13. 
 

The figure at the top of the next page shows the graphs of  1 2( ) and ( ).x t x t  
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31. The coefficient matrix 

    
1 0 0

1 2 0
0 2 3

− 
 = −
 

−  

A  

 
 has as eigenvalues its diagonal elements  λ1  =  -1,  λ2  =  -2,  and  λ3  =  -3.  We find 

readily that the associated eigenvectors are  v1  =  [1   1   1]T,   v2  =  [0   1   2]T,  and   
 v3  =  [0   0   1]T.   The resulting general solution is solution is given by 
 

    
1 1

2
2 1 2

2 3
3 1 2 3

( )

( )
( ) 2 .

t

t t

t t t

x t c e
x t c e c e
x t c e c e c e

−

− −

− − −

=

= +

= + +

 

 
 The initial conditions  1 2 2(0) 27, (0) (0) 0x x x= = =   give  1 3 227, 27,c c c= = = −  so we 

get  
1

2
2

2 3
3

( ) 27

( ) 27 27
( ) 27 54 27 .

t

t t

t t t

x t e
x t e e
x t e e e

−

− −

− − −

=

= −

= − +

 

 
 The equation  3( ) 0x t′ =  simplifies to the equation 
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   ( ) ( )23 4 1 3 1 1 0t t t te e e e− − − −− + = − − =  
 

with positive solution  ln 3.mt =   Thus the maximum amount of salt ever in tank 3 is  

3(ln 3) 4x =   pounds.  The figure below shows the graphs of  1 2 3( ), ( ), and ( ).x t x t x t  
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32. The coefficient matrix 

    
3 0 0

3 2 0
0 2 1

− 
 = −
 

−  

A  

 
 has as eigenvalues its diagonal elements  λ1  =  -3,  λ2  =  -2,  and  λ3  =  -1.  We find 

readily that the associated eigenvectors are  v1  =  [1  -3    3]T,   v2  =  [0   -1    2]T,  and  
v3  =  [0    0    1]T.   The resulting general solution is solution is given by 

 

    

3
1 1

3 2
2 1 2

3 2
3 1 2 3

( )

( ) 3
( ) 3 2 .

t

t t

t t t

x t c e
x t c e c e
x t c e c e c e

−

− −

− − −

=

= − −

= + +

 

 
 The initial conditions  1 2 2(0) 45, (0) (0) 0x x x= = =   give  1 2 345, 135, 135,c c c= = − =  

so we get  
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3
1

3 2
2

3 2
3

( ) 45

( ) 135 135
( ) 135 270 135 .

t

t t

t t t

x t e
x t e e
x t e e e

−

− −

− − −

=

= − +

= − +

 

 
 The equation  3( ) 0x t′ =  simplifies to the equation 
 
   ( ) ( )23 4 1 3 1 1 0t t t te e e e− − − −− + = − − =  
 

with positive solution  ln 3.mt =   Thus the maximum amount of salt ever in tank 3 is  

3 20(ln 3)x =   pounds.  The figure below shows the graphs of  1 2 3( ), ( ), and ( ).x t x t x t  
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33. The coefficient matrix 

    
4 0 0

4 6 0
0 6 2

− 
 = −
 

−  

A  

 
 has as eigenvalues its diagonal elements  λ1  =  -4,  λ2  =  -6,  and  λ3  =  -2.  We find 

readily that the associated eigenvectors are  v1  =  [-1   -2    6]T,   v2  =  [0   -2    3]T,  
and  v3  =  [0    0    1]T.   The resulting general solution is solution is given by 

 



370 Chapter 7 

    

4
1 1

4 6
2 1 2

4 6 2
3 1 2 3

( )

( ) 2 2
( ) 6 3 .

t

t t

t t t

x t c e
x t c e c e
x t c e c e c e

−

− −

− − −

= −

= − −

= + +

 

 
 The initial conditions  1 2 2(0) 45, (0) (0) 0x x x= = =   give  1 2 345, 45, 135,c c c= − = =  so 

we get  
4

1
4 6

2
4 6 2

3

( ) 45

( ) 90 90
( ) 270 135 135 .

t

t t

t t t

x t e
x t e e
x t e e e

−

− −

− − −

=

= −

= − + +

 

 
 The equation  3( ) 0x t′ =  simplifies to the equation 
 
   ( ) ( )4 2 2 23 4 1 3 1 1 0t t t te e e e− − − −− + = − − =  
 

with positive solution  1
2 ln 3.mt =   Thus the maximum amount of salt ever in tank 3 is  

1
23 20( ln 3)x =   pounds.  The figure below shows the graphs of  1 2 3( ), ( ), and ( ).x t x t x t  
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34. The coefficient matrix 

    
3 0 0

3 5 0
0 5 1

− 
 = −
 

−  

A  



 Section 7.3 371 

 has as eigenvalues its diagonal elements  λ1  =  -3,  λ2  =  -5,  and  λ3  =  -1.  We find 
readily that the associated eigenvectors are  v1  =  [-4   -6    15]T,   v2  =  [0   -4     5]T,  
and  v3  =  [0     0     1]T.   The resulting general solution is solution is given by 

  

    

3
1 1

3 5
2 1 2

3 5
3 1 2 3

( ) 4

( ) 6 4
( ) 15 5 .

t

t t

t t t

x t c e
x t c e c e
x t c e c e c e

−

− −

− − −

= −

= − −

= + +

 

 
 The initial conditions  1 2 2(0) 40, (0) (0) 0x x x= = =   give  1 2 310, 15, 75,c c c= − = =  so 

we get  

    

3
1

3 5
2

3 5
3

( ) 40

( ) 60 60
( ) 150 75 75 .

t

t t

t t t

x t e
x t e e
x t e e e

−

− −

− − −

=

= −

= − + +

 

 
 The equation  3( ) 0x t′ =  simplifies to the equation 
 
   ( ) ( )4 2 2 25 6 1 5 1 1 0t t t te e e e− − − −− + = − − =  
 

with positive solution  1
2 ln5.mt =   Thus the maximum amount of salt ever in tank 3 is 

1
23( ln5) 21.4663x ≈   pounds.  The figure below shows the graphs of  1 2( ), ( ),x t x t  

3and ( )x t . 
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35. The coefficient matrix 

    
6 0 3

6 20 0
0 20 3

− 
 = −
 

−  

A  

 
 has characteristic equation  3 229 198 ( 18)( 11) 0λ λ λ λ λ λ− − − = − − − =  with  

eigenvalues  λ0  =  0,  λ1  =  -18,  and  λ2  =  -11.  We find that associated eigenvectors 
are  v0  =  [10     3     20]T,   v1  =  [-1   -3     4]T,  and  v2  =  [-3   -2    5]T.   The 
resulting general solution is solution is given by 

 

    

18 11
1 0 1 2

18 11
2 0 1 2

18 11
3 0 1 2

( ) 10 3

( ) 3 3 2

( ) 20 4 5 .

t t

t t

t t

x t c c e c e
x t c c e c e
x t c c e c e

− −

− −

− −

= − −

= − −

= + +

 

 
 The initial conditions  1 2 2(0) 33, (0) (0) 0x x x= = =   give  1 2 31, 55/ 7, 72 / 7,c c c= = = −  

so we get  
( )
( )
( )

18 111
1 7

18 111
2 7

18 111
3 7

( ) 10 55 216

( ) 3 165 144

( ) 20 220 360 .

t t

t t

t t

x t e e

x t e e

x t e e

− −

− −

− −

= − −

= − −

= + −

 

 
Thus the limiting amounts of salt in tanks 1, 2, and 3 are 10 lb, 3 lb, and 20 lb.  The 
figure below shows the graphs of  1 2( ), ( ),x t x t  3and ( )x t . 
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36. The coefficient matrix 

    

1 1
2 2

1 1
2 5

1 1
5 2

0
0

0

− 
 = −
 
 − 

A  

 
 has characteristic equation  3 2(6 / 5) (9 / 20) 0λ λ λ− − − =  with  eigenvalues  λ0  =  0,   
 λ1  =  -3(2 + i)/10,  and  λ2  =  -3(2 - i)/10.  The eigenvector equation 
 

    

1 1
2 2

1 1
2 5

1 1
5 2

0 0
0 0

0 0

a
b
c

−     
     − =
     
 −        

 

 
 associated with the eigenvalue  λ0  =  0  yields the associated eigenvector 
 v0  =  [1    5/2    1]T and consequently the constant solution  0 0( ) .t ≡x v  Then the 

eigenvector equation   
 

   

1 1
10 2

1 1
2 10

1 1
5 10

(1 3 ) 0 0
(4 3 ) 0 0

0 (1 3 ) 0

i a
i b

i c

+     
     + =
     
 +        

 

 
 associated with  λ1  =  -3(2 + i)/10  yields the complex-valued eigenvector 
 v1  =  [-(1-3 i)/2     -(1+3 i)/2      1]T.  The corresponding complex-valued solution is 
 

        ( ) ( )
( ) ( )

( 6 3 ) /10
1 1

3 / 5

( )

cos(3 /10) 3sin(3 /10) 3cos(3 /10) sin(3 /10)
1 cos(3 /10) 3sin(3 /10) 3cos(3 /10) sin(3 /10) .
2

2cos(3 /10) 2 sin(3 /10)

i t

t

t e

t t i t t
e t t i t t

t i t

− −

−

=

− + + + 
 = − − + − + 
 − 

x v

 

 
 The scalar components of resulting general solution  0 0 1 1 2 1Re( ) Im( )c c c= + +x x x x  are 

given by 
 

 

( ) ( )
( ) ( )

[ ]

3 / 51
1 0 1 2 1 22

3 /55 1
2 0 1 2 1 22 2

3 /5
3 0 1 2

( ) 3 cos(3 /10) 3 sin(3 /10)

( ) 3 cos(3 /10) 3 sin(3 /10)

( ) cos(3 /10) sin(3 /10) .

t

t

t

x t c e c c t c c t

x t c e c c t c c t

x t c e c t c t

−

−

−

= + − + + +  

= + − − + − +  

= + −

 

 
 When we impose the initial conditions  1 2 2(0) 18, (0) (0) 0x x x= = =  we find that 
 0 1 24, 4, and 8.c c c= = − = This finally gives the particular solution 
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[ ]
[ ]
[ ]

3 / 5
1

3 /5
2

3 /5
3

( ) 4 14cos(3 /10) 2sin(3 /10)

( ) 10 10cos(3 /10) 10sin(3 /10)

( ) 4 4cos(3 /10) 8sin(3 /10) .

t

t

t

x t e t t

x t e t t

x t e t t

−

−

−

= + −

= − −

= − +

 

 
Thus the limiting amounts of salt in tanks 1, 2, and 3 are 4 lb, 10 lb, and 4 lb.  The figure 
below shows the graphs of  1 2( ), ( ),x t x t  3and ( )x t . 
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37. The coefficient matrix 

1 0 2
1 3 0
0 3 2

− 
 = −
 

−  

A  

 
 has characteristic equation  3 26 11 0λ λ λ− − − =  with  eigenvalues  λ0  =  0,  λ1  =  

3 2i− − ,  and  λ2  =  .3 2i− +   The eigenvector equation 
 

    
1 0 2 0

1 3 0 0
0 3 2 0

a
b
c

−     
     − =
     

−          

 

 
 associated with the eigenvalue  λ0  =  0  yields the associated eigenvector 
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 v0  =  [6    2    3]T and consequently the constant solution  0 0( ) .t ≡x v  Then the  
eigenvector equation   

 

   

2 2 0 2 0
1 2 0 0

00 3 1 2

i a
i b

ci

 +    
     =     
     +      

 

 
 associated with  λ1  =  3 2i− −   yields the complex-valued eigenvector 

T

1 ( 2 2) / 3 ( 1 2) / 3 1i i = − + − − v .  The corresponding complex-valued solution 

is  
 

       
( ) ( )
( ) ( )

( 3 2 )
1 1

3

( )

2cos( 2) 2 sin( 2) 2 cos( 2) 2sin( 2)
1 cos( 2) 2 sin( 2) 2 cos( 2) sin( 2) .
3

3cos( 2) 3 sin( 2)

i t

t

t e

t t i t t

e t t i t t

t i t

− −

−

=

 − + + +
 
 = − − + − +
 
 −  

x v

 

 
 The scalar components of resulting general solution  0 0 1 1 2 1Re( ) Im( )c c c= + +x x x x  are 

given by 
 

 

( ) ( )
( ) ( )

31
1 0 1 2 1 23

31
2 0 1 2 1 23

3
3 0 1 2

( ) 6 2 2 cos( 2) 2 2 sin( 2)

( ) 2 2 cos( 2) 2 sin( 2)

( ) 3 cos( 2) sin( 2) .

t

t

t

x t c e c c t c c t

x t c e c c t c c t

x t c e c t c t

−

−

−

 = + − + + +
 

 = + − − + − +
 

 = + − 

 

 
 When we impose the initial conditions  1 2 2(0) 55, (0) (0) 0x x x= = =  we find that 

 0 1 25, 15, and 45/ 2.c c c= = − = This finally gives the particular solution 
 

3
1

3 25
2 2

3 45
3 2

( ) 30 25cos( 2) 10 2 sin( 2)

( ) 10 10cos( 2) 2 sin( 2)

( ) 15 15cos( 2) 2 sin( 2) .

t

t

t

x t e t t

x t e t t

x t e t t

−

−

−

 = + + 

 = − − 

 = − + 

 

 
Thus the limiting amounts of salt in tanks 1, 2, and 3 are 30 lb, 10 lb, and 15 lb.  The 
figure at the top of the next page shows the graphs of  1 2( ), ( ),x t x t  3and ( )x t . 
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In Problems 38–41 the Maple command  with(linalg):eigenvects(A),  the Mathematica 
command  Eigensystem[A], or the MATLAB command  [V,D] = eig(A) can be used to 
find the eigenvalues and associated eigenvectors of the given coefficient matrix  A. 
 

38. Characteristic equation:  (λ - 1)(λ - 2)(λ - 3)(λ - 4)  =  0 

 Eigenvalues and associated eigenvectors: 

 
  λ  =  1,   v   =  [1    -2       3    -4]T     
  λ  =  2,   v   =  [0       1    -3       6]T     
  λ  =  3,   v   =  [0       0       1     -4]T 
  λ  =  4,   v   =  [0       0       0       1]T 
  
 Scalar solution equations: 
 
  x1(t)  =     c1et  

  x2(t)  = -2c1et +  c2e2t  

  x3(t)  =   3c1et - 3c2e2t +  c3e3t  

  x4(t)  = -4c1et + 6c2e2t - 4c3e3t + c4e4t 
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39. Characteristic equation:   (λ2 - 1)(λ2 - 4)  =  0 

 Eigenvalues and associated eigenvectors: 
 
  λ  =    1,   v   =  [3    -2     4    1]T     
  λ  = -1,   v   =  [0     0     1    0]T     
  λ  =    2,   v   =  [0     1     0    0]T 
  λ  = -2,   v   =  [1    -1     0    0]T 
 
 Scalar solution equations: 
 
  x1(t)  =   3c1et                         + c4e-2t 

  x2(t)  = -2c1et            +  c3e2t - c4e-2t 

  x3(t)  =   4c1et + c2e-t   

  x4(t)  =     c1et  
 

40. Characteristic equation:   (λ2 - 4)(λ2 - 25)  =  0 

 Eigenvalues and associated eigenvectors: 
 
  λ  =   2,   v   =  [1    -3     0      0]T     
  λ  =  -2,   v   =  [0      3     0    -1]T     
  λ  =   5,   v   =  [0      0     1    -3]T 
  λ  =  -5,   v   =  [0      1     0      0]T 
 
 Scalar solution equations: 
 
  x1(t)  =     c1e2t  

  x2(t)  = -3c1e2t + 3c2e-2t             - c4e-5t 

  x3(t)  =                                 c3e5t  

  x4(t)  =               -c2e-2t - 3c3e5t  
 

41. The eigenvectors associated with the respective eigenvalues  λ1  =  -3,  λ2  =  -6,   
 λ3  =  10,  and  λ4  =  15  are 
 
                 v1  =  [  1     0     0    -1]T    
                 v2  =  [  0     1   -1       0]T    
                 v3  =  [-2     1     1    -2]T    
                 v4  =  [  1     2     2      1]T. 
 
 Hence the general solution has scalar component functions 
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    x1(t)  =    c1e-3t           - 2c3e10t  +   c4e15t   

        x2(t)  =               c2e-6t +   c3e10t  + 2c4e15t   

        x3(t)  =           - c2e-6t +   c3e10t  + 2c4e15t   

        x4(t)  = -c1e-3t           - 2c3e10t  +   c4e15t . 
 
 The given initial conditions are satisfied by choosing  c1  =  c2  =  0,  c3  =  -1,  and   
 c4  =  1,  so the desired particular solution is given by 
 
                 x1(t)  =   2e10t +  e15t  =  x4(t)    

                 x2(t)  =  -e10t + 2e15t  =  x3(t)  . 
 

 
In Problems 42–50 we give a general solution in the form 1 2

1 1 2 2( ) t tt c e c eλ λ= + +x v v �  that 
exhibits explicitly the eigenvalues  1 2, ,λ λ …  and corresponding eigenvectors  1 2, ,v v …  of the 
given coefficient matrix  A. 
 

42. 2 5
1 2 3

3 1 2
( ) 1 1 3

2 1 1

t tt c c e c e
     
     = − + + −
     
          

x  

 

43. 2 4 8
1 2 3

3 1 1
( ) 1 1 1

5 1 3

t t tt c e c e c e−

     
     = − + + −
     
          

x  

 

44. 3 6 12
1 2 3

3 7 5
( ) 2 1 3

2 5 3

t t tt c e c e c e−

     
     = − + + −
     
          

x  

 

45. 3 3 6
1 2 3 4

1 1 2 1
1 2 1 1

( )
1 1 1 2
1 1 1 1

t t tt c e c c e c e−

       
       −
       = + + +

−       
       − −       

x  
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46. 4 2 4 8
1 2 3 4

3 1 1 3
2 2 1 2

( )
1 2 1 3

1 1 1 3

t t t tt c e c e c e c e−

       
       −
       = + + +
− −       
       − −       

x  

 

47. 3 3 6 9
1 2 3 4

2 1 2 1
2 2 1 1

( )
1 1 1 2
1 1 1 1

t t t tt c e c e c e c e−

       
       −
       = + + +

−       
       − −       

x  

 

48. 16 32 48 64
1 2 3 4

1 2 3 1
2 5 1 1

( )
1 1 1 2

2 1 2 3

t t t tt c e c e c e c e

       
       −
       = + + +
−       
       − −       

x  

 

49. 3 3 6 9
1 2 3 4 5

1 0 1 0 2
0 3 7 1 0

( ) 3 0 1 0 5
1 1 1 1 2
1 1 1 1 1

t t t tt c e c c e c e c e−

         
         
         

= + + + +         
         −         
                  

x  

50. 7 4 3 5 9 11
1 2 3 4 5 6

0 1 0 0 1 0
1 0 1 0 1 0
1 0 0 1 0 1

( )
1 0 1 0 0 1
0 1 0 1 0 1
1 1 1 0 1 0

t t t t tt c e c e c e c e c e c e− −

           
           
           
           

= + + + + +           −           
           −
           
                      

x t  

 
 
SECTION 7.4 
 
SECOND-ORDER SYSTEMS 
AND MECHANICAL APPLICATIONS 
 
This section uses the eigenvalue method to exhibit realistic applications of linear systems.  If a 
computer system like Maple, Mathematica, MATLAB, or even a TI-85/86/89/92 calculator is 
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available, then a system of more than three railway cars, or a multistory building with four or 
more floors (as in the project), can be investigated.  However, the problems in the text are 
intended for manual solution. 
 
Problems 1–7 involve the system 
 
              m1x1″  =  -(k1 + k2)x1 +           k2x2 

              m2x2″  =               k2x1 - (k2 + k3)x2 
 
with various values of  m1, m2  and  k1, k2, k3.  In each problem we divide the first equation by  m1  
and the second one by  m2  to obtain a second-order linear system  ′′ =x A x  in the standard 
form of Theorem 1 in this section.  If the eigenvalues 1 2andλ λ  are both negative, then the 

natural (circular) frequencies of the system are  1 1 2 2and ,ω λ ω λ= − = −   and — according to 
Eq. (11) in Theorem 1 of this section — the eigenvalues  1 2andv v  associated with 1 2andλ λ  
determine the natural modes of oscillations at these frequencies. 
 

1. The matrix  
2 2

2 2
− =  − 

A   has eigenvalues  0 10 and 4λ λ= = −  with associated 

eigenvalues  T T
0 1[1 1] and [1 1] .= = −v v   Thus we have the special case described 

in Eq. (12) of Theorem 1, and a general solution is given by 
 

   1 1 2 1 2

2 1 2 1 2

( ) cos2 sin 2 ,
( ) cos2 sin 2 .

x t a a t b t b t
x t a a t b t b t

= + + +
= + − −

 

 
 The natural frequencies are  ω1  =  0  and  ω2  =  2.  In the degenerate natural mode with 

"frequency"  ω1  =  0  the two masses move by translation without oscillating.  At 
frequency  ω2  =  2  they oscillate in opposite directions with equal amplitudes. 

 

2. The matrix  
5 4

5 5
− =  − 

A   has eigenvalues  1 21 and 9λ λ= − = −  with associated 

eigenvalues  T T
1 2[1 1] and [1 1] .= = −v v   Hence a general solution is given by 

 

   1 1 2 1 2

2 1 2 1 2

( ) cos sin cos3 sin 3 ,
( ) cos sin cos3 sin 3 .

x t a t a t b t b t
x t a t a t b t b t

= + + +
= + − −

 

 

3. The matrix  
3 2

1 2
− =  − 

A   has eigenvalues  1 21 and 4λ λ= − = −  with associated 

eigenvalues  T T
1 2[1 1] and [2 1] .= = −v v   Hence a general solution is given by 
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   1 1 2 1 2

2 1 2 1 2

( ) cos sin 2 cos2 2 sin 2 ,
( ) cos sin cos2 sin 2 .

x t a t a t b t b t
x t a t a t b t b t

= + + +
= + − −

 

 
 The natural frequencies are  ω1  =  1  and  ω2  =  2.  In the natural mode with frequency  

ω1,  the two masses  m1  and  m2  move in the same direction with equal amplitudes of 
oscillation.  In the natural mode with frequency  ω2  they move in opposite directions 
with the amplitude of oscillation of  m1  twice that of  m2. 

 

4. The matrix  
3 2

2 3
− =  − 

A   has eigenvalues  1 21 and 5λ λ= − = −  with associated 

eigenvalues  T T
1 2[1 1] and [1 1] .= = −v v   Hence a general solution is given by 

 

   1 1 2 1 2

2 1 2 1 2

( ) cos sin cos 5 sin 5,

( ) cos sin cos 5 sin 5.

x t a t a t b t b t

x t a t a t b t b t

= + + +

= + − −
 

 
 The natural frequencies are  1 21 and 5.ω ω= =   In the natural mode with frequency  

ω1,  the two masses  m1  and  m2  move in the same direction with equal amplitudes of 
oscillation.  At frequency  ω2  they move in opposite directions with equal amplitudes. 

 

5. The matrix  
3 1

1 3
− =  − 

A   has eigenvalues  1 22 and 4λ λ= − = −  with associated 

eigenvalues  T T
1 2[1 1] and [1 1] .= = −v v   Hence a general solution is given by 

 

   1 1 2 1 2

2 1 2 1 2

( ) cos 2 sin 2 cos2 sin 2 ,

( ) cos 2 sin 2 cos2 sin 2 .

x t a t a t b t b t

x t a t a t b t b t

= + + +

= + − −
 

 
 The natural frequencies are  1 22 and 2.ω ω= =   In the natural mode with frequency  

ω1,  the two masses  m1  and  m2  move in the same direction with equal amplitudes of 
oscillation.  At frequency  ω2  they move in opposite directions with equal amplitudes. 

 

6. The matrix  
6 4

2 4
− =  − 

A   has eigenvalues  1 22 and 8λ λ= − = −  with associated 

eigenvalues  T T
1 2[1 1] and [2 1] .= = −v v   Hence a general solution is given by 

 

   1 1 2 1 2

2 1 2 1 2

( ) cos 2 sin 2 2 cos 8 2 sin 8,

( ) cos 2 sin 2 cos 8 sin 8.

x t a t a t b t b t

x t a t a t b t b t

= + + +

= + − −
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 The natural frequencies are  1 22 and 8.ω ω= =   In the natural mode with frequency  
ω1,  the two masses  m1  and  m2  move in the same direction with equal amplitudes of 
oscillation.  In the natural mode with frequency  ω2  they move in opposite directions 
with the amplitude of oscillation of  m1  twice that of  m2. 

 

7. The matrix  
10 6
6 10

− =  − 
A   has eigenvalues  1 24 and 16λ λ= − = −  with associated 

eigenvalues  T T
1 2[1 1] and [1 1] .= = −v v   Hence a general solution is given by 

 

   1 1 2 1 2

2 1 2 1 2

( ) cos2 sin 2 cos4 sin 4 ,
( ) cos2 sin 2 cos4 sin 4 .

x t a t a t b t b t
x t a t a t b t b t

= + + +
= + − −

 

 
 The natural frequencies are  ω1  =  2  and  ω2  =  4.  In the natural mode with frequency  

ω1,  the two masses  m1  and  m2  move in the same direction with equal amplitudes of 
oscillation.  At frequency  ω2  they move in opposite directions with equal amplitudes. 

 
 
8. Substitution of the trial solution  1 1 2 2cos5 , cos5x c t x c t= =  in the system 
  
  1 1 2 2 1 25 4 96cos5 , 4 5x x x t x x x′′ ′′= − + + = −  
 
 yields  1 25, 1,c c= − =  so a general solution is given by 
 

  1 1 2 1 2

2 1 2 1 2

( ) cos sin cos3 sin 3 5cos5 ,
( ) cos sin cos3 sin 3 cos5 .

x t a t a t b t b t t
x t a t a t b t b t t

= + + + −
= + − − +

 

 
Imposition of the initial conditions  1 2 1 2(0) (0) (0) (0) 0x x x x′ ′= = = =  now yields  

1 2 1 22, 0, 3, 0.a a b b= = = =   The resulting particular solution is 
 

  1

2

( ) 2cos 3cos3 5cos5 ,
( ) 2cos 3cos3 cos5 .

x t t t t
x t t t t

= + −
= − +

 

 
 We have a superposition of three oscillations, in which the two masses move 
 

• in the same direction with frequency  ω1 = 1  and equal amplitudes; 
• in opposite directions with frequency ω2 = 3  and equal amplitudes; 
• in opposite directions with frequency ω3 = 5  and with the amplitude of 

motion of m1 being 5 times that of m2. 
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9. Substitution of the trial solution  1 1 2 2cos3 , cos3x c t x c t= =  in the system 
  
  1 1 2 2 1 23 2 , 2 2 4 120cos3x x x x x x t′′ ′′= − + = − +  
 
 yields  1 23, 9,c c= = −  so a general solution is given by 
 

  1 1 2 1 2

2 1 2 1 2

( ) cos sin 2 cos2 2 sin 2 3cos3 ,
( ) cos sin cos2 sin 2 9cos3 .

x t a t a t b t b t t
x t a t a t b t b t t

= + + + +
= + − − −

 

 
Imposition of the initial conditions  1 2 1 2(0) (0) (0) (0) 0x x x x′ ′= = = =  now yields  

1 2 1 25, 0, 4, 0.a a b b= = = − =   The resulting particular solution is 
 

  1

2

( ) 5cos 8cos2 3cos3 ,
( ) 5cos 4cos2 9cos3 .

x t t t t
x t t t t

= − +
= + −

 

 
 We have a superposition of three oscillations, in which the two masses move 
 

• in the same direction with frequency  ω1 = 1  and equal amplitudes; 
• in opposite directions with frequency ω2 = 2  and with the amplitude of 

motion of m1 being twice that of m2; 
• in opposite directions with frequency ω3 = 3  and with the amplitude of 

motion of m2 being 3 times that of m1. 
 
 
10. Substitution of the trial solution  1 1 2 2cos , cosx c t x c t= =  in the system 
  
  1 1 2 2 1 210 6 30cos , 6 10 60cosx x x t x x x t′′ ′′= − + + = − +  
 
 yields  1 214, 16,c c= =  so a general solution is given by 
 

  1 1 2 1 2

2 1 2 1 2

( ) cos2 sin 2 cos4 sin 4 14cos ,
( ) cos2 sin 2 cos4 sin 4 16cos .

x t a t a t b t b t t
x t a t a t b t b t t

= + + + +
= + − − +

 

 
Imposition of the initial conditions  1 2 1 2(0) (0) (0) (0) 0x x x x′ ′= = = =  now yields  

1 2 1 21, 0, 15, 0.a a b b= = = − =   The resulting particular solution is 
 

  1

2

( ) cos2 15cos4 14cos ,
( ) cos2 15cos4 16cos .

x t t t t
x t t t t

= − +
= + +

 

 
 We have a superposition of three oscillations, in which the two masses move 
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• in the same direction with frequency  ω1 = 1  and with the amplitude of 
motion of m2 being 8/7 times that of m1; 

• in the same direction with frequency ω2 = 2  and equal amplitudes; 
• in opposite directions with frequency ω3 = 4  and equal amplitudes. 

 

11. (a) The matrix  
40 8

12 60
− =  − 

A   has eigenvalues  1 236 and 64λ λ= − = −  with 

associated eigenvalues  T T
2 2[2 1] and [1 3] .= = −v v   Hence a general solution is 

given by 

   1 2 1 2

1 2 1 2

( ) 2 cos6 2 sin 6 cos8 sin8 ,
( ) cos6 sin 6 3 cos8 3 sin8 .

x t a t a t b t b t
y t a t a t b t b t

= + + +
= + − −

 

 
 The natural frequencies are  ω1  =  6  and  ω2  =  8.  In mode 1 the two masses oscillate in 

the same direction with frequency  ω1 = 6  and with the amplitude of motion of m1 being 
twice that of m2.  In mode 2 the two masses oscillate in opposite directions with 
frequency  ω2 = 8  and with the amplitude of motion of m2 being 3 times that of m1. 

 
 (b) Substitution of the trial solution  1 2cos7 , cos7x c t y c t= =  in the system 
  
  40 8 195cos7 , 12 60 195cos7x x y t y x y t′′ ′′= − + − = − −  
 
 yields  1 219, 3,c c= =  so a general solution is given by 
 

  1 2 1 2

1 2 1 2

( ) 2 cos6 2 sin 6 cos8 sin8 19cos7 ,
( ) cos6 sin 6 3 cos8 3 sin8 3cos7 .

x t a t a t b t b t t
y t a t a t b t b t t

= + + + +
= + − − +

 

 
Imposition of the initial conditions  (0) 19, (0) 12, (0) 3, (0) 6x x y y′ ′= = = =  now yields  

1 2 1 20, 1, 0, 0.a a b b= = = =   The resulting particular solution is 
 

    
( ) 2sin 6 19cos7 ,
( ) sin 6 3cos7 .

x t t t
y t t t

= +
= +

 

 
Thus the expected oscillation with frequency  ω2 = 8  is missing, and we have a 
superposition of (only two) oscillations, in which the two masses move 

 
• in the same direction with frequency  ω1 = 6  and with the amplitude of 

motion of m1 being twice that of m2; 
• in the same direction with frequency ω3 = 7  and with the amplitude of motion 

of m1 being 19/3 times that of  m2. 
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12. The coefficient matrix   
2 1 0

1 2 1
0 1 2

− 
 = −
 

−  

A  has characteristic polynomial 

   λ3 + 6λ2 + 10λ + 4  =  (λ + 2)(λ2 + 4λ + 2).   

 Its eigenvalues  1 2 32, 2 2, 2 2λ λ λ= − = − − = − +   have associated eigenvectors 
T T T

1 2 3[1 0 1] , [1 2 1] , [1 2 1] .= − = − =v v v   Hence the system's three 
natural modes of oscillation have 

 
• Natural frequency  1 2ω =   with amplitude ratios  1 : 0 : –1. 

• Natural frequency  2 2 2ω = +   with amplitude ratios  1: 2 : 1− . 

• Natural frequency  2 2 2ω = −   with amplitude ratios  1: 2 : 1 . 
 

13. The coefficient matrix   
4 2 0

2 4 2
0 2 4

− 
 = −
 

−  

A  has characteristic polynomial 

   –λ3 – 12λ2 – 40λ – 32  =  –(λ + 4)(λ2 + 8λ + 8).   

 Its eigenvalues  1 2 34, 4 2 2, 4 2 2λ λ λ= − = − − = − +   have associated eigenvectors 
T T T

1 2 3[1 0 1] , [1 2 1] , [1 2 1] .= − = − =v v v   Hence the system's three 
natural modes of oscillation have 

 
• Natural frequency  1 2ω =   with amplitude ratios  1 : 0 : –1. 

• Natural frequency  2 4 2 2ω = +   with amplitude ratios  1: 2 : 1− . 

• Natural frequency  2 4 2 2ω = −   with amplitude ratios  1: 2 : 1 . 
 
14. The equations of motion of the given system are 
 
        x1″  =  -50x1 + 10(x2 - x1) + 5 cos 10t 

    m2x2″  =  -10(x2 - x1). 
 
 When we substitute  x1  =  A cos 10t,  x2  =  B cos 10t  and cancel  cos 10t  throughout we 

get the equations 
                  -40A -                  10B  =  5 

                 -10A + (10 - 100m2)B  =  0. 
 
 If  m2  =  0.1 (slug)  then it follows that  A  =  0,  so the mass  m1  remains at rest. 
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 15. First we need the general solution of the homogeneous system  x″  =  Ax with 
 

50 25/ 2
50 50

− =  − 
A  

 
 The eigenvalues of  A  are  λ1  =  -25  and  λ2  =  -75,  so the natural frequencies of the 

system are  ω1  =  5  and  ω2  =  5 3 .  The associated eigenvectors are  v1  =  [1     2]T  
and  v2  =  [1   -2]T,  so the complementary solution  xc(t)  is given by 

 

   1 1 2 1 2

2 1 2 1 2

( ) cos5 sin5 cos5 3 sin5 3 ,

( ) 2 cos5 2 sin5 2 cos5 3 2 sin5 3 .

x t a t a t b t b t

x t a t a t b t b t

= + + +

= + − −
 

 
 When we substitute the trial solution  xp(t)  =  [c1      c2]Tcos 10t  in the nonhomogeneous 

system, we find that  c1  =  4/3  and  c2  =  -16/3,  so a particular solution  xp(t)  is 
described by 

 
   x1(t)  =  (4/3)cos 10t,        x2(t)  =  -(16/3)cos 10t. 
 
 Finally, when we impose the zero initial conditions on the solution  x(t)  =  xc(t) + xp(t)  

we find that  a1  =  2/3,  a2  =  0,  b1  =  -2,  and  b2  =  0.  Thus the solution we seek is 
described by 

 
   x1(t)  =  2

3 cos 5t - 2 cos 5 3t  +  4
3 cos 10t 

   x2(t)  =  4
3 cos 5t + 4 cos 5 3t  +  16

3 cos 10t. 
 
 We have a superposition of two oscillations with the natural frequencies  ω1  =  5  and   
 ω2  =  5 3   and a forced oscillation with frequency  ω  =  10.  In each of the two natural 

oscillations the amplitude of motion of  m2  is twice that of  m1,  while in the forced 
oscillation the amplitude of motion of  m2  is four times that of  m1. 

 
 
16. The characteristic equation of  A  is 
 
   (-c1 - λ)(-c2 - λ) - c1c2  =  λ2 + (c1 + c2)λ  =  0, 
 
 whence the given eigenvalues and eigenvectors follow readily. 
 
 
17. With  c1  =  c2  =  2,  it follows from Problem 16 that the natural frequencies and 

associated eigenvectors are  ω1  =  0,  v1  =  [1     1]T  and  ω2  =  2,  v2  =  [1   -1]T.   
 Hence Theorem 1 gives the general solution 
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   x1(t)  =  a1 + b1t + a2cos 2t + b2sin 2t 

   x2(t)  =  a1 + b1t - a2cos 2t - b2sin 2t. 
 
 The initial conditions   1x′ (0)  =  v0,  x1(0)  =  x2(0)  =  2x′ 0)  =  0  yield  a1  =  a2  =  0  and  

b1  =  v0/2,  b2  =  v0/4,  so 
 
    x1(t)  =  (v0 /4)(2t + sin 2t) 

    x2(t)  =  (v0 /4)(2t - sin 2t) 
 
 while  x2 - x1  =  (v0/4)(-2 sin 2t) < 0,  that is, until  t  =  π/2.  Finally,  x1'(π/2)  =  0  and  

x2'(π/2)  =  v0. 
 

18. With  c1  =  6  and  c2  =  3,  it follows from Problem 16 that the natural frequencies and 
associated eigenvectors are  ω1  =  0,  v1  =  [1      1]T  and  ω2  =  3,  v2  =  [2    -1]T.   

 Hence Theorem 1 gives the general solution 
 
   x1(t)  =  a1 + b1t + 2a2cos 3t + 2b2sin 3t 

   x2(t)  =  a1 + b1t -   a2cos 3t -  b2sin 3t. 
 
 The initial conditions  1x′ (0)  =  v0,  x1(0)  =  x2(0)  =  2x′ (0)  =  0  yield  a1  =  a2  =  0  

and  b1  =  v0/3,  b2  =  v0/9,  so 
 
    x1(t)  =  (v0 /9)(3t + 2 sin 3t) 

    x2(t)  =  (v0 /9)(3t -   sin 3t) 
 
 while  x2 - x1  =  (v0/9)(-3 sin 3t) < 0;  that is, until  t  =  π/3.  Finally, 1x′ (π/3)  =  -v0/3  

and  2x′ (π/3)  =  2v0/3. 
 

19. With  c1  =  1  and  c2  =  3,  it follows from Problem 16 that the natural frequencies and 
associated eigenvectors are  ω1  =  0,  v1  =  [1     1]T  and  ω2  =  2,  v2  =  [1    -3]T.   

 Hence Theorem 1 gives the general solution 
 
   x1(t)  =  a1 + b1t +   a2cos 2t +   b2sin 2t 

   x2(t)  =  a1 + b1t - 3a2cos 2t - 3b2sin 2t. 
 
 The initial conditions  1x′ (0)  =  v0,  x1(0)  =  x2(0)  =  2x′ (0)  =  0  yield  a1  =  a2  =  0  

and  b1  =  3v0/4,  b2  =  v0/8,  so 
 
    x1(t)  =  (v0/8)(6t +    sin 2t) 

    x2(t)  =  (v0/8)(6t - 3 sin 2t) 
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 while  x2 - x1  =  (v0/8)(-4 sin 2t) < 0;  that is, until  t  =  π/2.  Finally,  1x′ (π/2)  =  v0/2  

and  2x′ (π/2)  =  3v0/2. 
 
 
20. With  c1  =  c3  =  4  and  c2  =  16  the characteristic equation of the matrix 
 

    
4 4 0

16 32 16
0 4 4

− 
 = −
 

−  

A  

 is 
   λ3 + 40λ2 + 144λ  =  λ(λ + 4)(λ + 36)  =  0. 
 
 The resulting eigenvalues, natural frequencies, and associated eigenvectors are 
 
   λ1  =    0,  ω1  =  0,   v1  =  [1      1      1]T 
   λ2  =  -4,  ω2  =  2,   v2  =  [1      0   -1]T 
   λ3  =  -36, ω3  =  6,   v3  =  [1    -8     1]T. 
 
 Theorem 1 then gives the general solution 
 
  x1(t)  =  a1 + b1t +  a2cos 2t +  b2sin 2t +  a3cos 6t  +  b3sin 6t 

  x2(t)  =  a1 + b1t                                    - 8a3cos 6t - 8b3sin 6t 

  x3(t)  =  a1 + b1t -  a2cos 2t -  b2sin 2t +  a3cos 6 t +  b3sin 6t. 
 
 The initial conditons yield  a1  =  a2  =  a3  =  0  and  b1  =  4v0/9,  b2  =  v0 / 4,   
 b3  =  v0/108,  so 
 
   x1(t)  =  (v0 /108)(48t + 27 sin 2t +   sin 6t) 

   x2(t)  =  (v0 /108)(48t                  - 8 sin 6t) 

   x3(t)  =  (vo/108)(48t - 27 sin 2t +   sin 6t) 
 while 
   x2 - x1  =  -18(sin 2t)(3 - 2 sin32t) < 0, 

   x3 - x2  =   -9(4 sin32t) < 0; 
 
 that is, until  t  =  π/2.  Finally   
 
   1x′  (π/2)  =  -v0/9,    2x′ (π/2)  =  8v0/9,    3x′ (π/2)  =  8v0/9. 
 
 
21. (a) The matrix 
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160 / 3 320 / 3
8 116

− =  − 
A  

 
 has eigenvalues  λ1  ≈  -41.8285 and  λ2  ≈  -127.5049,  so the natural frequencies are 
 
    ω1  ≈   6.4675 rad/sec  ≈  1.0293 Hz 
    ω2  ≈  11.2918 rad/sec  ≈  1.7971 Hz. 
 
 (b) Resonance occurs at the two critical speeds 
 
    v1  =  20ω1 /π  ≈  41 ft/sec  ≈  28 mi/h   
    v2  =  20ω2 /π  ≈  72 ft/sec  ≈  49 mi/h. 
 

22. With  k1  =  k2  =  k  and  L1  =  L2  =  L/2  the equations in (42) reduce to 
 
              mx'' =  -2kx   and  Iθ'' =  -kL2θ/2. 
 
 The first equation yields  ω1  =  2 /k m   and the second one yields  ω2  =  2 / 2 .kL I  
 
In Problems 23–25 we substitute the given physical parameters into the equations in (42): 
 
    mx''  =      -(k1 + k2)x  +   (k1L1 - k2L2)θ 
 
    Iθ''   =  (k1L1 - k2L2)x - (k1L1

2 + k2L2
2)θ 

 
As in Problem 21, a critical frequency of  ω rad/sec  yields a critical velocity of  v  =  20ω/π  
ft/sec. 
 

23. 100 4000 , 800 100000x x θ θ′′ ′′= − =  

 Obviously the matrix  
40 0
0 125

− =  − 
A   has eigenvalues  1 240 and 125.λ λ= − = −  

 Up-and-down:  ω1  =  40 ,     v1  ≈  40.26 ft/sec  ≈  27 mph 
 Angular:  ω2  =  125 ,    v2  ≈  71.18 ft/sec  ≈  49 mph 
 

 

24. 
100 4000 4000
1000 4000 104000

x x
x

θ
θ θ
′′ = − +

′′ = −
 

 The matrix  
40 40
4 104

− =  − 
A   has eigenvalues  ( )1 2, 4 18 74 .λ λ = − ±  
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 ω1  ≈   6.1311,   v1  ≈  39.03 ft/sec  ≈  27 mph 
 ω2  ≈  10.3155,   v2  ≈  65.67 ft/sec  ≈  45 mph 
 
 

25. 
100 3000 5000
800 5000 75000

x x
x

θ
θ θ

′′ = − −
′′ = − −

 

 The matrix  
30 50

25/ 4 375/ 4
− − =  − − 

A   has eigenvalues  ( )1 2
5, 99 3401 .
8

λ λ = − ±  

 ω1  ≈  5.0424,   v1  ≈  32.10 ft/sec  ≈  22 mph 
 ω2  ≈  9.9158,   v2  ≈  63.13 ft/sec  ≈  43 mph 
 
 
 
 
SECTION 7.5 
 
MULTIPLE EIGENVALUE SOLUTIONS 
 
In each of Problems 1–6 we give first the characteristic equation with repeated (multiplicity 2) 
eigenvalue  λ.  In each case we find that  2( )λ− =A I 0 .  Then  T[1 0]=w  is a generalized 
eigenvector and  ( )λ= − ≠v A I w 0  is an ordinary eigenvector associated with  λ.  We give 
finally the scalar component functions  x1(t),  x2(t)  of the general solution 
 
    x(t)  =  c1veλt + c2(vt + w)eλt  
 
of the given system  x′  =  Ax. 
 
 
1. Characteristic equation λ2 + 6λ + 9  =  0 
 Repeated eigenvalue  λ  =  -3 
 Generalized eigenvector w  =  [1     0]T 

 

 ( ) 1 1 1 1
1 1 0 1

λ      = − = =     − − −     
v A I w  

 x1(t)  =  ( c1 + c2 + c2t)e-3t 

 x2(t)  =  (-c1      - c2t)e-3t. 

  
 The left-hand figure at the top of the next page shows a direction field and typical 
 solution curves. 
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2. Characteristic equation λ2 - 4λ + 4  =  0 
 Repeated eigenvalue    λ  =  2 
 Generalized eigenvector   w  =  [1     0]T 

 

 ( ) 1 1 1 1
1 1 0 1

λ
−     = − = =     −     

v A I w  

 x1(t)  =  (c1 + c2 + c2t)e2t 

 x2(t)  =  (c1 +        c2t)e2t. 

 
 The right-hand figure above shows a direction field and typical solution curves. 
 
 
3. Characteristic equation   λ2 - 6λ + 9  =  0 
 Repeated eigenvalue    λ  =  3 
 Generalized eigenvector   w  =  [ 1     0]T 

 

 ( ) 2 2 1 2
2 2 0 2

λ
− − −     = − = =     
     

v A I w  

 
 x1(t)  =  (-2c1 + c2 - 2c2t)e3t 

 x2(t)  =  ( 2c1 +          2c2t)e3t. 
 

 The figure at the top of the next page shows a direction field and typical solution curves. 
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4. Characteristic equation   λ2 - 8λ + 16  =  0 
 Repeated eigenvalue    λ  =  4 
 Generalized eigenvector   w  =  [ 1     0]T 

 

 ( ) 1 1 1 1
1 1 0 1

λ
− − −     = − = =     
     

v A I w  

 x1(t)  =  (-c1 + c2 - c2t)e4t 

 x2(t)  =  ( c1 +          c2t)e4t. 
 

 The left-hand figure below shows a direction field and typical solution curves. 
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5. Characteristic equation   λ2 - 10λ + 25  =  0 
 Repeated eigenvalue    λ  =  5 
 Generalized eigenvector   w  =  [1     0]T 

 

 ( ) 2 1 1 2
4 2 0 4

λ      = − = =     − − −     
v A I w  

 x1(t)  =  ( 2c1 + c2 + 2c2t)e5t 

 x2(t)  =  (-4c1       - 4c2t)e5t. 
 
 The right-hand figure at the bottom of the preceding page shows a direction field and 
 typical solution curves. 
 
 
6. Characteristic equation   λ2 - 10λ + 25  =  0 
 Repeated eigenvalue    λ  =  5 
 Generalized eigenvector   w  =  [ 1       0]T 

 

 ( ) 4 4 1 4
4 4 0 4

λ
− − −     = − = =     
     

v A I w  

  

 x1(t)  =  (-4c1 + c2 - 4c2t)e5t 

 x2(t)  =  ( 4c1          + 4c2t)e5t. 
 
 The figure below shows a direction field and typical solution curves. 
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In each of Problems 7–10 the characteristic polynomial is easily calculated by expansion along 
the row or column of  A  that contains two zeros.  The matrix  A  has only two distinct 
eigenvalues, so we write  1 2 3, ,λ λ λ  with either  1 2 2 3or .λ λ λ λ= =   Nevertheless, we find that it 
has 3 linearly independent eigenvectors  1 2,v v , and  v3.  We list also the scalar components  
x1(t), x2(t), x3(t)  of the general solution  31 2

1 1 2 2 3 3( ) tt tt c e c e c eλλ λ= + +x v v v of the system. 
 
 
7. Characteristic equation   3 2 213 40 36 ( 2) ( 9)λ λ λ λ λ− + − + = − − −  
 Eigenvalues     λ  =  2,  2,  9 
 Eigenvectors     [1    1    0]T,  [1    0    1]T,  [0    1    0]T  

 x1(t)  =  c1e2t + c2e2t 

 x2(t)  =  c1e2t           + c3e9t  

 x3(t)  =              c2e2t 
 

8. Characteristic equation   3 2 233 351 1183 ( 13) ( 7)λ λ λ λ λ− + − + = − − −  
 Eigenvalues     λ  =  7,  13,  13 
 Eigenvectors     [2   -3    1]T,  [0    0    1]T,   [–1   1    0]T,   

 x1(t)  =    2c1e7t             – c3e13t 

 x2(t)  =  -3c1e7t            + c3e13t 

 x3(t)  =      c1e7t + c2e13t 
 

9. Characteristic equation 3 2 219 115 225 ( 5) ( 9)λ λ λ λ λ− + − + = − − −  
 Eigenvalues     λ  =  5,  5,  9 
 Eigenvectors     [1    2    0]T,  [7    0    2]T,  [3    0    1]T  

 x1(t)  =  c1e5t + 7c2e5t + 3c3e9t 

  x2(t)  =  2c1e5t    

 x3(t)  =            2c2e5t +  c3e9t 
 

10. Characteristic equation   3 2 213 51 63 ( 3) ( 7)λ λ λ λ λ− + − + = − − −  
 Eigenvalues     λ  =  3,  3,  7 
 Eigenvectors     [5   2   0]T,  [–3    0  1]T,  [2   1   0]T  

 x1(t)  =  5c1e3t – 3c2e3t + 2c3e7t 

 x2(t)  =  2c1e3t             +   c3e7t 

 x3(t)  =               c2e3t  
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In each of Problems 11–14,  the characteristic equation is 3 2 33 3 1 ( 1)λ λ λ λ− − − − = − + . 
Hence λ  =  -1  is a triple eigenvalue of defect  2,  and we find that  3( ) .λ− =A I 0  In each 
problem we start with  T

3 [1 0 0]=v  and then calculate 2 3( )λ= −v A I v  and  

1 2( ) 0.λ= − ≠v A I v   It follows that 2 3
1 2 3( ) ( ) ( ) ,λ λ λ− = − = − =A I v A I v A I v 0   so the vector  

v1  (if nonzero) is an ordinary eigenvector associated with the triple eigenvalue  λ.  Hence   
{v1, v2, v3} is a length 3 chain of generalized eigenvectors, and the corresponding general  
solution is described by 

   x(t)  =  e-t [c1v1 + c2(v1 t + v2) + c3(v1 t2/2 + v2 t + v3)]. 
 
We give the scalar components  x1(t),  x2(t),  x3(t)  of  x(t).  
 
 
11. v1  =  [0   1   0]T,     v2  =  [-2  -1   1]T,     v3  =  [1   0   0]T 

 x1(t)  =  e-t(-2c2 + c3 - 2c3 t) 

  x2(t)  =  e-t(c1 - c2 + c2 t - c3 t + c3 t2/2) 

 x3(t)  =  e-t(c2 + c3 t)  

 
 
12. v1  =  [1   1   0]T,      v2  =  [0   0   1]T,       v3  =  [1   0   0]T 

 x1(t)  =  e-t(c1 + c3 + c2 t + c3 t2/2) 

  x2(t)  =  e-t (c1 + c2 t + c3 t2/2) 

 x3(t)  =  e-t (c2 + c3 t)    

 
 
13. Here we are stymied initially, because if  v3  =  [1   0   0]T  then  3( )λ− =A I v 0  does not  
 qualify as a (nonzero) generalized eigenvector.  We there make a fresh start with 
 v3  =  [0   1   0]T, and now we get the desired nonzero generalized eigenvectors upon 
 successive multiplication by .λ−A I  

 v1  =  [1   0   0]T,       v2  =  [0   2   1]T,         v3  =  [0   1   0]T 

 x1(t)  =  e-t(c1 + c2 t + c3 t2/2) 

  x2(t)  =  e-t(2c2 + c3 + 2c3 t) 

 x3(t)  =  e-t(c2 + c3 t)  

 
 
14. v1  =  [5  -25  -5]T,     v2  =  [1  -5    4]T,      v3  =  [1   0   0]T 
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 x1(t)  =  e-t(5c1 + c2 + c3 + 5c2 t + c3 t + 5c3 t2/2) 

 x2(t)  =  e-t (-25c1 - 5c2 - 25c2 t - 5c3 t - 25c3 t2/2) 

 x3(t)  =  e-t(-5c1 + 4c2 - 5c2 t + 4c3 t - 5c3 t2/2)  

 
In each of Problems 15–18,  the characteristic equation is 3 2 33 3 1 ( 1)λ λ λ λ− + − + = − − . 
Hence λ  =  1  is a triple eigenvalue of defect 1,  and we find that  2( ) .λ− =A I 0   First we find 
the two linearly independent (ordinary) eigenvectors  u1  and  u2  associated with  λ.   Then we 
start with  T

2 [1 0 0]=v  and calculate 1 2( ) 0.λ= − ≠v A I v   It follows that 
2

1 2( ) ( ) ,λ λ− = − =A I v A I v 0   so  v1  is an ordinary eigenvector associated with  λ.  However,  
v1 is a linear combination of  u1  and  u2,  so  1

tev  is a linear combination of the independent 
solutions  .

1 2andt te eu u .   But  {v1, v2} is a length 2 chain of generalized eigenvectors 
associated with  λ,  so  1 2( ) tt e+v v  is the desired third independent solution.  The corresponding 
general solution is described by 
 
    x(t)  =  et [c1u1 + c2u2 + c3(v1 t + v2)] 
 
We give the scalar components  x1(t), x2(t), x3(t)  of  x(t).  
 
 
15. u1  =  [3   -1    0]T      u2  =  [0    0    1]T  

 v1  =  [-3   1    1]T      v2  =  [1    0    0]T  

 x1(t)  =  et (3c1 + c3 - 3c3 t) 

  x2(t)  =  et(-c1 + c3 t) 

 x3(t)  =  et(c2 + c3 t)  

 
 
16. u1  =  [3   -2    0]T      u2  =  [3    0   -2]T  

 v1  =  [0   -2    2]T      v2  =  [1    0    0]T  

 x1(t)  =  et(3c1 + 3c2 + c3)  

  x2(t)  =  et(-2c1 - 2c3 t) 

 x3(t)  =  et(–2c2 + 2c3 t)  
 
 
17. u1  =  [2   0  -9]T      u2  =  [1  -3    0]T  

 v1  =  [0   6  -9]T      v2  =  [0     1    0]T  
 
 (Either  v2  =  [1     0    0]T  or  v2  =  [0     0    1]T  can be used also, but they 
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 yield different forms of the solution than given in the book's answer section.) 

 x1(t)  =  et(2c1 + c2)  

  x2(t)  =  et(–3c2 + c3 + 6c3 t) 

 x3(t)  =  et(-9c1 - 9c3 t)  
 

18. u1  =  [-1   0     1]T      u2  =  [-2   1    0]T  

 v1  =  [0      1  -2]T      v2  =  [1      0    0]T  

 x1(t)  =  et(-c1 – 2c2 + c3)  

  x2(t)  =  et(c2 + c3 t) 

 x3(t)  =  et(c1 - 2c3 t)  

 

19. Characteristic equation   λ4 - 2λ2 + 1  =  0 
 Double eigenvalue  λ  =  -1  with eigenvectors   

   v1  =  [1   0   0   1]T   and   v2  =  [0   0   1   0]T. 

 Double eigenvalue  λ  =  +1  with eigenvectors 

   v3  =  [0   1   0  -2]T   and   v4  =  [1   0   3   0]T. 

 General solution 

   x(t)  =  e-t(c1v1 + c2v2) + et(c3v3 + c4v4) 

 Scalar components 

   x1(t)  =  c1e-t + c4et  

    x2(t)  =  c3et 

   x3(t)  =  c2e-t + 3c4et  

   x4(t)  =  c1e-t - 2c3et 
 

20. Characteristic equation   4 3 28 24 32 16λ λ λ λ− + − +   =  (λ - 2)4  =  0 
 Eigenvalue  λ  =  2  with multiplicity  4  and defect  3. 
 
 We find that  3( ) 0λ− ≠A I  but  4( ) 0.λ− =A I  We therefore start with   

v4  =  [0   0   0   1]T  and define  3 4( ) ,λ= −v A I v  2 3( ) ,λ= −v A I v 2 3( ) ,λ= −v A I v  and  

1 2( ) 0.λ= − ≠v A I v   This gives the length  4  chain  {v1,  v2,  v3,  v4}  with 
 

       v1  =  [1    0    0    0]T        v2  =  [0    1    0    0]T 
  v3  =  [1    0    1    0]T        v4  =  [0    0    0    1]T. 
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 The corresponding general solution is given by 
 
  x(t)  =  e-t [c1v1 + c2(v1 t + v2) + c3(v1 t2/2 + v2 t + v3) 

                       + c4(v1 t3/6 + v2 t2/2 + v3 t + v4)] 
  
 with scalar components 
 
  x1(t)  =  e2t(c1 + c3 + c2 t + c4 t + c3 t2/2 +c4 t3/6)  

   x2(t)  =  e2t(c2 + c3 t + c4 t2/2) 

  x3(t)  =  e2t(c3 + c4 t) 

  x4(t)  =  e2t(c4). 
 
 
21. Characteristic equation   4 3 24 6 4 1λ λ λ λ− + − +   =  (λ – 1)4  =  0 
 Eigenvalue  λ  =  1  with multiplicity  4  and defect  2. 
 
 We find that  2( ) 0λ− ≠A I  but  3( ) 0.λ− =A I  We therefore start with   

v3  =  [1   0   0   0]T  and define  2 3( )λ= −v A I v  and 1 2( ) 0,λ= − ≠v A I v  thereby 
obtaining the length 3 chain  {v1,  v2,  v3}  with 

 
  v1  =  [0   0   0   1]T,     v2  =  [-2  1  1  0]T,     v3  =  [1   0   0   0]T.         
 
 Then we find the second ordinary eigenvector  v4  =  [0    0  1  0]T.  The corresponding 
 general solution 

  x(t)  =  et [c1v1 + c2(v1 t + v2) + c3(v1 t2/2 + v2 t + v3) + c4v4] 

 has scalar components 
 
  x1(t)  =  et(-2c2 + c3 - 2c3 t) 

   x2(t)  =  et(c2 + c3 t) 

  x3(t)  =  et(c2 + c4 + c3 t). 

  x4(t)  =  et(c1 + c2 t + c3 t2/2.) 
 
 
22.  Same eigenvalue and chain structure as in Problem 21, but with generalized eigenvectors 
 
  v1  =  [1   0   0  -2]T        v2  =  [3  -2   1  -6]T 
  v3  =  [0   1   0    0]T         v4  =  [1    0   0     0]T 
  

where  {v1,  v2,  v3}  is a length 3 chain and  v4  is an ordinary eigenvector.  The general 
solution  x(t)  defined as in Problem 21 has scalar components 
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  x1(t)  =  et(c1 + 3c2 + c4 + c2 t + 3c3 t + c3 t2/2) 

   x2(t)  =  et(-2c2 + c3 - 2c3 t) 

  x3(t)  =  et(c2 + c3 t) 

  x4(t)  =  et(-2c1 - 6c2 - 2c2 t -6c3 t  - c3 t2) 
 

In Problems 23 and 24 there are only two distinct eigenvalues  1 2and .λ λ   However, the 
eigenvector equation  ( ) 0λ− =A I v   yields the three linearly independent eigenvectors  v1, v2, 
and v3 that are given.  We list the scalar components of the corresponding general solution  

1 2 2
1 1 2 2 3 3( ) .t t tt c e c e c eλ λ λ= + +x v v v  

 

23. λ1  =  -1:   {v1}  with  v1  =  [1   -1    2]T 
 λ2  =   3:   {v2}  with  v2  =  [4      0    9]T  and 
            {v3}  with  v3  =  [0     2    1]T  
  
 Scalar components 
 
   x1(t)  =    c1e-t + 4c2e3t 

    x2(t)  =  -c1e-t             +  2c3e3t 

   x3(t)  =  2c1e-t + 9c2e3t +   c3e3t 
 

24. λ1  =  -2:   {v1}  with  v1  =  [5     3  -3]T 
 
 λ2  =   3:   {v2}  with  v2  =  [4     0  -1]T  and 
            {v3}  with  v3  =  [2  -1    0]T  
 
 Scalar components 
 
   x1(t)  =    5c1e-2t + 4c2e3t + 2c3e3t 

    x2(t)  =    3c1e-2t                 -  c3e3t 

   x3(t)  =  -3c1e-2t -  c2e3t  
 

In Problems 25, 26, and 28 there is given a single eigenvalue  λ  of multiplicity 3.  We find that  
2( ) 0λ− ≠A I  but  3( ) 0.λ− =A I  We therefore start with  v3  =  [1   0   0]T  and define   

2 3( )λ= −v A I v  and 1 2( ) 0,λ= − ≠v A I v  thereby obtaining the length 3 chain  {v1,  v2,  v3}  of 
generalized eigenvectors based on the ordinary eigenvector  v1.  We list the scalar components of 
the corresponding general solution 
 
  x(t)  =  c1v1

teλ  + c2(v1t + v2) teλ  + c3(v1t2/2 + v2t + v3) teλ . 
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25. {v1, v2, v3}  with 

    v1  =  [-1   0  -1]T,   v2  =  [-4  -1  0]T,   v3  =  [1   0   0]T 

 Scalar components 

  

2 2
1 1 2 3 2 3 3

2
2 2 3

2 2
3 1 2 3

( ) ( 4 4 / 2)

( ) ( )

( ) ( / 2)

t

t

t

x t e c c c c t c t c t
x t e c c t
x t e c c t c t

= − − + − − −

= − −

= − − −

 

 

26. {v1, v2, v3}  with  

  v1  =  [0    2    2]T,   v2  =  [2    1  -3]T,   v3  =  [1    0    0]T 

 General solution 

  

3
1 2 3 3

3 2
2 1 2 2 3 3

3 2
3 1 2 2 3 3

( ) (2 2 )

( ) (2 2 )

( ) (2 3 2 3 )

t

t

t

x t e c c c t
x t e c c c t c t c t
x t e c c c t c t c t

= + +

= + + + +

= − + − +

 

 

27. We find that the triple eigenvalue  λ = 2  has the two linearly independent eigenvectors 
 [1   1   0]T  and  [–1   0   1]T.  Next we find that  ( ) 0λ− ≠A I  but  2( ) 0.λ− =A I  We  
 therefore start with  v2  =  [1   0   0]T  and define  
 
   1 2( )λ= − =v A I v  

T[ 5 3 8] ,− ≠ 0  

 

thereby obtaining the length 2 chain  {v1,  v2}  of generalized eigenvectors based on the 
ordinary eigenvector  v1.  If we take  v3  =  [1   1   0]T,  then the general solution 
x(t)  =  e2t [c1v1 + c2(v1t + v2) + c3v3]  has scalar components 
 

 

2
1 1 2 3 2

2
2 1 2

2
3 1 2

( ) ( 5 5 )

( ) (3 3 )

( ) (8 8 ).

t

t

t

x t e c c c c t
x t e c c t
x t e c c t

= − + + −

= +

= +

 

 

28. {v1, v2, v3}  with 

 v1  =  [119  -289   0]T,   v2  =  [-17   34   17]T,    v3  =  [1   0   0]T 

 General solution 

  

2 2
1 1 2 3 2 3 3

2 2
2 1 2 2 3 3

2
3 2 3

( ) (119 17 119 17 119 / 2)

( ) ( 289 34 289 34 289 / 2)

( ) (17 17 )

t

t

t

x t e c c c c t c t c t
x t e c c c t c t c t
x t e c c t

= − + + − +

= − + − + −

= +
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In Problems 29 and 30 the matrix  A  has two distinct eigenvalues  1 2andλ λ  each having 
multiplicity 2 and defect 1.  First, we select  v2  so that  1 1 2( )λ= − ≠v A I v 0  but  

1 1( ) ,λ− =A I v 0  so  {v1, v2} is a length 2 chain based on  v1.  Next, we select  u2  so that  

1 1 2( )λ= − ≠u A I u 0  but  1 1( ) ,λ− =A I u 0  so  {u1, u2} is a length 2 chain based on  u1.  We give 
the scalar components of the corresponding general solution 
 
  x(t)  =  1 teλ [c1v1 + c2(v1t + v2)] + 2 teλ [c3u1 + c4(u1t + u2)]. 

 

29. λ  = -1:  {v1, v2}  with   v1  =  [1  -3  -1  -2]T  and  v2  =  [0     1     0     0]T, 
 λ  =   2:  {u1, u2}  with   u1  =  [0  -1     1     0]T  and  u2  =  [0     0     2     1]T 

 Scalar components 

  

1 1 2
2

2 1 2 2 3 4
2

3 1 2 3 4 4
2

4 1 2 4

( ) ( )

( ) ( 3 3 ) ( )

( ) ( ) ( 2 )

( ) ( 2 2 ) ( )

t

t t

t t

t t

x t e c c t
x t e c c c t e c c t
x t e c c t e c c c t
x t e c c t e c

−

−

−

−

= +

= − + − + − −

= − − + + +

= − − +

 

 

30. λ  = -1:  {v1, v2}  with  v1  =  [0     1  -1  -3]T  and  v2  =  [0     0     1     2]T, 

 λ  =   2:  {u1, u2}  with  u1  =  [-1  0     0    0]T  and  u2  =  [0     0     3     5]T 

 Scalar components 

  

2
1 3 4

2 1 2
2

3 1 2 2 4
2

4 1 2 2 4

( ) ( )

( ) ( )
( ) ( ) (3 )

( ) ( 3 2 3 ) (5 )

t

t

t t

t t

x t e c c t
x t e c c t
x t e c c c t e c
x t e c c c t e c

−

−

−

= − −

= +

= − + − +

= − + − +

 

 

31. We have the single eigenvalue  λ = 1  of multiplicity  4.  Starting with   
v3  =  [1    0    0    0]T,  we calculate 2 3( )λ= −v A I v  and  1 2( ) ,λ= − ≠v A I v 0  and find 
that  1( ) .λ− =A I v 0   Therefore  {v1, v2, v3}  is a length 3 chain based on the ordinary 
eigenvector  v1.  Next, the eigenvector equation  ( )λ− =A I v 0  yields the second linearly 
independent eigenvector  v4  =  [0    1    3    0]T.  With 
 

  v1  =  [42   7  -21  -42]T,    v2  =  [34   22  -10  -27]T,    

  v3  =  [1    0    0    0]T     and    v4  =  [0    1    3    0] 
 
 the general solution 

  x(t)  =  et [c1v1 + c2(v1t + v2) + c3(v1t2/2 + v2t + v3) + c4v4] 
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 has scalar components 

  

2
1 1 2 3 2 3 3

2
2 1 2 4 2 3 3

2
3 1 2 4 2 3 3

2
4 1 2 2 3 3

( ) (42 34 42 34 21 )

( ) (7 22 7 22 7 / 2)

( ) ( 21 10 3 21 10 21 / 2)

( ) ( 42 27 42 27 21 ).

t

t

t

t

x t e c c c c t c t c t
x t e c c c c t c t c t
x t e c c c c t c t c t
x t e c c c t c t c t

= + + + + +

= + + + + +

= − − + − − −

= − − − − −

 

 

32. Here we find that the matrix  A  has five linearly independent eigenvectors: 

 λ  =  2:   eigenvectors  v1  =  [8    0  -3    1   0]T  and   v2  =  [1   0     0   0   3]T 

  

 

 λ  =  3:   eigenvectors  v3  =  [3  -2  -1    0   0]T,      v4  =  [2  -2    0  -3   0]T,   

     v5  =  [1  -1    0    0   3]T 

 The general solution 

   x(t)  =  e2t(c1v1 + c2v2) + e3t(c3v3 + c4v4 + c5v5) 

 has scalar components 

  

2 3
1 1 2 3 4 5

3
2 3 4 5

2 3
3 1 3

2 3
4 1 4

2 3
3 2 5

( ) (8 ) (3 2 )

( ) ( 2 2 )

( ) ( 3 ) ( )

( ) ( ) ( 3 )

( ) (3 ) (3 )

t t

t

t t

t t

t t

x t e c c e c c c
x t e c c c
x t e c e c
x t e c e c
x t e c e c

= + + + +

= − − −

= − + −

= + −

= +

 

 
33. The chain  {v1, v2}  was found using the matrices 
 

4 4 1 0 1 0 0
4 4 0 1 0 0 1 0
0 0 4 4 0 0 0 1
0 0 4 4 0 0 0 0

i i
i

i
i

λ

−   
   
   − = →

−   
   
   

A I  

  
 and 

2

32 32 8 8 1 0 0
32 32 8 8 0 0 1

( )
0 0 32 32 0 0 0 0
0 0 32 32 0 0 0 0

i i i
i i i

i
i

λ

− − −   
   −
   − = →

− −   
   −   

A I  
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where  →    signifies reduction to row-echelon form.  The resulting real-valued solution 
vectors are 

 
  x1(t)  =  e3t [   cos 4t        sin 4t        0           0     ]T 

  x2(t)  =  e3t [-sin 4t        cos 4t         0           0     ]T 

  x3(t)  =  e3t [   t cos 4t    t sin 4t     cos 4t    sin 4t ]T 

  x4(t)  =  e3t [-t sin 4t  t cos 4t    -sin 4t    cos 4t ]T. 
 
 
34. The chain  {v1,v2}  was found using the matrices 
 

3 0 8 3 1 0 0 0
18 3 3 0 0 0 1 0 3 3
9 3 27 3 9 0 0 1 0

33 10 90 30 3 0 0 0 0

i
i i

i
i

λ

− −   
   − − − +
   − = →

− − − − −   
   −   

A I  

 and 

   2

36 6 54 48 18 18 1 0 3
54 108 18 144 54 0 1 9 10 3 3

( )
54 18 18 162 54 0 0 0 0
198 60 6 540 18 180 0 0 0 0

i i i i
i i i i

i i i i
i i i i

λ

− − − + − + − −   
   + + +
   − = →

− +   
   − − − − −   

A I  

 
 where  →    signifies reduction to row-echelon form.  The resulting real-valued solution 

vectors are 
 
 x1(t)  =  e2t [         sin 3t  3 cos 3t - 3 sin 3t   0    sin 3t  ]T 

 x2(t)  =  e2t [      -cos 3t     3 sin 3t + 3 cos 3t   0   -cos 3t ]T 

 x3(t)  =  e2t [3 cos 3t + t sin 3t     (3t -10)cos 3t -(3t + 9)sin 3t       sin 3t   t sin3t  ]T 

 x4(t)  =  e2t [-t cos 3t + 3 sin 3t   (3t + 9)cos 3t + (3t -10)sin 3t    -cos3t  -t cos3t]T. 
 
 
35. The coefficient matrix 
 

0 0 1 0
0 0 0 1
1 1 2 1

1 1 1 2

 
 
 =
− − 
 − − 

A  

 
 has eigenvalues 
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  λ  =    0   with eigenvector   v1  =  [1     1     0     0]T 
  λ  =  -1   with eigenvectors   v2  =  [1    0  -1     0]T  and  v3  =  [0     1     0  -1]T, 
  λ  =  -2   with eigenvector   v4  =  [1  -1  -2     2]T. 
 
 When we impose the given initial conditions on the general solution 
 
    x(t)  =  c1v1 + c2v2e-t + c3v3e-t + c4v4e-2t 
 
 we find that  c1  =  v0,  c2  =  c3  =  -v0,  c4  =  0.  Hence the position functions of the two 

masses are given by 
     x1(t)  =  x2(t)  =  v0(1 - e-t). 
 
 Each mass travels a distance  v0  before stopping. 
 

36. The coefficient matrix is the same as in Problem  35  except that  a44  =  -1.  Now the 
matrix  A  has the eigenvalue  λ  =  0  with eigenvector  v0  =  [1   1   0   0]T,  and the 
triple eigenvalue  λ  =  -1  with associated length 2 chain  {v1, v2, v3}  consisting of the 
generalized eigenvectors 

 
    v1  =  [0    1      0    -1]T 
    v2  =  [1    0    -1      1]T 
    v3  =  [1    0      0      0]T. 
 
 When we impose the given initial conditions on the general solution 
 
  x(t)  =  c0v0 + e-t [c1v1 + c2(v1t + v2) + c3(v1t2/2 + v2t + v3)] 
 
 we find that  c0  =  2v0,  c1  =  -2v0,  c2  =  c3  =  -v0.  Hence the position functions of the 

two masses are given by 
 
    x1(t)  =  v0(2 - 2e-t - te-t), 

    x2(t)  =  v0(2 - 2e-t - te-t - t2e-t/2). 
 
 Each travels a distance  2v0  before stopping. 
 

In Problems 37–46 we use the eigenvectors and generalized eigenvectors found in Problems 23–32 
to construct a matrix  Q  such that  J = Q–1AQ  is a Jordan normal form of the given matrix  A. 
 

37. v1  =  [1   -1    2]T,     v2  =  [4      0    9]T,     v3  =  [0     2    1]T  

 [ ]1 2 3

1 4 0
1 0 2

2 9 1

 
 = = −
 
  

Q v v v  
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 1

18 4 8 39 8 16 1 4 0 1 0 0
1 5 1 2 36 5 16 1 0 2 0 3 0
2

9 1 4 72 16 29 2 9 1 0 0 3

−

− − − −       
       = = − − − − =
       

− − −              

J Q AQ  

 

38. v1  =  [5     3  -3]T,     v2  =  [4     0  -1]T,     v3  =  [2  -1    0]T  

 [ ]1 2 3

5 4 2
3 0 1
3 1 0

 
 = = −
 
− −  

Q v v v  

 1

1 2 4 28 50 100 5 4 2 2 0 0
3 6 11 15 33 60 3 0 1 0 3 0
3 7 12 15 30 57 3 1 0 0 0 3

−

− − − −       
       = = − =
       
− − − − − − − −              

J Q AQ  

 

39. v1  =  [-1   0  -1]T,     v2  =  [-4  -1  0]T,     v3  =  [1   0   0]T 

 [ ]1 2 3

1 4 1
0 1 0
1 0 0

− − 
 = = −
 
−  

Q v v v  

 1

0 0 1 2 17 4 1 4 1 2 1 0
0 1 0 1 6 1 0 1 0 0 2 1
1 4 1 0 1 2 1 0 0 0 0 2

−

− − − −       
       = = − − − =
       

− − −              

J Q AQ  

 

40. v1  =  [0    2    2]T,     v2  =  [2    1  -3]T,     v3  =  [1    0    0]T 

 [ ]1 2 3

0 2 1
2 1 0
2 3 0

 
 = =
 

−  

Q v v v  

 1

0 3 1 5 1 1 0 2 1 3 1 0
1 0 2 2 1 3 0 2 1 0 0 3 1
8

8 4 4 3 2 1 2 3 0 0 0 3

−

−       
       = = − =
       

− − −              

J Q AQ  

 

41. v1  =  T[ 5 3 8] ,−      v2  =  [1     0     0]T,      v3  =  [1     1     0]T  

 [ ]1 2 3

5 1 1
3 0 1
8 0 0

− 
 = =
 
  

Q v v v  
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 1

0 0 1 3 5 5 5 1 1 2 1 0
1 8 8 8 3 1 3 3 0 1 0 2 0
8

0 8 3 8 8 10 8 0 0 0 0 2

−

− − −       
       = = − − =
       

− −              

J Q AQ  

 

42. v1  =  [119   -289     0]T,      v2  =  [-17    34    17]T,      v3  =  [1     0     0]T  

 [ ]1 2 3

119 17 1
289 34 0
0 17 0

− 
 = = −
 
  

Q v v v  

 1

0 1 2 15 7 4 119 17 1 2 1 0
1 0 0 17 34 16 11 289 34 0 0 2 1

289
289 119 51 17 7 5 0 17 0 0 0 2

−

− − − −       
       = = − − =
       
              

J Q AQ  

 

43. v1  =  [1  -3  -1  -2]T,           v2  =  [0     1     0     0]T, 
 u1  =  [0  -1     1     0]T,          u2  =  [0     0    2     1]T  

 

[ ]1 2 1 2

1

1 0 0 0
3 1 1 0
1 0 1 2
2 0 0 1

1 0 0 0 1 1 1 2 1 0 0 0 1 1 0 0
0 1 1 2 7 4 6 11 3 1 1 0 0 1 0 0
3 0 1 2 5 1 1 3 1 0 1 2 0 0 2 1

2 0 0 1 6 2 2 6 2 0 0 1 0 0 0 2

−

 
 − − = =
 −
 − 

=
− − −       

       − − − − − −       = =
       − − − −
       − − −       

Q v v u u

J Q AQ  

 

44. v1  =  [0      1   -1   -3]T,          v2  =  [0     0     1     2]T, 

 u1  =  [-1    0     0     0]T           u2  =  [0     0     3     5]T 

 [ ]1 2 1 2

0 0 1 0
1 0 0 0
1 1 0 3
3 2 0 5

− 
 
 = =
 −
 − 

Q v v u u  
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1

0 1 0 0 2 1 2 1 0 0 1 0 1 1 0 0
0 4 5 3 0 3 5 3 1 0 0 0 0 1 0 0
1 0 0 0 0 13 22 12 1 1 0 3 0 0 2 1

0 1 2 1 0 27 45 25 3 2 0 5 0 0 0 2

−=
− − −       

       − − −       = =
       − − − −
       − − − − −       

J Q AQ

 

 
 
45. v1  =  [42     7    -21   -42]T,    v2  =  [34    22    -10    -27]T,    

 v3  =  [1      0      0      0]T,  v4  =  [0      1      3      0]T 

 [ ]1 2 3 4

42 34 1 0
7 22 0 1
21 10 0 3
42 27 0 0

 
 
 = =
 − −
 − − 

Q v v v v  

 1−=J Q AQ  

 

0 81 27 76 2 1 2 1 42 34 1 0
0 126 42 42 0 3 5 3 7 22 0 11

2058 882 294 1764 0 13 22 12 21 10 0 32058
0 147 735 392 0 27 45 25 42 27 0 0

− − −     
     − −
     =

− − − − −     
     − − − − − −     

 

 

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 
 
 =
 
 
 

 

 
 
46. v1  =  [8    0  -3    1   0]T,      v2  =  [1   0     0   0   3]T 

 v3  =  [3  -2  -1    0   0]T,      v4  =  [2  -2    0  -3   0]T,        v5  =  [1  -1    0    0   3]T 

 

 [ ]1 2 3 4 5

8 1 3 2 1
0 0 2 2 1
3 0 1 0 0

1 0 0 3 0
0 3 0 0 3

 
 − − − 
 = = − −
 − 
  

Q v v v v v  
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    1−=J Q AQ  

9 0 27 6 3 11 1 26 6 3 8 1 3 2 1
48 3 138 30 15 0 3 0 0 0 0 0 2 2 1

1 27 0 78 18 9 9 0 24 6 3 3 0 1 0 0
3

3 0 9 3 1 3 0 9 5 1 1 0 0 3 0
48 3 138 30 16 48 3 138 30 18 0 3 0 0 3

− − − − −     
     − − − −
     

= − − − − − −     
     − − − − −     
     − − − − − − − −     

 

   

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 
 
 =
 
 
 

J  

 
 
 
SECTION 7.6 
 
NUMERICAL METHODS FOR SYSTEMS 
 
In Problems 1-8 we first write the given system in the form  ( , , ), ( , , ).x f t x y y g t x y′ ′= =   
Then we use the template 
 

 
1 0

1 0 0 0 0 1 0 0 0 0

2 1 1 1 1 2 1 1 1 1

0.1;
( , , ); ( , , )
( , , ); ( , , )

h t t h
x x h f t x y y y h g t x y
x x h f t x y y y h g t x y

= = +
= + = +
= + = +

 

 
(with the given values of   0 0 0, , andt x y ) to calculate the Euler approximations  1 (0.1),x x≈  

1 2 2(0.1) and (0.2), (0.2)y y x x y y≈ ≈ ≈  in part (a).  We give these approximations and the 
actual values  act act(0.2), (0.2)x x y y= =  in tabular form.  We use the template 
 

 [ ]
[ ]

1 0

1 0 0 0 0 1 0 0 0 0

1
1 0 0 0 0 1 1 12

1
1 0 0 0 0 1 1 12

0.2;
( , , ); ( , , )

( , , ) ( , , )

( , , ) ( , , )

h t t h
u x h f t x y v y h g t x y
x x h f t x y f t u v

y y h g t x y g t u v

= = +
= + = +
= + +

= + +

 

 
to calculate the improved Euler approximations  1 1(0.2), (0.2)u x u y≈ ≈  and 

1 1(0.2), (0.2)x x y y≈ ≈  in part (b).  We give these approximations and the actual values  

act act(0.2), (0.2)x x y y= =  in tabular form.  We use the template 
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1 0 0 0 1 0 0 0
1 1 1 1 1 1

2 0 0 1 0 1 2 0 0 1 0 12 2 2 2 2 2
1 1 1 1 1 1

3 0 0 2 0 2 3 0 0 2 0 22 2 2 2 2 2

4 0 0 3 0 3 4 0 0 3

0.2;
( , , ); ( , , )

( , , ); ( , , )
( , , ); ( , , )
( , , ); ( , ,

h
F f t x y G g t x y
F f t h x h F y hG G g t h x h F y hG
F f t h x h F y hG G g t h x h F y hG
F f t h x h F y hG G g t h x h F y

=
= =
= + + + = + + +
= + + + = + + +
= + + + = + +

( ) ( )
0 3

1 0 1 2 3 4 1 0 1 2 3 4

)

2 2 ; 2 2
6 6

hG
h hx x F F F F y y G G G G

+

= + + + + = + + + +

 

 
to calculate the intermediate slopes and Runge-Kutta approximations  1 1(0.2), (0.2)x x y y≈ ≈  for 
part (c).  Again, we give the results in tabular form. 
 

1. (a) 
x1 y1 x2 y2 xact yact 
0.4 2.2 0.88 2.5 1.0034 2.6408 

  
 (b) 

u1 v1 x1 y1 xact yact 
0.8 2.4 0.96 2.6 1.0034 2.6408 

  
 (c) 

F1 G1 F2 G2 F3 G3 F4 G4 
4 2 4.8 3 5.08 3.26 6.32 4.684 
x1 y1 xact yact     

1.0027 2.6401 1.0034 2.6408     
 
 
2. (a) 

x1 y1 x2 y2 xact yact 
0.9 –0.9 0.81 –0.81 0.8187 –0.8187 

 (b) 
u1 v1 x1 y1 xact yact 
0.8 –0.8 0.82 –0.82 0.8187 –0.8187 

  
 (c) 

F1 G1 F2 G2 F3 G3 F4 G4 
–1 1 –0.9 0.9 –0.91 0.91 –0.818 0.818 
x1 y1 xact yact     

0.8187 –0.8187 0.8187 –0.8187     
 
 
3. (a) 

x1 y1 x2 y2 xact yact 
1.7 1.5 2.81 2.31 3.6775 2.9628 
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 (b) 

u1 v1 x1 y1 xact yact 
2.4 2 3.22 2.62 3.6775 2.9628 

  
 (c) 

F1 G1 F2 G2 F3 G3 F4 G4 
7 5 11.1 8.1 13.57 9.95 23.102 17.122 
x1 y1 xact yact     

3.6481 2.9407 3.6775 2.9628     
 
 
4. (a) 

x1 y1 x2 y2 xact yact 
1.9 –0.6 3.31 –1.62 4.2427 -2.4205 

  
 (b) 

u1 v1 x1 y1 xact yact 
2.8 –1.2 3.82 –2.04 4.2427 -2.4205 

  
 (c) 

F1 G1 F2 G2 F3 G3 F4 G4 
9 –6 14.1 –10.2 16.59 –12.42 26.442 –20.94 
x1 y1 xact yact     

4.2274 –2.4060 4.2427 -2.4205     
 
 
5. (a) 

x1 y1 x2 y2 xact yact 
0.9 3.2 –0.52 2.92 -0.5793 2.4488 

  
 (b) 

u1 v1 x1 y1 xact yact 
–0.2 3.4 –0.84 2.44 -0.5793 2.4488 

 (c) 
F1 G1 F2 G2 F3 G3 F4 G4 

–11 2 –14.2 –2.8 –12.44 –3.12 –12.856 –6.704 
x1 y1 xact yact     

–0.5712 2.4485 -0.5793 2.4488     
 
 
6. (a) 

x1 y1 x2 y2 xact yact 
–0.8 4.4 –1.76 4.68 -1.9025 4.4999 
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 (b) 
u1 v1 x1 y1 xact yact 

–1.6 4.8 –1.92 4.56 -1.9025 4.4999 
  
 (c) 

F1 G1 F2 G2 F3 G3 F4 G4 
–8 4 –9.6 2.8 –9.52 2.36 –10.848 0.664 
x1 y1 xact yact     

–1.9029 4.4995 -1.9025 4.4999     
 
 
7. (a) 

x1 y1 x2 y2 xact yact 
2.5 1.3 3.12 1.68 3.2820 1.7902 

  
 (b) 

u1 v1 x1 y1 xact yact 
3 1.6 3.24 1.76 3.2820 1.7902 

  
 (c) 

F1 G1 F2 G2 F3 G3 F4 G4 
5 3 6.2 3.8 6.48 4 8.088 5.096 
x1 y1 xact yact     

3.2816 1.7899 3.2820 1.7902     
 
 
8. (a) 

x1 y1 x2 y2 xact yact 
0.9 –0.9 2.16 –0.63 2.5270 -0.3889 

  
 (b) 

u1 v1 x1 y1 xact yact 
1.8 –0.8 2.52 –0.46 2.5270 -0.3889 

  
 (c) 

F1 G1 F2 G2 F3 G3 F4 G4 
9 1 12.6 2.7 12.87 3.25 16.02 5.498 
x1 y1 xact yact     

2.5320 –0.3867 2.5270 -0.3889     
 
 
In Problems 9-11 we use the same Runge-Kutta template as in part (c) of Problems 1–8 above, and 
give both the Runge-Kutta approximate values with step sizes  h  =  0.1  and  h  =  0.05,  and also 
the actual values. 
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9. With  h  =   0.1:   x(1)  ≈  3.99261,   y(1)  ≈  6.21770 
 With  h  =  0.05:   x(1)  ≈  3.99234,   y(1)  ≈  6.21768 
 Actual  values:   x(1)  ≈  3.99232,   y(1)  ≈  6.21768 
 
10. With  h  =   0.1:   x(1)  ≈  1.31498,   y(1)  ≈  1.02537 
 With  h  =  0.05:   x(1)  ≈  1.31501,   y(1)  ≈  1.02538 
 Actual  values:   x(1)  ≈  1.31501,   y(1)  ≈  1.02538 
 
11. With  h  =   0.1:   x(1)  ≈  -0.05832,    y(1)  ≈  0.56664 
 With  h  =  0.05:   x(1)  ≈  -0.05832,    y(1)  ≈  0.56665 
 Actual  values:   x(1)  ≈  -0.05832,    y(1)  ≈  0.56665 
 
12. We first convert the given initial value problem to the two-dimensional problem 
 
    x'  =  y,      x(0)  =  0, 

    y'  =  -x + sin t, y(0)  =  0. 
 
 Then with both step sizes  h  =  0.1  and  h  =  0.05  we get the actual value  x(1)  ≈  0.15058  

accurate to  5  decimal places. 
 

13. With  y  =  x'  we want to solve numerically the initial value problem 
 
             x'  =  y,                x(0)  =  0 

      y'  =  -32 - 0.04y,     y(0)  =  288. 
 
 When we run Program RK2DIM with step size  h  =  0.1  we find that the change of sign in 

the velocity  v  occurs as follows: 
 
     t      x      v           
    7.6  1050.2  +2.8 
    7.7  1050.3   -0.4 
 
 Thus the bolt attains a maximum height of about 1050 feet in about 7.7 seconds. 
 

14.   Now we want to solve numerically the initial value problem 
 
    x'  =  y,    x(0)  =  0, 

    y'  =  -32 - 0.0002y2,  y(0)  =  288. 
 
 Running Program RK2DIM with step size  h  =  0.1,  we find that the bolt attains a 

maximum height of about 1044 ft in about 7.8 sec.  Note that these values are comparable to 
those found in Problem 13. 
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15. With  y  =  x',  and with  x  in miles and  t  in seconds, we want to solve numerically the 
initial value problem 

 
    x'  =  y 

    y'  =  -95485.5/(x2 + 7920x + 15681600) 

    x(0)  =  0,  y(0)  =  1. 
 
 We find (running RK2DIM with  h  =  1) that the projectile reaches a maximum height of 

about 83.83 miles in about  168 sec  =  2 min 48 sec. 
 
16. We first defined the MATLAB function 
 
 
  function xp = fnball(t,x)

% Defines the baseball system
% x1′′′′ = x′′′′ = x3, x3′′′′ = -cvx′′′′
% x2′′′′ = y′′′′ = x4, x4′′′′ = -cvy′′′′- g
% with air resistance coefficient c.

g = 32;
c = 0.0025;

  xp = x;
v = sqrt(x(3).^2) + x(4).^2);
xp(1) = x(3);
xp(2) = x(4);
xp(3) = -c*v*x(3);
xp(4) = -c*v*x(4) - g;

 
 Then, using the n-dimensional program rkn with step size 0.1 and initial data 

corresponding to the indicated initial inclination angles, we got the following results: 
 
    Angle   Time  Range 
     40            5.0         352.9 
     45            5.4         347.2 
     50            5.8         334.2 
 
 We have listed the time to the nearest tenth of a second, but have interpolated to find the 

range in feet. 
 
17. The data in Problem 16 indicate that the range increases when the initial angle is decreased 

below  45o.  The further data 
 
    Angle   Range 
     41.0           352.1 
     40.5       352.6 
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     40.0       352.9 
             39.5          352.8 
            39.0         352.7 
          35.0         350.8 
 
 indicate that a maximum range of about  353 ft  is attained with  α  ≈  40o. 
 
18. We "shoot" for the proper inclination angle by running program rkn (with  h  =  0.1) as 

follows: 
 
              Angle        Range 
              60           287.1 
               58             298.5 
              57.5          301.1 
 
 Thus we get a range of  300 ft  with an initial angle just under  57.5o. 
 
19. First we run program rkn (with  h =  0.1) with  v0  =  250 ft/sec  and obtain the following 

results: 
 
                 t            x              y 
            5.0        457.43        103.90 
            6.0         503.73           36.36 
 
 Interpolation gives  x  =  494.4  when  y  =  50.  Then a run with  v0  =  255 ft/sec  gives the 

following results: 
  
                     t               x                y 
                  5.5         486.75        77.46 
                  6.0         508.86        41.62 
 
 Finally a run with  v0  =  253 ft/sec  gives these results: 
      
                     t               x                y 
                  5.5         484.77        75.44 
                  6.0         506.82        39.53 
 
 Now  x  ≈  500 ft  when  y  =  50 ft.  Thus Babe Ruth's home run ball had an initial velocity 

of 253 ft/sec. 
 
20. A run of program rkn with  h  =  0.1  and with the given data yields the following results: 
 
                t     x       y      v         α 
              5.5       989     539      162     +0.95 
              5.6    1005     539      161    -0.18 
                .    .   .    .      . 
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                .    .   .    .      . 
                .    .   .    .      . 
                .    .   .    .      . 
            11.5     1868        16       214       -52 
            11.6     1881        -1       216       -53 
 
 The first two lines of data above indicate that the crossbow bolt attains a maximum height of 

about 1005 ft in about 5.6 sec.  About 6 sec later (total time 11.6 sec) it hits the ground, 
having traveled about 1880 ft horizontally. 

 
21. A run with  h  =  0.1  indicates that the projectile has a range of about 21,400 ft  ≈  4.05 mi  

and a flight time of about 46 sec.  It attains a maximum height of about 8970 ft in about 17.5 
sec.  At time  t  ≈  23 sec  it has its minimum velocity of about  368 ft/sec.  It hits the ground 
(t ≈ 46  sec) at an angle of about  77° with a velocity of about 518 ft/sec. 
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CHAPTER 8 
 
MATRIX EXPONENTIAL METHODS 
 
 
SECTION 8.1 
 
In Problems 1–8 we first use the eigenvalues and eigenvectors of the coefficient matrix  A  to 
find first a  fundamental matrix  ΦΦΦΦ(t)  for the homogeneous system  x′  =  Ax.  Then we apply the 
formula 
                x(t)  =  ΦΦΦΦ(t)ΦΦΦΦ(0)-1x0, 
 
to find the solution vector  x(t)  that satisfies the initial condition  x(0)  =  x0.  Formulas (11) and 
(12) in the text provide inverses of  2-by-2  and  3-by-3  matrices. 
 

1. Eigensystem: T T
1 1 2 21, [1 1] ; 3, [1 1]λ λ= = − = =v v  

 1 2

3

1 2 3( )
t t

t t
t t

e e
t e e

e e
λ λ  

 Φ = =    − 
v v  

 
3 3

3 3

1 1 3 51 1( )
1 1 22 2 5

t t t t

t t t t

e e e e
t

e e e e
−   +   = ⋅ ⋅ =      −− − +      

x  

 

2. Eigensystem: T T
1 1 2 20, [1 2] ; 4, [1 2]λ λ= = = = −v v  

 1 2

4

1 2 4

1
( )

2 2

t
t t

t

e
t e e

e
λ λ  

 Φ = =    − 
v v  

 
4 4

4 4

2 1 21 3 51 1( )
2 1 14 42 2 6 10

t t

t t

e e
t

e e
   +   = ⋅ ⋅ =      − −− −      

x   

 

3. Eigensystem: T4 , [1 2 2]i iλ = = +v  

 
cos4 2sin 4 2cos4 sin 4

( ) Re( ) Im( )
2cos4 2sin 4

t t t t t t
t e e

t t
λ λ − + 

 Φ = =   
 

v v  

 
cos4 2sin 4 2cos4 sin 4 0 2 0 5sin 41 1( )

2cos4 2sin 4 2 1 1 4cos4 2sin 44 4
t t t t t

t
t t t t

− + −       = ⋅ ⋅ =       − −       
x  
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4. Eigensystem: T T
1 2 1 22, 2; { , } with [1 1] , [1 0]λ = = =v v v v  

 2
1 1 2

1 1
( ) ( )

1
t t t t

t e t e e
t

λ λ + 
 Φ = + =   

 
v v v  

 2 21 1 0 1 1 1
( )

1 1 1 0
t tt t

t e e
t t
+ +       = ⋅ ⋅ =       −       

x  

 
 
5. Eigensystem: T3 , [ 1 3]i iλ = = − +v  

 
cos3 sin 3 cos3 sin 3

( ) Re( ) Im( )
3cos3 3sin 3

t t t t t t
t e e

t t
λ λ − − − 

 Φ = =   
 

v v  

 
cos3 sin 3 cos3 sin 3 0 1 1 3cos3 sin 31 1( )

3cos3 3sin 3 3 1 1 3cos3 6sin 33 3
t t t t t t

t
t t t t

− − − −       = ⋅ ⋅ =       − − +       
x  

 
 
6. Eigensystem: T5 4 , [1 2 2]i iλ = + = +v  

 5 cos4 2sin 4 2cos4 2sin 4
( ) Re( ) Im( )

2cos4 2sin 4
t t t t t t t

t e e e
t t

λ λ − + 
 Φ = =   

 
v v  

 5 5cos4 2sin 4 2cos4 2sin 4 0 2 2 cos4 sin 41( ) 2
2cos4 2sin 4 2 4 0 sin 44

t tt t t t t t
t e e

t t t
− + +       = ⋅ ⋅ =       −       

x  

 
 
7. Eigensystem: 
 T T T

1 1 2 2 3 30, [6 2 5] ; 1, [3 1 2] ; 1, [2 1 2]λ λ λ= = = = = − =v v v  

 31 2
1 2 3

6 3 2
( ) 2

5 2 2

t t

tt t t t

t t

e e
t e e e e e

e e

λλ λ

−

−

−

 
 

 Φ = =   
 
 

v v v  

 
6 3 2 0 2 1 2 12 12 2

( ) 2 1 2 2 1 4 4
5 2 2 1 3 0 0 10 8 2

t t t t

t t t t

t t t t

e e e e
t e e e e

e e e e

− −

− −

− −

   − − + +   
      = ⋅ − ⋅ = − + +      
   − − + +         

x  

 
 
8. Eigensystem: 
 T T T

1 1 2 2 3 32, [0 1 1] ; 1, [1 1 0] ; 3, [1 1 1]λ λ λ= − = − = = − = = −v v v  
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 31 2

3

2 3
1 2 3

2 3

0
( )

0

t t

tt t t t t

t t

e e
t e e e e e e

e e

λλ λ −

−

 
 

 Φ = = − −  
 − 

v v v  

 

3

2 3 2

2 3 2

0 1 1 0 1
( ) 0 1 1 0

0 1 1 1 1

t t t

t t t t t

t t t

e e e
t e e e e e

e e e

− −

− −

      
      = − − ⋅ − − ⋅ = − +      
   − − −         

x  

 
 
In each of Problems  9-20  we first solve the given linear system to find two linearly 
independent solutions  x1  and  x2,  then set up the fundamental matrix  [ ]1 2( ) ( ) ( )t t t= x xΦΦΦΦ ,  

and finally calculate the matrix exponential  1( ) (0)te t −= Φ ΦA . 
 

9. Eigensystem: T T
1 1 2 21, [1 1] ; 3, [2 1]λ λ= = = =v v  

 1 2

3

1 2 3

2
( )

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =   
 

v v  

 
3 3 3

3 3 3

1 22 2 2 2
1 1 2

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   − + − = =    − − + −    

A  

 
 
10. Eigensystem: T T

1 1 2 20, [1 1] ; 2, [3 2]λ λ= = = =v v  

 1 2

2

1 2 2

1 3
( )

1 2

t
t t

t

e
t e e

e
λ λ  

 Φ = =   
 

v v  

 
2 2 2

2 2 2

2 31 3 2 3 3 3
1 11 2 2 2 3 2

t t t
t

t t t

e e e
e

e e e
−   − + − = =    − − + −    

A  

 
 
11. Eigensystem: T T

1 1 2 22, [1 1] ; 3, [3 2]λ λ= = = =v v  

 1 2

2 3

1 2 2 3

3
( )

2

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =   
 

v v  

 
2 3 2 3 2 3

2 3 2 3 2 3

2 33 2 3 3 3
1 12 2 2 3 2

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   − + − = =    − − + −    

A  
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12. Eigensystem: T T
1 1 2 21, [1 1] ; 2, [4 3]λ λ= = = =v v  

 1 2

2

1 2 2

4
( )

3

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =   
 

v v  

 
2 2 2

2 2 2

3 44 3 4 4 4
1 13 3 3 4 3

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   − + − = =    − − + −    

A  

 

13. Eigensystem: T T
1 1 2 21, [1 1] ; 3, [4 3]λ λ= = = =v v  

 1 2

3

1 2 3

4
( )

3

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =   
 

v v  

 
3 3 3

3 3 3

3 44 3 4 4 4
1 13 3 3 4 3

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   − + − = =    − − + −    

A  

 

14. Eigensystem: T T
1 1 2 21, [2 3] ; 3, [3 4]λ λ= = = =v v  

 1 2

2

1 2 2

2 3
( )

3 4

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =   
 

v v  

 
2 2 2

2 2 2

4 32 3 8 9 6 6
3 23 4 12 12 9 8

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   − + − = =    − − + −    

A  

 

15. Eigensystem: T T
1 1 2 21, [2 1] ; 2, [5 2]λ λ= = = =v v  

 1 2

2

1 2 2

2 5
( )

2

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =   
 

v v  

 
2 2 2

2 2 2

2 52 5 4 5 10 10
1 22 2 2 5 4

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   − + − = =    − − + −    

A  

 

16. Eigensystem: T T
1 1 2 21, [3 2] ; 2, [5 3]λ λ= = = =v v  

 1 2

2

1 2 2

3 5
( )

2 3

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =   
 

v v  

 
2 2 2

2 2 2

3 53 5 9 10 15 15
2 32 3 6 6 10 9

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   − + − = =    − − + −    

A  
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17. Eigensystem: T T
1 1 2 22, [1 1] ; 4, [1 1]λ λ= = − = =v v  

 1 2

2 4

1 2 2 4( )
t t

t t
t t

e e
t e e

e e
λ λ  

 Φ = =    − 
v v  

 
2 4 2 4 2 4

2 4 2 4 2 4

1 11 1
1 12 2

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   + − + = ⋅ =    − − + +    

A  

 

18. Eigensystem: T T
1 1 2 22, [1 1] ; 6, [1 1]λ λ= = − = =v v  

 1 2

2 6

1 2 2 6( )
t t

t t
t t

e e
t e e

e e
λ λ  

 Φ = =    − 
v v  

 
2 6 2 6 2 6

2 6 2 6 2 6

1 11 1
1 12 2

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   + − + = ⋅ =    − − + +    

A  

 

19. Eigensystem: T T
1 1 2 25, [1 2] ; 10, [2 1]λ λ= = − = =v v  

 1 2

5 10

1 2 5 10

2
( )

2

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =    − 
v v  

 
5 10 5 10 5 10

5 10 5 10 5 10

1 22 4 2 21 1
2 15 52 2 2 4

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   + − + = ⋅ =    − − + +    

A  

 

20. Eigensystem: T T
1 1 2 25, [1 2] ; 15, [2 1]λ λ= = − = =v v  

 1 2

5 15

1 2 5 15

2
( )

2

t t
t t

t t

e e
t e e

e e
λ λ  

 Φ = =    − 
v v  

 
5 15 5 15 5 15

5 15 5 15 5 15

1 22 4 2 21 1
2 15 52 2 2 4

t t t t t t
t

t t t t t t

e e e e e e
e

e e e e e e
−   + − + = ⋅ =    − − + +    

A  

 
 

21. 2 1
so

1
t t t

e t
t t
+ − = = + =  − 

AA 0 I A  

 
 

22. 2 1 6 4
so

9 1 6
t t t

e t
t t

+ = = + =  − − 

AA 0 I A  
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23. 

2

3 2 2 2

1
1so 1
2

0 0 1

t

t t t t
e t t t t t t

 + − − −
 = = + + = − − 
 
 

AA 0 I A A  

 
 

24. 3 2 2 2 2

1 3 0 3
1so 5 18 1 7 18
2

3 0 1 3

t

t t
e t t t t t t

t t

+ − 
 = = + + = + −
 

−  

AA 0 I A A  

 
 
25. 2 2 22 where , so ( )( ). Hencet t t te e e e t= + = = = +A I BA I B B 0 I I B  
 

2 2
2

2

4 4 355
, ( )

7 70

t t
t t t

t

te t e
e t e e

e
+     = = =     

    

A Ax  

 
 
26. 2 7 77 where , so ( )( ). Hencet t t te e e e t= + = = = +A I BA I B B 0 I I B  
 

7
7

7 7

5 50
, ( )

10 10 5511

t
t t t

t t

e
e t e e

tt e e
     = = =     − − +    

A Ax  

 
 

27. 3 2 21
2where , so ( ) ( ). Hencet t t te e e e t t= + = = = + +A I BA I B B 0 I I B  

 
2 22 (3 2 ) 4 4 28 12

0 2 , ( ) 5 5 12
0 0 6 6

t t t

t t t t t

t

e t e t t e t t
e e t e t e e t

e

   + + + 
    = = = +    
        

A Ax  

 
 
28. 3 5 5 2 21

25 where , so ( ) ( ). Hencet t t te e e e t t= + = = = + +A I BA I B B 0 I I B B  
 

5

5 5 5

2 5 5 5 2

0 0 40 40
10 0 , ( ) 50 50 400

(20 150 ) 30 60 60 2300 6000

t

t t t t t

t t t

e
e t e e t e e t

t t e t e e t t

     
     = = = +     
 + + +       

A Ax  

 
 
29. 4 2 2 3 31 1

2 6where , so ( ) ( ). Hencet t t te e e e t t t= + = = = + + +A I BA I B B 0 I I B B B  
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2 2 3 2 3

2 2

11 2 3 6 4 6 4 1 9 12 4
10 1 6 3 6 1 9 6

, ( )
10 0 1 2 1 2
10 0 0 1 1

t t t t

t t t t t t t t t
t t t t t

e e t e e
t t

   + + + + + + 
    + + +    = = =
     +
    
       

A Ax  

 

30. 4 3 3 2 2 3 31 1
2 63 where , so ( ) ( ).t t t te e e e t t t= + = = = + + +A I BA I B B 0 I I B B B  

 Hence 
 

3 3
2 2

2 3 2 2 3

1 0 0 0 1 1
6 1 0 0 1 1 6

, ( )
9 18 6 1 0 1 1 15 18

12 54 36 9 18 6 1 1 1 27 72 36

t t t tt t
e e t e e

t t t t t
t t t t t t t t t

     
     +
     = = =

+ + +     
     + + + + + +     

A Ax  

   

33. 
cosh sinh

cosh sinh
sinh cosh

t t t
e t t

t t
 = + =  
 

A I A ,  so the general solution of  ′ =x Ax   is 

 
1 2

1 2

cosh sinh
( )

sinh cosh
t c t c t

t e
c t c t

+ = =  + 

Ax c . 

 

34. Direct calculation gives  2 4= −A I ,  and it follows that  3 44 and 16 .= − =A A A I  
 Therefore 
 

2 3 4 5

2 4 3 5

1
2

4 4 16 16
2! 3! 4! 5!

(2 ) (2 ) 1 (2 ) (2 )1 (2 )
2! 4! 2 3! 5!

cos2 sin 2

t

t

t t t te t

t t t tt

e t t

= + − − + + +

   
= − + + + − + +   

   

= +

A

A

I A I AI A

I A

I A

�

� �  

 
In Problems 35–40 we give first the linearly independent generalized eigenvectors  1 2, , , nu u u�  
of the matrix  A  and the corresponding solution vectors  1 2( ), ( ), , ( )nt t tx x x�  defined by Eq. 
(34) in the text, then the fundamental matrix  [ ]1 2( ) ( ) ( ) ( )nt t t tΦ = x x x� .  Finally we 

calculate the exponential matrix  1( ) (0) .te t −= Φ ΦA  
 
35. T T

1 23 : [4 0] , [0 1]λ = = =u u  

 1 2{ , }u u is a length 2 chain based on the ordinary (rank 1) eigenvector  u1,  so   
 u2  is a generalized eigenvector of rank 2. 
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 ( )1 1 2 2 2( ) , ( ) ( )t tt e t e tλ λ λ= = + −x u x u A I u  

 3
1 2

4 4
( ) [ ( ) ( )]

0 1
t t

t t t e  Φ = =  
 

x x  

 3 34 4 1 0 1 41
0 1 0 4 0 14

t t tt t
e e e     = ⋅ =     

     

A  

 
36. T T T

1 2 31: [8 0 0] , [5 4 0] , [0 1 1]λ = = = =u u u  

 1 2 3{ , , }u u u is a length 3 chain based on the ordinary (rank 1) eigenvector  u1,  so   
 u2  and  u3  are generalized eigenvectors of ranks 2 and 3 (respectively). 

 ( )1 1 2 2 2( ) , ( ) ( ) ,t tt e t e tλ λ λ= = + −x u x u A I u  

 ( )2 2
3 3 3 3( ) ( ) ( ) / 2tt e t tλ λ λ= + − + −x u A I u A I u  

 

2

1 2 3

8 5 8 5 4
( ) [ ( ) ( ) ( )] 0 4 1 4

0 0 1

t

t t t
t t t t e t

 + +
 Φ = = + 
 
 

x x x  

 

2 28 5 8 5 4 4 5 5 1 2 3 4
10 4 1 4 0 8 8 0 1 4

32
0 0 1 0 0 32 0 0 1

t t t

t t t t t t
e e t e t

   + + − + 
    = + ⋅ − =    
        

A  

 
37. 1T

1 1 1 12 : [1 0 0] , ( ) tt eλλ = = =u x u  

 T T
2 2 31: [9 3 0] , [10 1 1]λ = = − = −u u  

 2 3{ , }u u is a length 2 chain based on the ordinary (rank 1) eigenvector  u2,  so   
 u3  is a generalized eigenvector of rank 2. 

 ( )2 2
2 2 3 3 2 3( ) , ( ) ( )t tt e t e tλ λ λ= = + −x u x u A I u  

 

2

1 2 3

9 (10 9 )
( ) [ ( ) ( ) ( )] 0 3 (1 3 )

0 0

t t t

t t

t

e e t e
t t t t e t e

e

 +
 Φ = = − − 
 − 

x x x  

 

2 9 (10 9 ) 3 9 13
10 3 (1 3 ) 0 1 1
3

0 0 0 0 3

t t t

t t t

t

e e t e
e e t e

e

 +  
   = − − ⋅ − −   
 − −   

A  
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( )2 2 23 3 13 9 13

0 3
0 0

t t t t t

t t

t

e e e t e e
e t e

e

 − + − − +
 =  
 
 

    

 
38. 1T

1 1 1 110 : [4 1 0] , ( ) tt eλλ = = =u x u  

 T T
2 2 35 : [50 0 0] , [0 4 1]λ = = = −u u  

 2 3{ , }u u is a length 2 chain based on the ordinary (rank 1) eigenvector  u2,  so   
 u3  is a generalized eigenvector of rank 2. 

 ( )2 2
2 2 3 3 2 3( ) , ( ) ( )t tt e t e tλ λ λ= = + −x u x u A I u  

 

10 5 5

10 5
1 2 3

5

4 50 50
( ) [ ( ) ( ) ( )] 0 4

0 0

t t t

t t

t

e e t e
t t t t e e

e

 
 Φ = =  
 − 

x x x  

 

10 5 5

10 5

5

4 50 50 0 50 200
10 4 1 4 16

50
0 0 0 0 50

t t t

t t t

t

e e t e
e e e

e

   
   = ⋅ − −   
 − −   

A  

 

5 10 5 10 5

10 10 5

5

4 4 16 (16 50 )
0 4 4
0 0

t t t t t

t t t

t

e e e e t e
e e e

e

 − − +
 = − 
 
 

    

 
39. T T

2 1 21: [3 0 0 0] , [0 1 0 0]λ = = =u u  

 1 2{ , }u u is a length 2 chain based on the ordinary (rank 1) eigenvector  u1,  so   
 u2  is a generalized eigenvector of rank 2. 

 ( )1 1
1 1 2 2 1 2( ) , ( ) ( )t tt e t e tλ λ λ= = + −x u x u A I u  

 T T
2 3 42 : [144 36 12 0] , [0 27 17 4]λ = = =u u  

 3 4{ , }u u is a length 2 chain based on the ordinary (rank 1) eigenvector  u3,  so   
 u4  is a generalized eigenvector of rank 2. 

 ( )2 2
3 3 4 4 2 4( ) , ( ) ( )t tt e t e tλ λ λ= = + −x u x u A I u  

 

2 2

2 2

1 2 3 4 2 2

2

3 3 144 144
0 36 (27 36 )

( ) [ ( ) ( ) ( ) ( )]
0 0 12 (17 12 )
0 0 0 4

t t t t

t t t

t t

t

e t e e t e
e e t e

t t t t t
e t e

e

 
 + Φ = =
 +
 
  

x x x x  
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2 2

2 2

2 2

2

16 0 192 8163 3 144 144
0 48 144 2880 36 (27 36 ) 1
0 0 4 17480 0 12 (17 12 )
0 0 0 120 0 0 4

t t t t

t t t
t

t t

t

e t e e t e
e e t e

e
e t e

e

−   
   −+   = ⋅
  − +
   
    

A  

 

 

2 2

2 2

2 2

2

3 ( 12 9 ) 12 (51 18 ) ( 51 36 )
0 3 3 6 ( 6 9 )
0 0 3
0 0 0

t t t t t t

t t t t t

t t

t

e t e t e t e t e t e
e e e e t e

e t e
e

 − − + + + − +
 − + + − + =
 
 
  

    

 
 
40. 1T

1 1 1 13 : [100 20 4 1] , ( ) tt eλλ = = =u x u  

 T T T
2 3 42 : [16 0 0 0] , [0 4 0 0] , [0 1 1 0]λ = = = = −u u u  

 
 2 3 4{ , , }u u u is a length 3 chain based on the ordinary (rank 1) eigenvector  u2,  so   
 u3  and  u4  are generalized eigenvectors of ranks 2 and 3 (respectively). 
 
 ( )2 2

2 2 3 3 2 3( ) , ( ) ( ) ,t tt e t e tλ λ λ= = + −x u x u A I u  

 ( )2 2 2
4 4 2 4 2 4( ) ( ) ( ) / 2tt e t tλ λ λ= + − + −x u A I u A I u  

 

 

3 2 2 2 2

3 2 2

1 2 3 4 3 2

3

100 16 16 8
20 0 4 ( 1 4 )

( ) [ ( ) ( ) ( ) ( )]
4 0 0

0 0 0

t t t t

t t t

t t

t

e e t e t e
e e t e

t t t t t
e e

e

 
 − + Φ = =
 
 
  

x x x x  

 

 

3 2 2 2 2

3 2 2

3 2

3

0 0 0 16100 16 16 8
1 0 0 10020 0 4 ( 1 4 ) 1
0 4 4 96164 0 0
0 0 16 640 0 0

t t t t

t t t
t

t t

t

e e t e t e
e e t e

e
e e
e

   
   −− +   = ⋅
  − 
   −    

A  

 

 

2 2 2 2 3 2 2

2 2 3 2

2 3 2

3

4 (4 8 ) 100 (100 96 32 )
0 4 20 (20 16 )
0 0 4 4
0 0 0

t t t t t

t t t t

t t t

t

e t e t t e e t t e
e t e e t e

e e e
e

 + − + +
 − + =
 −
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SECTION 8.2 
 
NONHOMOGENEOUS LINEAR SYSTEMS 
 
1. Substitution of the trial solution  ( ) , ( )p px t a y t b= =   yields the equations  

2 3 0, 2 2 0a b a b+ + = + − =   with solution  a = 7/3,  b = –8/3.  Thus we obtain the 
particular solution  ( ) 7 / 3, ( ) 8 / 3x t y t= = − . 

 
2. When we substitute the trial solution  1 1 2 2( ) , ( )p px t a b t y t a b t= + = +   and collect 

coefficients, we get the equations 
 

   1 2 1 1 2

1 2 2 1 2

2 3 5 2 3 0
2 2 2.

a a b b b
a a b b b

+ + = + =
+ = + =

 

 
We first solve the second pair for  1 23/ 2, 1.b b= = −   Then we can solve the first pair for 

1 21/8, 5 / 4.a a= = −   This gives the particular solution 
 

   1 1( ) (1 12 ), ( ) (5 4 ).
8 4

x t t y t t= + = − +  

 
3. When we substitute the trial solution 
 
   2 2

1 1 1 2 2 2,p px a b t c t y a b t c t= + + = + +  
 
 and collect coefficients, we get the equations 
 

  1 2 1 1 2 1 1 2

1 2 2 1 2 2 1 2

3 4 3 4 2 3 4 0
3 2 3 2 2 3 2 1 0.
a a b b b c c c
a a b b b c c c

+ = + = + =
+ = + = + + =

  

 
 Working backwards, we solve first for  1 22 / 3, 1/ 2,c c= − =  then for  

1 210 / 9, 7 / 6,b b= = −  and finally for  1 231/ 27, 41/ 36.a a= − =   This determines the 
particular solution  ( ), ( ).p px t y t   Next, the coefficient matrix of the associated 
homogeneous system has eigenvalues  1 1λ = −  and  2 6λ =  with eigenvectors  

T
1 [1 1]= −v  and  T

2 [4 3] ,=v  respectively, so the complementary solution is given 
by   

   6 6
1 2 1 2( ) 4 , ( ) 3 .t t t t

c cx t c e c e x t c e c e− −= + = − +   
 
 When we impose the initial conditions  (0) 0, (0) 0x y= =   on the general solution  
 ( ) ( ) ( ), ( ) ( ) ( )c p c px t x t x t y t y t y t= + = +   we find that  1 28 / 7, 1/ 756.c c= =   This 

finally gives the desired particular solution 
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6 2

6 2

1( ) ( 864 4 868 840 504 )
756

1( ) ( 864 3 861 882 378 ).
756

t t

t t

x t e e t t

y t e e t t

−

−

= + − + −

= − + + − +
 

 

4. The coefficient matrix of the associated homogeneous system has eigenvalues  1 5λ = −  
and  2 2λ = −  with eigenvectors  T

1 [1 1]=v  and  T
2 [1 6] ,= −v  respectively, so the 

complementary solution is given by   
 

x t c e c e y t c e c ec
t t

c
t t( ) , ( ) .= + = −− −

1
5

2
2

1
5

2
26  

 
Then we try  ( ) , ( )t t

p px t a e y t be= =   and find readily the particular solution  
31

12 4( ) , ( )t t
p px t e y t e= − = − .  Thus the general solution is 

 
5 2 5 2 31

1 2 1 212 4( ) , ( ) 6 .t t t t t tx t c e c e e y t c e c e e− −= + − = − −  
 

Finally we apply the initial conditions  (0) (0) 1x y= =   to determine  c1 = 33/28  and   
c2  = –2/21.  The resulting particular solution is given by 
 

5 2 5 21 1( ) (99 8 7 ), ( ) (99 48 63 ).
84 84

t t t t t tx t e e e y t e e e− −= − − = + −  

 
5. The coefficient matrix of the associated homogeneous system has eigenvalues  1 1λ = −  

and  2 5,λ =   so the nonhomogeneous term  te− duplicates part of the complementary 
solution.   We therefore try the particular solution 

 
  1 1 1 2 2 2( ) , ( ) .t t t t

p px t a b e c t e y t a b e c t e− − − −= + + = + +  
 
Upon solving the six linear equations we get by collecting coefficients after substitution 
of this trial solution into the given nonhomogeneous system, we obtain the particular 
solution 

1 1( ) ( 12 7 ), ( ) ( 6 7 ).
3 3

t t tx t e t e y t t e− − −= − − − = − −  

 
6. The coefficient matrix of the associated homogeneous system has eigenvalues  

( )1
2 7 89λ = ±  so there is no duplication.  We therefore try the particular solution 

 
   1 1 2 2 .( ) , ( )t t t t

p px t b e c t e y t b e c t e= + = +    
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Upon solving the four linear equations we get by collecting coefficients after substitution 
of this trial solution into the given nonhomogeneous system, we obtain the particular 
solution 

1 1( ) (91 16 ) , ( ) (25 16 )
256 32

t tx t t e y t t e= − + = + . 

 
7. First we try the particular solution 
 

  1 1 2 2 .( ) sin cos , ( ) sin cosp px t a t b t y t a t b t= + = +  
 

 Upon solving the four linear equations we get by collecting coefficients after substitution 
of this trial solution into the given nonhomogeneous system, we find that  1 21/82,a = −  

1 2 225/82, 15/ 41, 12 / 41.b a b= − = − = −   The coefficient matrix of the associated 
homogeneous system has eigenvalues  1 1λ =  and  2 9λ = −  with eigenvectors  

T
1 [1 1]=v  and  T

2 [2 3] ,= −v  respectively, so the complementary solution is given 
by   

   
9 9

1 2 1 2( ) 2 , ( ) 3 .t t t t
c cx t c e c e y t c e c e− −= + = −  

 
When we impose the initial conditions  x(0) = 1,  y(0) = 0,  we find that  1 9 /10c =  and  

2 83/ 410.c =   It follows that the desired particular solution  ,c p c px x x y y y= + = +  is 
given by 

9

9

1( ) (369 166 125cos 105sin )
410

1( ) (369 249 120cos 150sin ).
410

t t

t t

x t e e t t

y t e e t t

−

−

= + − −

= − − −
 

 
8. The coefficient matrix of the associated homogeneous system has eigenvalues  2 ,iλ = ±  

so the complementary function involves  cos2 and sin 2 .t t  There being therefore no 
duplication, we substitute the trial solution 

 
  1 1 2 2( ) sin cos , ( ) sin cosp px t a t b t y t a t b t= + = +    
 
 into the given nonhomogeneous system.  Upon solving the four linear equations that 

result upon collection of coefficients, we obtain the particular solution 
 

1 1( ) (17cos 2sin ), ( ) (3cos 5sin ).
3 3

x t t t y t t t= + = +  

 
9. Here the associated homogeneous system is the same as in Problem 8, so the 

nonhomogeneous term  cos 2t  term duplicates the complementary function.  We 
therefore substitute the trial solution   
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11 1 1

2 2 2 2

( ) sin 2 cos2 sin 2 cos2
( ) sin 2 cos2 sin 2 cos2

p

p

x t a t b t c t t d t t
y t a t b t c t t d t t

= + ++
= + ++

 

 
 and use a computer algebra system to solve the system of 8 linear equations that results 

when we collect coefficients in the usual way.   This gives the particular solution 
 

1 1( ) (sin 2 2 cos2 sin 2 ), ( ) sin 2 .
4 4

x t t t t t t y t t t= + + =  

 
10. The coefficient matrix of the associated homogeneous system has eigenvalues  3,iλ = ±  

so there is no duplication.  Substitution of the trial solution 
 

1 1 2 2( ) cos sin , ( ) cos sint t t t
p px t a e t b e t y t a e t b e t= + = +  

 
 yields the equations 
 

   2 1 1 2 2

2 1 2 1 2

2 0 2 2 0
2 0 2 2 1.

a b a a b
b a a b b

+ = − + + =
− = − − + =

  

 
The first two equations enable us to eliminate two of the variables immediately, and we 
readily solve for the values  1 2 1 24 /13, 3/13, 6 /13, 2 /13a a b b= = = − =   that give the 
particular solution 

 
1 1( ) (4cos 6sin ), ( ) (3cos 2sin ).

13 13
t tx t e t t y t e t t= − = +  

 
11. The coefficient matrix of the associated homogeneous system has eigenvalues  1 0λ =  

and  2 4,λ =   so there is duplication of constant terms.   We therefore substitute the 
particular solution 

    1 1 2 2( ) , ( )p px t a b t y t a b t= + = +   
 
 and solve the resulting equations for  1 2 1 22, 0, 2, 1.a a b b= − = = − =  The eigenvectors 

of the coefficient matrix associated with the eigenvalues  1 0λ =  and  2 4λ =  are  
T

1 [2 1]= −v  and  T
2 [2 1] ,=v  respectively, so the general solution of the given 

nonhomogeneous system is given by 
 
   4 4

1 2 1 2( ) 2 2 2 2 , ( ) .t tx t c c e t y t c c e t= + − − = − + +  
  
 When we impose the initial conditions  (0) 1, (0) 1x y= = −  we find readily that  

1 25 / 4, 1/ 4.c c= =   This gives the desired particular solution 
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4 41 1
2 4( ) (1 4 ), ( ) ( 5 4 ).t tx t t e y t t e= − + = − + +  

 
12. The coefficient matrix of the associated homogeneous system has eigenvalues  1 0λ =  

and  2 2,λ =   so there is duplication of constant terms in the first natural attempt.  We 
must multiply the t-terms by  t  and include all lower degree terms in the trial solution.  
Thus we substitute the the trial solution 

 
2 2

1 1 1 2 2 2( ) , ( )p px t a b t c t y t a b t c t= + + = + + . 
 
 The resulting six equations in the coefficients are satisfied by  1 1 2 2 0,a b a b= = = =   

1 21, 1.c c= = −   This gives the particular solution  2 2( ) , ( ) .x t t y t t= = −  
 

13. The coefficient matrix of the associated homogeneous system has eigenvalues  1 1λ =  and  

2 3,λ =   so there is duplication of  et terms.  We therefore substitute the trial solution 
 

1 1 2 2( ) ( ) , ( ) ( ) .t t
p px t a b t e y t a b t e= + = +  

 
 This leads readily to the particular solution   

   1 5( ) (1 5 ) , ( ) .
2 2

t tx t t e y t t e= + = −  

 
14. The coefficient matrix of the associated homogeneous system has eigenvalues  1 0λ =  

and  2 4,λ =   so there is duplication of both constant terms and  4 te  terms.   We therefore 
substitute the particular solution 

 
4 4 4 4

1 1 1 1 2 2 2 2( ) , ( ) .t t t t
p px t a b t c e d t e y t a b t c e d t e= + + + = + + +  

 
 When we use a computer algebra system to solve the resulting system of 8 equations in 8 

unknowns, we find that  2 2anda c  can be chosen arbitrarily.  With both zero we get the 
particular solution 

 

( ) ( )4 4 41( ) 2 4 2 , ( ) 2 .
8 2

t t ttx t t e t e y t e= − + − + = − +  

 
 
In Problems 15 and 16 the amounts  1 2( ) and ( )x t x t   in the two tanks satisfy the equations 
 
   1 0 1 1 2 1 1 2 2,x rc k x x k x k x′ ′= − = −  
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where  /i ik r V=   in terms of the flow rate  r,  the inflowing concentration  c0, and the volumes 

1 2andV V  of the two tanks. 
 
15. (a) We solve the initial value problem 
 

  1 1 1

2 1 2 2

20 /10, (0) 0
/10 / 20, (0) 0

x x x
x x x x
′ = − =
′ = − =

 

  
 for  /10 /10 / 20

1 2( ) 200(1 ), ( ) 400(1 2 )t t tx t e x t e e− − −= − = + − . 

 (b) Evidently  1 2( ) 200gal and ( ) 400 gal as .x t x t t→ → → ∞  

 (c) It takes about 6 min 56 sec for tank 1 to reach a salt concentration of 1 lb/gal, and 
about 24 min 34 sec for tank 2 to reach this concentration. 

 

16. (a) We solve the initial value problem 
 

  1 1 1

2 1 2 2

30 / 20, (0) 0
/ 20 /10, (0) 0

x x x
x x x x
′ = − =
′ = − =

 

  
 for  / 20 /10 / 20

1 2( ) 600(1 ), ( ) 300(1 2 )t t tx t e x t e e− − −= − = + − . 

 (b) Evidently  1 2( ) 600 gal and ( ) 300 gal as .x t x t t→ → → ∞  

 (c) It takes about 8 min 7 sec for tank 1 to reach a salt concentration of 1 lb/gal, and 
about 17 min 13 sec for tank 2 to reach this concentration. 

 
 

In Problems 17–34 we apply the variation of parameters formula in Eq. (28) of Section 8.2.  The 
answers shown below were actually calculated using the Mathematica code listed in the 
application material for Section 8.2.  For instance, for Problem 17 we first enter the coefficient  
matrix 

A = {{6, -7},
{1, -2}};

the initial vector 
x0 = {{0},

{0}};

and the vector 

f[t_] := {{60},
{90}};  
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of nonhomogeneous terms.  It simplifies the notation to rename Mathematica's exponential 
matrix function by defining 
 
 exp[A_] := MatrixExp[A]
 
Then the integral in the variation of parameters formula is given by 
 

integral =
Integrate[exp[-A*s] . f[s], {s, 0, t}] // Simplify 

 

 
5

5

102 7 95
.

96 95

t t

t t

e e
e e

−

−

 − + +
 − + + 

 

 
Finally the desired particular solution is given by 
 

solution =
exp[A*t] . (x0 + integral) // Simplify 

 

 
5

5

102 7 95
.

96 95

t t

t t

e e
e e

−

−

 − −
 − − 

 

 
(Maple and MATLAB versions of this computation are provided in the applications manual that 
accompanies the textbook.) 
 
 
In each succeeding problem, we need only substitute the given coefficient matrix  A,  initial 
vector  x0, and the vector  f  of nonhomogeneous terms in the above commands, and then re-
execute them in turn.  We give below only the component functions of the final results.  
 
17. 5 5

1 2( ) 102 95 7 , ( ) 96 95t t t tx t e e x t e e− −= − − = − −  
 
18. 5 5

1 2( ) 68 110 75 7 , ( ) 74 80 75t t t tx t t e e x t t e e− −+= − − = − − +  
 
19. 3 2 3 2

1 2( ) 70 60 16 54 , ( ) 5 60 32 27t t t tx t t e e x t t e e− −= − − + + = − − +  
 
20. 2 2 3 2 2 3

1 2( ) 3 60 3 , ( ) 6 30 6t t t t t tx t e t e e x t e t e e− −= + − = − + +  
 
21. 2 3 2 3

1 2( ) 14 15 , ( ) 5 10 15t t t t t tx t e e e x t e e e− −= − − + = − − +  
 
22. 3 3 3 3

1 2( ) 10 7 10 5 , ( ) 15 35 15 5t t t t t t t tx t e t e e t e x t e t e e t e− − − −= − − + − = − − + −  
 
23. 2 2

1 2( ) 3 11 8 , ( ) 5 17 24x t t t x t t t= + + = + +  
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24. 1 2
1( ) 2 ln , ( ) 5 3 3lnx t t t x t t t
t

= + + = + − +  

 
25. 1 2( ) 1 8 cos 8sin , ( ) 2 4 2cos 3sinx t t t t x t t t t= − + + − = − + + −  

26. 1

2

( ) 3cos 32sin 17 cos 4 sin
( ) 5cos 13sin 6 cos 5 sin

x t t t t t t t
x t t t t t t t

= − + +
= − + +

 

 
27. 3 4 2 3 4

1 2( ) 8 6 , ( ) 3 2 3x t t t x t t t t= + = − +  
 
28. 2 2 2 2

1 2( ) 7 14 6 4 ln , ( ) 7 9 3 ln 2 ln 2 lnx t t t t t x t t t t t t t t= − + − + = − + − + − +  
 
29. 1 2( ) cos ln(cos )sin , ( ) sin ln(cos )cosx t t t t t x t t t t t= − = −  
 
30. 2 21 1

1 22 2( ) cos2 , ( ) sin 2x t t t x t t t= =  
 
31. 2 3 2

1 2 3( ) (9 4 ) , ( ) 6 , ( ) 6t t tx t t t e x t t e x t t e= + = =  
 
32. 2 2 2

1 2 3( ) (44 18 ) ( 44 26 ) , ( ) 6 ( 6 6 ) , ( ) 2t t t t tx t t e t e x t e t e x t t e= + + − + = + − + =  

33. 2 3 4 5 2 3 4
1 2

2 3 2
3 4

( ) 15 60 95 12 , ( ) 15 55 15 ,
( ) 15 20 ( ) 15,

x t t t t t x t t t t
x t t t x t t

= + + + = + +

= + =
 

34. 3 2 2 2 2
1 2

2 2 2
3 4

( ) 4 (4 16 8 ) , ( ) 3 (2 4 ) ,
( ) (2 4 2 ) ( ) (1 ),

t t

t t

x t t t t e x t t t e
x t t t e x t t e

= + + + = + +

= + + = +
 

 
 
 
SECTION 8.3 
 
SPECTRAL DECOMPOSITION METHODS 
 
In Problems 1–20 here we want to use projection matrices to find fundamental matrix solutions 
of the linear systems given in Problems 1–20 of Section 7.3.  In each of Problems 1–16, the 
coefficient matrix  A  is 2 2×  with  distinct eigenvalues  1 2and .λ λ  We can therefore use the 
method of Example 1 in Section 8.3.  That is, if we define the projection matrices 
 

   2 1
1 2

1 2 2 1

and ,λ λ
λ λ λ λ

− −= =
− −

A I A IP P    (1) 
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then the desired fundamental matrix solution of  the system  ′ =x Ax  is the exponential matrix 
 
    1 2

1 2.t tte e eλ λ= +A P P      (2) 
 
We use the eigenvalues  1 2andλ λ  given in the Section 7.3 solutions for these problems. 
 

1. 1 2

1 2
; 1, 3

2 1
λ λ 

= = − = 
 

A  

 ( ) ( )1 2

1 1 1 11 1 1 13 ,
1 1 1 14 2 4 2

−   
= − = = + =   −−    

P A I P A I  

 
3 3

3
1 2 3 3

1
2

t t t t
t t t

t t t t

e e e e
e e e

e e e e

− −
−

− −

 + − +
= + =  − + + 

A P P  

    

2. 1 2

2 3
; 1, 4

2 1
λ λ 

= = − = 
 

A  

 ( ) ( )1 2

2 3 3 31 1 1 14 ,
2 3 2 25 5 5 5

−   
= − = = + =   −−    

P A I P A I  

 
4 4

4
1 2 4 4

2 3 3 31
5 2 2 3 2

t t t t
t t t

t t t t

e e e e
e e e

e e e e

− −
−

− −

 + − +
= + =  − + + 

A P P  

    

3. 1 2

3 4
; 1, 6

3 2
λ λ 

= = − = 
 

A  

 ( ) ( )1 2

3 4 4 41 1 1 16 ,
3 4 3 37 7 7 7

−   
= − = = + =   −−    

P A I P A I  

 
6 6

6
1 2 6 6

3 4 4 41
7 3 3 4 3

t t t t
t t t

t t t t

e e e e
e e e

e e e e

− −
−

− −

 + − +
= + =  − + + 

A P P  

  

4. 1 2

4 1
; 2, 5

6 1
λ λ 

= = − = − 
A  

 ( ) ( )1 2

1 1 6 11 1 1 15 , 2
6 6 6 17 7 7 7

−   
= − = = + =   −−    

P A I P A I  

 
2 5 2 5

2 5
1 2 2 5 2 5

61
7 6 6 6

t t t t
t t t

t t t t

e e e e
e e e

e e e e

− −
−

− −

 + − +
= + =  − + + 

A P P  
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5. 1 2

6 7
; 1, 5

1 2
λ λ

− 
= = − = − 

A  

 ( ) ( )1 2

1 7 7 71 1 1 15 ,
1 7 1 16 6 6 6

− −   
= − = = + =   − −−    

P A I P A I  

 
5 5

5
1 2 5 5

7 7 71
6 7

t t t t
t t t

t t t t

e e e e
e e e

e e e e

− −
−

− −

 − + −
= + =  − + − 

A P P  

  

6. 1 2

9 5
; 3, 4

6 2
λ λ 

= = = − − 
A  

 ( ) ( )1 2

5 5 6 51 14 , 3
6 6 6 51 1
− −   

= − = = − =   − −−    
P A I P A I  

 
3 4 3 4

3 4
1 2 3 4 3 4

5 6 5 5
6 6 6 5

t t t t
t t t

t t t t

e e e e
e e e

e e e e
 − + − +

= + =  − − 

A P P  

  

7. 1 2

3 4
; 9, 1

6 5
λ λ

− 
= = − = − 

A  

 ( ) ( )1 2

2 2 3 21 1 1 1, 9
3 3 3 210 5 10 10

−   
= − = = + =   −−    

P A I P A I  

 
9 9

9
1 2 9 9

2 3 2 21
5 3 3 3 2

t t t t
t t t

t t t t

e e e e
e e e

e e e e

− −
−

− −

 + − +
= + =  − + + 

A P P  

  

8. 1 2

1 5
; 2 , 2

1 1
i iλ λ

− 
= = − = − 

A  

 ( ) ( )1 2

2 5 2 51 1 1 12 , 2
2 24 4 4 4

i i i i
i i

i i i ii i
+ − −   

= − = = + =   − − +−    
P A I P A I  

 

2 2
1 2 1 2(cos 2 sin 2 ) (cos 2 sin 2 )

2cos 2 sin 2 5sin 21
sin 2 2cos 2 sin 22

t i t i te e e t i t t i t
t t t

t t t

−= + = − + +
+ − 

=  − 

A P P P P
 

  

9. 1 2

2 5
; 4 , 4

4 2
i iλ λ

− 
= = − = 

 
A  

 ( ) ( )1 2

4 2 5 4 2 51 1 1 14 , 4
4 4 2 4 4 28 8 8 8

i i i i
i i

i i i ii i
+ − −   

= − = = + =   − − +−    
P A I P A I  
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4 4
1 2 1 2(cos 4 sin 4 ) (cos 4 sin 4 )

4cos 4 2sin 4 5sin 41
4sin 4 4cos 4 2sin 44

t i t i te e e t i t t i t
t t t

t t t

−= + = − + +
+ − 

=  − 

A P P P P
 

  

10. 1 2

3 2
; 3 , 3

9 3
i iλ λ

− − 
= = − = 

 
A  

 ( ) ( )1 2

3 3 2 3 3 21 1 1 13 , 3
9 3 3 9 3 36 6 6 6

i i i i
i i

i i i ii i
− − +   

= − = = + =   + − −−    
P A I P A I  

 

3 3
1 2 1 2(cos3 sin 3 ) (cos3 sin 3 )

3cos3 3sin 3 2sin 31
9sin 3 3cos3 3sin 33

t i t i te e e t i t t i t
t t t

t t t

−= + = − + +
− − 

=  + 

A P P P P
 

  

11. 1 2

1 2
; 1 2 , 1 2

2 1
i iλ λ

− 
= = − = + 

 
A  

 ( ) ( )1 2

1 11 1 1 1(1 2 ) , (1 2 )
1 14 2 4 2
i i

i i
i ii i

−   
= − + = = − − =   −−    

P A I P A I  

 

(1 2 ) (1 2 )
1 2 1 2(cos 2 sin 2 ) (cos 2 sin 2 )

cos 2 sin 2
sin 2 cos 2

t i t i t t t

t

e e e e t i t e t i t
t t

e
t t

− += + = − + +
− 

=  
 

A P P P P
 

  

12. 1 2

1 5
; 2 2 , 2 2

1 3
i iλ λ

− 
= = − = + 

 
A  

 
( )

( )

1

2

2 51 1(2 2 )
24 4

2 51 1(2 2 )
24 4

i i
i

i ii
i i

i
i ii

− − 
= − + =  +−  

+ 
= − − =  − − 

P A I

P A I
 

 

(2 2 ) (2 2 ) 2 2
1 2 1 2

2

(cos 2 sin 2 ) (cos 2 sin 2 )
2cos 2 sin 2 5sin 2

sin 2 2cos 2 sin 22

t i t i t t t

t

e e e e t i t e t i t
t t te

t t t

− += + = − + +
− − 

=  + 

A P P P P
 

 

13. 1 2

5 9
; 2 3 , 2 3

2 1
i iλ λ

− 
= = − = + − 

A  
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( )

( )

1

2

3 3 91 1(2 3 )
2 3 36 6

3 3 91 1(2 3 )
2 3 36 6

i i
i

i ii
i i

i
i ii

+ − 
= − + =  −−  

− 
= − − =  − + 

P A I

P A I
 

 

(2 3 ) (2 3 ) 2 2
1 2 1 2

2

(cos3 sin 3 ) (cos3 sin 3 )
3cos3 sin 3 9sin 3

2sin 3 3cos3 sin 33

t i t i t t t

t

e e e e t i t e t i t
t t te

t t t

− += + = − + +
+ − 

=  − 

A P P P P
 

 

14. 1 2

3 4
; 3 4 , 3 4

4 3
i iλ λ

− 
= = − = + 

 
A  

 ( ) ( )1 2

1 11 1 1 1(3 4 ) , (3 4 )
1 18 2 8 2
i i

i i
i ii i

−   
= − + = = − − =   −−    

P A I P A I  

 

(3 4 ) (3 4 ) 3 3
1 2 1 2

3

(cos 4 sin 4 ) (cos 4 sin 4 )
cos 4 sin 4
sin 4 cos 4

t i t i t t t

t

e e e e t i t e t i t
t t

e
t t

− += + = − + +
− 

=  
 

A P P P P
 

 

15. 1 2

7 5
; 5 4 , 5 4

4 3
i iλ λ

− 
= = − = + 

 
A  

 
( )

( )

1

2

4 2 51 1(5 4 )
4 4 28 8

4 2 51 1(5 4 )
4 4 28 8

i i
i

i ii
i i

i
i ii

+ − 
= − + =  −−  

− 
= − − =  − + 

P A I

P A I
 

 (5 4 ) (5 4 ) 5 5
1 2 1 2(cos 4 sin 4 ) (cos 4 sin 4 )t i t i t t te e e e t i t e t i t− += + = − + +A P P P P  

 
5 4cos 4 2sin 2 5sin 4

4sin 4 4cos 4 2sin 24

t t t te
t t t

+ − 
=  − 

 

 

16. 1 2

50 20
; 100, 10

100 60
λ λ

− 
= = − = − − 

A  

 ( ) ( )1 2

4 2 5 21 1 1 110 , 100
10 5 10 490 9 90 9

−   
= + = = + =   −−    

P A I P A I  

 
100 10 100 10

100 10
1 2 100 10 100 10

4 5 2 21
9 10 10 5 4

t t t t
t t t

t t t t

e e e e
e e e

e e e e

− − − −
− −

− − − −

 + − +
= + =  − + + 

A P P  
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In Problems 17, 18, and 20 the coefficient matrix  A  is 3 3×  with distinct eigenvalues  1 2 3, , .λ λ λ   
Looking at Equations (7) and (3) in Section 8.3, we see that  
 
    31 2

1 2 3
tt tte e e eλλ λ= + +A P P P      (3) 

 
where the projection matrices are defined by 
 

 2 3 1 3 1 2
1 2 3

1 2 1 3 2 1 2 3 3 1 3 2

( )( ) ( )( ) ( )( ), , .
( )( ) ( )( ) ( )( )

λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ λ λ

− − − − − −= = =
− − − − − −

A I A I A I A I A I A IP P P  (4) 

 

17. 1 2 3

4 1 4
1 7 1 ; 0, 6, 9
4 1 4

λ λ λ
 
 = = = = 
  

A  

 

( ) ( )

( ) ( )

( ) ( )

1

2

3

1 0 1
1 16 9 0 0 0
54 2

1 0 1

1 2 1
1 10 9 2 4 2
18 6

1 2 1

1 1 1
1 10 6 1 1 1
27 3

1 1 1

− 
 = − − =  
 − 

− 
 = − − = − − −
 − 

 
 = − − =  
  

P A I A I

P A I A I

P A I A I

 

 

6 9 6 9 6 9

6 9 6 9 6 9 6 9
1 2 3

6 9 6 9 6 9

3 2 2 2 3 2
1 2 2 4 2 2 2
6

3 2 2 2 3 2

t t t t t t

t t t t t t t t t

t t t t t t

e e e e e e
e e e e e e e e e

e e e e e e

 + + − + − + +
 = + + = − + + − + 
 − + + − + + + 

A P P P  

 

18. 1 2 3

1 2 2
2 7 1 ; 0, 6, 9
2 1 7

λ λ λ
 
 = = = = 
  

A  

 ( )( )1

16 4 4
1 16 9 4 1 1
54 18

4 1 1

− − 
 = − − = −
 
−  

P A I A I  

 ( )( )2

0 0 0
1 10 9 0 1 1
18 2

0 1 1

 
 = − − = −
 −

−  

P A I A I  
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 ( )( )3

1 2 2
1 10 6 2 4 4
27 9

2 4 4

 
 = − − =
 
  

P A I A I  

 

9 9 9

6 9 6 9 6 9 6 9
1 2 3

6 9 6 9 6 9

16 2 4 4 4 4
1 4 4 1 9 8 1 9 8

18
4 4 1 9 8 1 9 8

t t t

t t t t t t t t t

t t t t t t

e e e
e e e e e e e e e

e e e e e e

 + − + − +
 = + + = − + + + − + 
 − + − + + + 

A P P P  

 
 

19. 1 2 3

4 1 1
1 4 1 ; 6, 3, 3
1 1 4

λ λ λ
 
 = = = = 
  

A  

Here we have the eigenvalue  1 6λ =  of multiplicity 1 and the eigenvalue  2 3λ =  of 
multiplicity 2.  By Example 2 in Section 8.3, the desired matrix exponential is given by 
 
   [ ]1 2

1 2 2( )t tte e e tλ λ λ= + + −A P P I A I    (5) 
 
where  P1  and  P2  are the projection matrices of  A  corresponding to the eigenvalues  

1 2and .λ λ   The reciprocal of the characteristic polynomial  2( ) ( 6)( 3)p λ λ λ= − −  has 
the partial fractions decomposition 
 

   2

1 1 ,
( ) 9( 6) 9( 3)p

λ
λ λ λ

= −
− −

 

 
so  1 2( ) 1/ 9 and ( ) / 9a aλ λ λ= = −  in the notation of Equation (25) in the text.  Therefore 
Equation (26) there gives 
 

 ( )22
1 1 2

1 1 1
1 1( ) ( ) 3 1 1 1 ,
9 3

1 1 1
a λ

 
 = ⋅ − = − =  
  

P A A I A I  

 ( )2 2 1

2 1 1
1 1( ) ( ) 6 1 2 1 .
9 3

1 1 2
a λ

− − 
 = ⋅ − = − − = − − 
 − − 

P A A I A A I  

Finally, Equation (5) above gives 

  ( )
3 6 3 6 3 6

6 3 3 6 3 6 3 6
1 2

3 6 3 6 3 6

3
1( 3 ) 2 .
3

2

t t t t t t

t t t t t t t t t

t t t t t t

e e e e e e
e e e t e e e e e e

e e e e e e

 + − + − +
 = + + − = − + + − + 
 − + − + + 

A P P I A I  
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20. 1 2 3

5 1 3
1 7 1 ; 2, 6, 9
3 1 5

λ λ λ
 
 = = = = 
  

A  

 ( ) ( )1

1 0 1
1 16 9 0 0 0
28 2

1 0 1

− 
 = − − =
 
−  

P A I A I  

 ( )( )2

1 2 1
1 12 9 2 4 2
12 6

1 2 1

− 
 = − − = − −
 −

−  

P A I A I  

 ( )( )3

1 1 1
1 12 6 1 1 1
21 3

1 1 1

 
 = − − =
 
  

P A I A I  

 

2 6 9 6 9 2 6 9

2 6 9 6 9 6 9 6 9
1 2 3

2 6 9 6 9 2 6 9

3 2 2 2 3 2
1 2 2 4 2 2 2
6

3 2 2 2 3 2

t t t t t t t t

t t t t t t t t t t

t t t t t t t t

e e e e e e e e
e e e e e e e e e e

e e e e e e e e

 + + − + − + +
 = + + = − + + − + 
 − + + − + + + 

A P P P  

 
 
In Problems 21–30 here we want to use projection matrices to find fundamental matrix solutions 
of the linear systems given in Problems 1–10 of Section 7.5.  In each of Problems 21–26, the 
2 2× coefficient matrix  A  has characteristic polynomial of the form  2

1( ) ( )p λ λ λ= −  and thus a 
single eigenvalue  1λ  of multiplicity 2.  Consequently, Example 5 in Section 8.3 gives the 
desired fundamental matrix 
 
    [ ]1

1( ) .tte e tλ λ= + −A I A I     (6) 
 

21. 1

2 1
; 3

1 4
λ

− 
= = − − − 

A  

 [ ]3 3 1
( 3 )

1
t t t t t

e e t e
t t

− − + 
= + + =  − − 

A I A I  

 

22. 1

3 1
; 2

1 1
λ

− 
= = 

 
A  

 [ ]2 2 1
( 2 )

1
t t t t t

e e t e
t t
+ − 

= + − =  − 

A I A I  
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23. 1

1 2
; 3

2 5
λ

− 
= = 

 
A  

 [ ]3 3 1 2 2
( 3 )

2 1 2
t t t t t

e e t e
t t

− − 
= + − =  + 

A I A I  

 

24. 1

3 1
; 4

1 5
λ

− 
= = 

 
A  

 [ ]4 4 1
( 4 )

1
t t t t t

e e t e
t t
− − 

= + − =  + 

A I A I  

 

25. 1

7 1
; 5

4 3
λ 

= = − 
A  

 [ ]5 5 1 4 4
( 5 )

4 1 4
t t t t t

e e t e
t t

− − 
= + − =  + 

A I A I  

 

26. 1

1 4
; 5

4 9
λ

− 
= = 

 
A  

 [ ]5 5 1 2
( 5 )

4 1 2
t t t t t

e e t e
t t

+ 
= + − =  − − 

A I A I  

 
 
Each of the 3 3×  coefficient matrices in Problems 27–30 has a characteristic polynomial of the 
form  2

1 2( ) ( )(( )p λ λ λ λ λ= − −  yielding an eigenvalue  1λ  of multiplicity 1 and an eigenvalue  

2λ  of multiplicity 2.  We therefore use the method explained in Problem 19 above, and list here 
the results of the principal steps in the calculation of the fundamental matrix  .teA  
 

27. 2
1 2

2 0 0
7 9 7 ; ( ) ( 9)( 2) ; 9, 2

0 0 2
p λ λ λ λ λ

 
 = − = − − = = 
  

A   

 

1 22

1 1 5 1 5; ( ) , ( )
( ) 49( 9) 49( 3) 49 49

a a
p

λ λλ λ
λ λ λ

+ += − = = −
− −
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( )22
1 1 2

0 0 0
1( ) ( ) 2 1 1 1
49

0 0 0
a λ

 
 = ⋅ − = − = − 
  

P A A I A I  

( ) ( )2 2 1

1 0 0
1( ) ( ) 5 9 1 0 1
49

0 0 1
a λ

 
 = ⋅ − = − + − = − 
  

P A A I A I A I  

 ( )
2

9 2 2 9 9 2 9
1 2

2

0 0
( 2 )

0 0

t

t t t t t t t t

t

e
e e e t e e e e e

e

 
 = + + − = − − + 
 
 

A P P I A I  

 

28. 2
1 2

25 12 0
18 5 0 ; ( ) ( 7)( 13) ; 7, 13
6 6 13

p λ λ λ λ λ
 
 = − − = − − = = 
  

A   

1 22

1 1 19 1 19; ( ) , ( )
( ) 36( 9) 49( 3) 36 36

a a
p

λ λλ λ
λ λ λ

− −= + = =
− −

  

( )22
1 1 2

2 2 0
1( ) ( ) 13 3 3 0
36

1 1 0
a λ

− − 
 = ⋅ − = − =  
 − − 

P A A I A I  

( ) ( )2 2 1

3 2 0
1( ) ( ) 19 7 3 2 0
36

1 1 1
a λ

 
 = ⋅ − = − − = − − 
  

P A A I I A A I  

 ( )
7 13 7 13

7 13 7 13 7 13
1 2

7 13 7 13 13

2 3 2 2 0
( 13 ) 3 3 3 2 0

t t t t

t t t t t t t

t t t t t

e e e e
e e e t e e e e

e e e e e

 − + − +
 = + + − = − − 
 − + − + 

A P P I A I  

 

29. 2
1 2

19 12 84
0 5 0 ; ( ) ( 9)( 5) ; 9, 5
8 4 33

p λ λ λ λ λ
− 
 = = − − = = 
 − 

A   

 

1 22

1 1 1 1 1; ( ) , ( )
( ) 16( 9) 16( 5) 16 16

a a
p

λ λλ λ
λ λ λ

− −= + = =
− −
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( )22
1 1 2

6 3 21
1( ) ( ) 5 0 0 0

16
2 1 7

a λ
− 
 = ⋅ − = − =  
 − 

P A A I A I  

( ) ( )2 2 1

7 3 21
1( ) ( ) 9 0 1 0

16
2 1 6

a λ
− − 

 = ⋅ − = − − =  
 − − 

P A A I I A A I  

 ( )
5 9 5 9 5 9

9 5 5
1 2

5 9 5 9 5 9

7 6 3 3 21 21
( 5 ) 0 0

2 2 6 7

t t t t t t

t t t t

t t t t t t

e e e e e e
e e e t e

e e e e e e

 − − + − +
 = + + − =  
 − − + − + 

A P P I A I  

 

30. 2
1 2

13 40 48
8 23 24 ; ( ) ( 7)( 3) ; 7, 3

0 0 3
p λ λ λ λ λ

− − 
 = − − = − − = = 
  

A   

1 22

1 1 1 1 1; ( ) , ( )
( ) 16( 7) 16( 3) 16 16

a a
p

λ λλ λ
λ λ λ

+ += − = = −
− −

  

( )22
1 1 2

4 10 12
1( ) ( ) 3 2 5 6

16
0 0 0

a λ
− − 
 = ⋅ − = − = − − 
  

P A A I A I  

( ) ( )2 2 1

5 10 12
1( ) ( ) 7 2 4 6

16
0 0 1

a λ
− 

 = ⋅ − = − + − = − 
  

P A A I I A A I  

 ( )
3 7 3 7 3 7

7 3 3 7 3 7 3 7
1 2

3

5 4 10 10 12 12
( 3 ) 2 2 4 5 6 6

0 0

t t t t t t

t t t t t t t t t

t

e e e e e e
e e e t e e e e e e

e

 − − + −
 = + + − = − − + − 
 
 

A P P I A I  

 
 
In Problems 31–40 we use the methods of this section to find the matrix exponentials that were 
given in in the statements of Problems 21–30 of Section 8.2.  Once  teA  is known, the desired 
particular solution  ( )tx  is provided by the variation of parameters formula 
 

   ( )0
( ) (0) ( )

tt st e e s ds−= + ∫
A Ax x f     (7) 
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of Section 8.2.  We give first the calculation of the matrix exponential using projection matrices 
and then the final result, which we obtained in each case using a computer algebra system to 
evaluate the right-hand side in Equation (7) — as described in the remarks preceding Problems 
21–30 of Section 8.2.  We illustrate this highly formal process by giving intermediate results in 
Problems 31, 34, and 39.   
 

31. 1 2

4 1
, 1, 3

5 2
λ λ

− 
= = − = 

 
A  

 ( ) ( )1 2

1 1 5 11 1 1 13 ,
5 5 5 14 4 4 4

− −   
= − = = + =   − −−    

P A I P A I  

 
3 3

3
1 2 3 3

51
4 5 5 5

t t t t
t t t

t t t t

e e e e
e e e

e e e e

− −
−

− −

 − + −
= + =  − + − 

A P P  

 
2

2

0 18
(0) , ( )

0 30

t

t

e
t

e
  

= =   
   

x f  

 
3 3 2 3

3 3 2 3

5 18 15 31( )
4 5 5 5 30 15 15

s s s s s s s
s

s s s s s s s

e e e e e e e
e s

e e e e e e e

− − −
−

− − −

     − + − +
= =     − + − +     

A f  

 
3 3

3 30
0

0 15 3 14 15
(0) ( )

0 15 15 10 15 5

t s s t tt s
s s t t

e e e e
e s ds ds

e e e e

− −
−

− −

   + − + 
+ = + =     + − +     

⌠

⌡

∫
Ax f  

 ( ) 3 3 3

3 3 30

5 14 151( ) (0) ( )
4 5 5 5 10 15 5

t t t t t ttt s
t t t t t t

e e e e e e
t e e s ds

e e e e e e

− − −
−

− − −

   − + − − +
= + =    − + − − +   

∫
A Ax x f  

 
2 3

2 3

14 15
( )

5 10 15

t t t

t t t

e e e
t

e e e

−

−

 − − +
=  − − + 

x  

 

32. With the same matrix exponential as in Problem 31, but with  3

28
( ) .

20

t

t

e
t

e

− 
=  

 
f  

 
3

3

( 10 7 ) (10 5 )
( )

( 15 35 ) (15 5 )

t t

t t

t e t e
t

t e t e

−

−

 − − + −
=  − − + − 

x  

 

33. 1 2

3 1
, 0, 0

9 3
λ λ

− 
= = = − 

A  

 [ ]0 1 3
( 0 )

9 1 3
t t t t

e e t t
t t

− + − 
= + + = + =  − 

A I A I I A  (as in Problems 21-26) 
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3 7

(0) , ( )
5 5

t   
= =   

   
x f  

 
2

2

3 11 8
( )

5 17 24
t t

t
t t

 + +
=  + + 

x  

 

34. With  teA   as in Problem 33, but with  2

3 0
(1) and ( ) .

7 1/
t

t
   

= =   
   

x f   Because   

0 1,t =  we use the general variation of parameters formula in Eq. (25) of Section 8.2. 

 2 2

1 3 0 1/
( )

9 1 3 1/ 3 / 1/
s s s s

e s
s s s s s

− −     
= =     − + +     

A f  

 21
1

2 1 3 1/ 1 ln
(1) ( )

9 4 7 3/ 1/ 2 3ln 1/

t
t s s t

e e s ds ds
s s t t

− − − +       
+ = + =       − + + −       

⌠

⌡

∫
A Ax f  

( )1

1 3 1 ln
( ) (1) ( )

9 1 3 2 3ln 1/
tt s t t t

t e e e s ds
t t t t

− − + − +   
= + =    − + −   

∫
A A Ax x f  

 
2 ln

( ) 15 3 3ln

t t
t

t t
t

+ + 
 =
 + − +
  

x  

 

35. 1 2

2 5
, ,

1 2
i iλ λ

− 
= = − = − 

A  

 ( ) ( )1 2

1 2 5 1 2 51 1 1 1,
1 2 1 22 2 2 2

i i i i
i i

i i i ii i
+ − −   

= − = = + =   − − +−    
P A I P A I  

 1 2 1 2(cos sin ) (cos sin )t i t i te e e t i t t i t−= + = − + +A P P P P  

 
cos 2sin 5sin

sin cos 2sin
t t t

t t t
+ − =  − 

 ;          
0 4

(0) , ( )
0 1

t
t   

= =   
   

x f . 

 

The solution vector  
1 8 cos 8sin

( )
2 4 2cos 3sin

t t t
t

t t t
− + + − 

=  − + + − 
x   is derived by variation of 

parameters in the solution to Problem 25 of Section 8.2. 
 

36. With  teA   as in Problem 35, but with  
3 4cos

(0) and ( ) .
5 6sin

t
t

t
   

= =   
   

x f    
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3cos 32sin 17 cos 4 sin

( ) 5cos 13sin 6 cos 5 sin
t t t t t t

t t t t t t t
− + + 

=  − + + 
x  

 

37. 1 2

3 1
, 0, 0

9 3
λ λ

− 
= = = − 

A  

 [ ]0 1 2 4
( 0 )

1 2
t t t t

e e t t
t t

− + − 
= + + = + =  − 

A I A I I A  (as in Problems 21–26) 

 
20 36

(0) , ( )
0 6

t
t

t
  

= =   
   

x f  

 
3 4

2 3 4

8 6( )
3 2 3

t tt
t t t

 +=  − + 
x  

 

38. With  teA   as in Problem 37, but with  
1 4 ln

(1) and ( ) .
1 1/

t
t

t
   

= =   −   
x f   The details of  

 the variation of parameters process are similar to those shown in Problem 34 above. 
 

 
2 2

2 2

7 14 6 4 ln
( )

7 9 3 ln 2 ln 2 ln
t t t t

t
t t t t t t t

 − + − +
=  − + − + − + 

x  

 

39. 1 2

0 1
, ,

1 0
i iλ λ

− 
= = − = 

 
A  

 ( ) ( )1 2

1 11 1 1 1,
1 12 2 2 2
i i

i i
i ii i

−   
= − = = + =   −−    

P A I P A I  

 
1 2

1 2

cos sin
(cos sin ) (cos sin )

sin cos

t i t i te e e
t t

t i t t i t
t t

−= +
− 

= − + + =  
 

A P P

P P

 
0 sec

(0) , ( )
0 0

t
t   

= =   
   

x f  

 
cos sin sec 1

( )
sin cos 0 tan

s s s s
e s

s s s
−      

= =     − −     

A f  

 
0

0

0 1
(0) ( )

0 tan ln(cos )

t
t s t
e s ds ds

s t
−      

+ = + =     −     

⌠

⌡

∫
Ax f  
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 ( )0

cos sin
( ) (0) ( )

sin cos ln(cos )
tt s t t t

t e e s ds
t t t

− −   
= + =    

   
∫

A Ax x f  

 
cos ln(cos )sin

( )
sin ln(cos )cos

t t t t
t

t t t t
− 

=  + 
x  

 

40. 1 2

0 2
, 2 , 2

2 0
i iλ λ

− 
= = − = 

 
A  

 ( ) ( )1 2

1 11 1 1 12 , 2
1 14 2 4 2
i i

i i
i ii i

−   
= − = = + =   −−    

P A I P A I  

 

2 2
1 2

1 2

cos 2 sin 2
(cos 2 sin 2 ) (cos 2 sin 2 )

sin 2 cos 2

t i t i te e e
t t

t i t t i t
t t

−= +
− 

= − + + =  
 

A P P

P P

 
0 cos 2

(0) , ( )
0 sin 2

t t
t

t t
   

= =   
   

x f  

 
21

2
21

2

cos 2
( )

sin 2
t t

t
t t

 
=  

 
x  

 

Each of the 3 3×  coefficient matrices in Problems 41 and 42 has a characteristic polynomial of 
the form  2

1 2( ) ( )(( )p λ λ λ λ λ= − −  yielding an eigenvalue  1λ  of multiplicity 1 and an 
eigenvalue  2λ  of multiplicity 2.  We therefore use the method explained in Problem 19 above, 
and list here the results of the principal steps in the calculation of the fundamental matrix  .teA  
 

41. 2
1 3

39 8 16
36 5 16 ; ( ) ( 1)( 3) , 1, 3

72 16 29
p λ λ λ λ λ

− 
 = − − = + − = − = 
 − 

A   

1 22

1 1 7 1 7; ( ) , ( )
( ) 16( 1) 16( 3) 16 16

a a
p

λ λλ λ
λ λ λ

− −= + = =
+ −

  

( )22
1 1 2

9 2 4
1( ) ( ) 3 9 2 4

16
18 4 8

a λ
− − 

 = ⋅ − = − = − 
 − − 

P A A I A I  
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( ) ( )2 2 1

10 2 4
1( ) ( ) 7 9 1 4

16
18 4 7

a λ
− 

 = ⋅ − = − + = − − 
 − 

P A A I I A A I  

 ( )
3 3 3

3 3 3 3
1 2

3 3 3

9 10 2 2 4 4
( 3 ) 9 9 2 4 4

18 18 4 4 8 7

t t t t t t

t t t t t t t t t

t t t t t t

e e e e e e
e e e t e e e e e e

e e e e e e

− − −

− − − −

− − −

 − + − + −
 = + + − = − − − + 
 − + − + − 

A P P I A I  

 

42. 2
1 3

28 50 100
15 33 60 ; ( ) ( 2)( 3) , 2, 3
15 30 57

p λ λ λ λ λ
 
 = = + − = − = 
 − − − 

A   

1 22

1 1 8 1 7; ( ) , ( )
( ) 25( 1) 25( 3) 25 25

a a
p

λ λλ λ
λ λ λ

− −= + = =
+ −

  

( )22
1 1 2

5 10 20
1( ) ( ) 3 3 6 12
25

3 6 12
a λ

− − − 
 = ⋅ − = − = − − − 
  

P A A I A I  

( ) ( )2 2 1

6 10 20
1( ) ( ) 8 2 3 7 12
25

3 6 11
a λ

 
 = ⋅ − = − + =  
 − − − 

P A A I I A A I  

 ( )
2 3 2 3 2 3

2 3 2 3 2 3 2 3
1 2

2 3 2 3 2 3

5 6 10 10 20 20
( 3 ) 3 3 6 7 12 12

3 3 6 6 12 11

t t t t t t

t t t t t t t t t

t t t t t t

e e e e e e
e e e t e e e e e e

e e e e e e

− − −

− − − −

− − −

 − + − + − +
 = + + − = − + − + − + 
 − − − 

A P P I A I  

 

In each of Problems 43 and 44, the given 3 3× coefficient matrix  A  has characteristic 
polynomial of the form  3

1( ) ( )p λ λ λ= −  and thus a single eigenvalue  1λ  of multiplicity 3.  
Consequently, Equations (25) and (26) in Section 8.3 of the text imply that  1 1( ) ( ) 1a bλ λ= =  and 
hence that the associated projection matrix  1 .=P I   Therefore Equation (35) in the text reduces 
(with  q = 1  and  m1 = 3) to 
 
   1 2 21

1 12( ) ( ) .tte e t tλ λ λ = + − + − 
A I A I A I    (8) 

 

43. 2
1

2 17 4
1 6 1 ; ( ) ( 2) , 2

0 1 2
p λ λ λ

− 
 = − = − = 
  

A  
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 Substitution of  A  and  1 2λ =  into the formula in (8) above yields 
 

  

2 2 2

2

2 2 2

8 2 4 34 8
1 2 8 2 2 .
2

4 2 2

t t

t t t t t t
e e t t t

t t t t

 − − + + +
 = − + 
 − + + 

A  

 

44. 2
1

5 1 1
1 3 0 ; ( ) ( 3) , 3
3 2 1

p λ λ λ
− 

 = = − = 
 − 

A  

 Substitution of  A  and  1 3λ =  into the formula in (8) above yields 
 

  3 2 2 2

2 2 2

4 2 2 2
1 2 2 2 .
2

2 6 4 4 2

t t

t t t
e e t t t t

t t t t t t

+ − 
 = + − + 
 − − + − + 

A  

 

45. 2 2
1 2

1 1 1 2
7 4 6 11

; ( ) ( 1) ( 2) , 1, 2
5 1 1 3
6 2 2 6

p λ λ λ λ λ

− − 
 − − = = + − = − =
 −
 − − 

A  

Since  A  has two eigenvalues  1 21 and 2λ λ= − =  each of multiplicity 2, Equation (35) 
in the text reduces (with  q = m1 = m2 = 2) to 

 
   [ ] [ ]1 2

1 1 2 2( ) ( ) .t tte e t e tλ λλ λ= + − + + −A P I A I P I A I   (9) 
  

To calculate the projection matrices  P1  and  P2, we start with the partial fraction 
decomposition  

   2 2

1 2 5 7 2 .
( ) 27( 1) 27( 2)p

λ λ
λ λ λ

+ −= +
+ −

 

 
Then Equation (25) in the text implies that  1( ) (2 5) / 27 anda λ λ= +  

2 ( ) (7 2 ) / 27.a λ λ= −   Hence Equation (26) yields 
 

2
1

1 0 0 0
3 1 1 21 (2 5 )( )
1 0 0 027
2 0 0 0

 
 − − = + + =
 −
 − 

P A I A I  

 and 
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2
2

0 0 0 0
3 0 1 21 (7 2 )( 2 ) .
1 0 1 027
2 0 0 1

 
 − = − − =
 
 
 

P I A A I  

 When we substitute these eigenvalues and projection matrices in Eq. (9) above we get 
 

  
2 2 2

2 2 2

2 2

2
3 (3 2 ) (1 3 ) (1 3 ) 2(3 1) (2 )

.
(1 2 ) 2

2 2 2 2 4

t t t t

t t t t t t t
t

t t t t t t t

t t t t t t

e t e t e t e
e t e t e t e e t e t e

e
e t e t e t e e t e t e

e e t e t e t e e

− − − −

− − − −

− − − −

− − − −

 −
 − + − − − − − + − =
 − + + − − + +
 

− + − − +  

A  

 

46. 4
1

35 12 4 30
22 8 3 19

; ( ) ( 1) , 1
10 3 0 9
27 9 3 23

p λ λ λ

− 
 − = = − =
 − −
 − − − 

A  

Thus the given 4 4× coefficient matrix  A  has characteristic polynomial of the form  
4

1( ) ( )p λ λ λ= −  and thus a single eigenvalue  1 1λ =  of multiplicity 4.  Consequently, 
Equations (25) and (26) in Section 8.3 of the text imply that  1 1( ) ( ) 1a bλ λ= =  and hence 
that the associated projection matrix  1 .=P I   Therefore Equation (35) in the text reduces 
(with  q = 1  and  m1 = 4) to 

 
   1 2 2 3 31 1

1 1 12 6( ) ( ) ( ) .tte e t t tλ λ λ λ = + − + − + − 
A I A I A I A I   (10) 

  
 When we substitute  A  and  1 1λ =   in this formula we get 
 

  

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

48 68 2 18 24 6 8 36 60
7 44 3 18 2 6 6 381 .

2 21 20 9 6 3 2 2 18 18
42 54 18 18 6 6 36 48 2

t t

t t t t t t t t
t t t t t t t t

e e
t t t t t t t t
t t t t t t t t

 + + − − + +
 + − − + + + =
 − − + − − + − −
 

− − + − − − − +  

A  

 
In each of problems 47–50 we use the given values of  1 2 3, , andk k k set up the second-order 
linear system  ′′ =x Ax  with coefficient matrix 
 

    1 2 2

2 2 3

.
k k k

k k k
− − 

=  − − 
A  

 
We then calculate the particular solution 
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    1 2( ) t tt e e−= +A Ax c c      (11) 
 
given by Theorem 3 with  [ ] [ ]1 21 0 and 0 1 .T T= =c c   Given the distinct eigenvalues  1 2,λ λ  
and the projection matrices  P1, P2  of  A,  the matrix exponential needed in (11) is given by 
 
    1 2

1 2.t tte e eλ λ= +A P P      (12) 
 

47. 2
1 2

5 4
; ( ) 10 9, 1, 9

4 5
p λ λ λ λ λ

− 
= = − + = − = − − 

A  

 ( ) ( )1 2

1 1 1 11 1 1 19 ,
1 1 1 110 2 10 2

−   
= + = = + =   −−    

P A I P A I  

 1 2

3 3
3

1 2 1 2 3 3

1
2

i t i t i t i t
t tt i t i t

i t i t i t i t

e e e e
e e e e e

e e e e
λ λ  + −

= + = + =  − + 

A P P P P  

 
( ) ( )
( ) ( )

3 3

1 2 3 3

cos sin 31( )
cos sin 32

i t i t i t i t

t t

i t i t i t i t

e e e e t t
t e e i

t te e e e

−

−

−

 + − − −    = + = = +    + + −     

A Ax c c  

 Note that  x(t)  is a linear combination of two motions — one in which the two masses  
move in the same direction with frequency 1 1ω =  and with equal amplitudes, and one in 
which they move in opposite directions with frequency 2 3ω =  and with equal 
amplitudes. 

 
 

48. 2
1 2

3 2
; ( ) 6 5, 1, 5

2 3
p λ λ λ λ λ

− 
= = − + = − = − − 

A  

 ( ) ( )1 2

1 1 1 11 1 1 15 ,
1 1 1 16 2 6 2

−   
= + = = + =   −−    

P A I P A I  

 1 2

5 5
5

1 2 1 2 5 5

1
2

i t i t i t i t
t tt i t i t

i t i t i t i t

e e e e
e e e e e

e e e e
λ λ

 + −
= + = + =  

 − + 

A P P P P  

 
( ) ( )
( ) ( )

5 5

1 2
5 5

cos sin 51( )
cos2 sin 5

i t i t i t i t

t t

i t i t i t i t

e e e e t t
t e e i

t te e e e

−

−

−

 + − −  −  = + = = +        + + −    

A Ax c c  

 
 Note that  x(t)  is a linear combination of two motions — one in which the two masses  
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move in the same direction with frequency 1 1ω =  and with equal amplitudes, and one in 
which they move in opposite directions with frequency 2 5ω =  and with equal 
amplitudes. 

 
 

49. 2
1 2

3 1
; ( ) 6 8, 2, 4

1 3
p λ λ λ λ λ

− 
= = − + = − = − − 

A  

 ( ) ( )1 2

1 1 1 11 1 1 14 , 2
1 1 1 16 2 6 2

−   
= + = = + =   −−    

P A I P A I  

 1 2

2 2 2 2
2 2

1 2 1 2 2 2 2 2

1
2

i t i t i t i t
t tt i t i t

i t i t i t i t

e e e e
e e e e e

e e e e
λ λ

 + −
= + = + =  

 − + 

A P P P P  

 
( ) ( )
( ) ( )

2 2 2 2

1 2
2 2 2 2

cos 2 sin 21( )
sin 22 cos 2

i t i t i t i t

t t

i t i t i t i t

e e e e t t
t e e i

tte e e e

−

−

−

 + − −   −  = + = = +       + + −    

A Ax c c  

 
 Note that  x(t)  is a linear combination of two motions — one in which the two masses  

move in the same direction with frequency 1 2ω =  and with equal amplitudes, and one 
in which they move in opposite directions with frequency 2 2ω =  and with equal 
amplitudes. 

  
 

50. 2
1 2

10 6
; ( ) 20 64, 4, 16

6 10
p λ λ λ λ λ

− 
= = − + = − = − − 

A  

 ( ) ( )1 2

1 1 1 11 1 1 116 , 4
1 1 1 120 2 20 2

−   
= + = = + =   −−    

P A I P A I  

 1 2

2 4 2 4
2 4

1 2 1 2 2 4 2 4

1
2

i t i t i t i t
t tt i t i t

i t i t i t i t

e e e e
e e e e e

e e e e
λ λ  + −

= + = + =  − + 

A P P P P  

 
( ) ( )
( ) ( )

2 2 4 4

1 2 2 2 4 4

cos 2 sin 41( )
cos 2 sin 42

i t i t i t i t

t t

i t i t i t i t

e e e e t t
t e e i

t te e e e

−

−

−

 + − − −    = + = = +    + + −     

A Ax c c  

 
 Note that  x(t)  is a linear combination of two motions — one in which the two masses  

move in the same direction with frequency 1 2ω =  and with equal amplitudes, and one in 
which they move in opposite directions with frequency 2 4ω =  and with equal 
amplitudes. 
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CHAPTER 9 
 
NONLINEAR SYSTEMS AND PHENOMENA 
 
 
SECTION 9.1 
 
STABILITY AND THE PHASE PLANE 
 
1. The only solution of the homogeneous system  2 0, 3 0x y x y− = − =  is the origin   
 (0, 0).  The only figure among Figs. 9.1.11 through 9.1.18 showing a single critical point 

at the origin is Fig. 9.1.13.  Thus the only critical point of the given autonomous system 
is the saddle point (0, 0) shown in Figure 9.1.13 in the text. 

 
2. The only solution of the system  0, 3 4 0x y x y− = + + =  is the point  (1, 1).  The only 

figure among Figs. 9.1.11 through 9.1.18 showing a single critical point at (1, 1) is Fig. 
9.1.15.  Thus the only critical point of the given autonomous system is the node (1, 1) 
shown in Figure 9.1.15 in the text. 

 
3. The only solution of the system  2 3 0, 2 0x y x y− + = − + =  is the point  (–1, 1).  The 

only figure among Figs. 9.1.11 through 9.1.18 showing a single critical point at (–1, 1) is 
Fig. 9.1.18.  Thus the only critical point of the given autonomous system is the stable 
center (-1, 1) shown in Figure 9.1.18 in the text.    

          
4. The only solution of the system  2 2 4 0, 4 3 0x y x y− − = + + =  is the point  (1, –1).  The 

only figure among Figs. 9.1.11 through 9.1.18 showing a single critical point at (1, –1) is 
Fig. 9.1.12.  Thus the only critical point of the given autonomous system is the spiral 
point (1,-1) shown in Figure 9.1.12 in the text.  

 
5. The first equation 21 0y− =  gives  y  =  1  or  y  =  -1  at a critical point.  Then the 

second equation  2 0x y+ =  gives  x  =  -2  or  x  =  2,  respectively.  The only figure 
among Figs. 9.1.11 through 9.1.18 showing two critical points at (–2, 1) and (2, –1) is 
Fig. 9.1.11.  Thus the critical points of the given autonomous system are the spiral point 
(-2, 1) and the saddle point (2, 1) shown in Figure 9.1.11 in the text. 

 
6. The second equation 24 0x− =  gives  x  =  2  or  x  =  -2  at a critical point.  Then the 

first equation  2 4 15 0x y− − =  gives  y  =  -2/5  or  x  =  2/3,  respectively.  The only 
figure among Figs. 9.1.11 through 9.1.18 showing two critical points at (–2, 2/3) and  

 (2, –2/5) is Fig. 9.1.17.  Thus the critical points of the given autonomous system are the 
spiral point (-2, 2/3) and the saddle point (2,-2/5) shown in Figure 9.1.17 in the text. 
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   7. The first equation  34 0x x− =  gives   x  =  -2,  x  =  0,  or  x  =  2  at a critical point.  
 Then the second equation  2 0x y− =  gives  y  =  -1,  y  =  0,  or  y  =  1,  respectively.  
 The only figure among Figs. 9.1.11 through 9.1.18 showing three critical points at  
 (–2, –1),  (0, 0), and (2, 1) is Fig. 9.1.14.  Thus the critical points of the given 

autonomous system are the spiral point (0, 0) and the saddle points (-2, 1) and (2, 1) 
shown in Figure 9.1.14 in the text. 

   
8. The second  2 0y x− − =  equation gives  y  =  -x2  at a critical point.  Substitution of this 

in the first equation  2 0x y x xy− − + =  then gives  x - x3  =  0,  so  x  =  -1,  x  =  0,  or  
x  =  1.  The only figure among Figs. 9.1.11 through 9.1.18 showing three critical points 
at  

 (–1, –1),  (0, 0), and (1, –1) is Fig. 9.1.16.  Thus the critical points of the given 
autonomous system are the spiral point (-1,-1), the saddle point (0, 0), and the node  

 (1,-1) shown in Figure 9.1.16 in the text.   
  
In each of Problems 9-12 we need only set  x′  =  x″  =  0  and solve the resulting equation for  x. 
 
9. The equation  3 24 (4 ) 0x x x x− = − =  has the three solutions  0, 2.x = ±   This gives the 

three equilibrium solutions  x(t)  ≡  0,  x(t)  ≡  2,  x(t)  ≡  -2  of the given 2nd-order 
differential equation.  A phase plane portrait for the equivalent 1st-order system 

 3, 4x y y x x′ ′= = − +  is shown in the figure below. We observe that the critical point  
 (0,0)  in the phase plane appears to be a center, whereas the points  ( 2,0)±  appear to be 
 saddle points. 

 
 

 
 

−5 0 5

−5

0

5

x

y

 
 
 
10. The equation  3 24 (1 4 ) 0x x x x+ = + =  has the single real solution  x = 0.  This gives the 

single equilibrium solution  x(t)  ≡  0  of the given 2nd-order differential equation.  A 
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phase plane portrait for the equivalent 1st-order system  3, 2 4x y y y x x′ ′= = − − −  is 
shown in the figure below. We observe that the critical point  (0,0)  in the phase plane 
appears to be a spiral sink. 
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−5

0

5

x

y

 
 
11. The equation  4sin 0x =  is satisfied by  x nπ=  for any integer  n.  Thus the given 2nd-

order equation has infinitely many equilibrium solutions:  x(t)  ≡  nπ  for any integer  n. 
 A phase portrait  for the equivalent 1st-order system  , 3 4sinx y y y x′ ′= = − −  is shown 
 below.  We observe that the critical point  ( ,0)nπ  in the phase plane looks like a spiral 
 sink if  n  is even, but a saddle point if  n  is odd. 

 
 

 
 

−2pi −pi 0 pi 2pi
−2

0

2

x

y
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12. We immediately get the single solution  x = 0  and thus the single equilibrium solution 
 x(t)  ≡  0.  A phase plane portrait for the equivalent 1st-order system  
 2, ( 1)x y y x y x′ ′= = − − −  is shown below. We observe that the critical point (0,0)  in 
 the phase plane looks like a spiral source, with the solution  curves emanating from this 
 source spiraling outward toward a closed curve trajectory. 

 
 

 
 

−2 −1 0 1 2
−4

−2

0

2

4

x

y

 
 
In Problems 13–16, the given x- and y-equations are independent exponential differential 
equations that we can solve immediately by inspection. 
 
13. Solution:   x(t)  =  x0e-2t,   y(t)  =  y0e-2t   
 
 Then  0 0( / ) ,y y x x kx= =  so the trajectories are straight lines through the origin.  Clearly  

( ), ( ) 0x t y t →  as  ,t → +∞  so the origin is a stable proper node like the one shown 
below. 
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−5 0 5

−5

0

5

x

y

14. Solution:   x(t)  =  x0e2t,   y(t)  =  y0e-2t 
 
 Then  0 0 ,xy x y k= =  so the trajectories are rectangular hyperbolas.  Thus the origin is an 

unstable saddle point like the one in the left-hand figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15. Solution:   x(t)  =  x0e-2t,   y(t)  =  y0e-t   
 
 Then  2 2 2

0 0 0( / )( ) ,tx x y y e ky−= =  so the trajectories are parabolas of the form  
2,x ky= and clearly  ( ), ( ) 0x t y t →  as  .t → +∞    Thus the origin is a stable improper 

node like the one shown in the right-hand figure above. 
  
16. Solution:   x(t)  =  x0et,   y(t)  =  y0e3t 
 
 The origin is an unstable improper node.  The trajectories consist of the y-axis and curves 

of the form  y  =  kx3, departing from the origin as in the left-hand figure below. 
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17. Differentiation of the first equation and substitution using the second one gives 
 
   , so 0.x y x x x′′ ′ ′′= = + =  
 
 We therefore get the general solution 
 
    x(t)  =  A cos t + B sin t 
   y(t)  =  B cos t - A sin t          ( y x′= ). 
 Then 

   
2 2 2 2

2 2 2 2 2 2 2 2

( cos sin ) ( cos sin )
( )cos ( )sin .

x y A t B t B t A t
A B t A B t A B

+ = + + −
= + + + = +

 

 
 Therefore the trajectories are clockwise-oriented circles centered at the origin, and the 

origin is a stable center as in the right-hand figure at the bottom of the preceding page.  
 
18. Elimination of  y  as in Problem 17 gives  4 0,x x′′ + =   so we get the general solution 
 
   x(t)  =     A cos 2t +   B sin 2t, 
   y(t)  = -2B cos 2t + 2A sin 2t        ( y x′= − ). 
  
 It follows readily that   

  
2 2

2 2 2 2
2 24 4 4 , so 1

( / 2)
x yx y A B

b b
+ = + + =  

 
 where  2 2 24 4 .b A B= +   Hence the origin is a stable center like the one illustrated in the 

figure below, and the vertical semiaxis of each ellipse is twice its horizontal semiaxis. 
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19. Elimination of  y  as in Problem 17 gives  4 0,x x′′ + =   so we get the general solution 
 
   x(t)  =  A cos 2t + B sin 2t, 
   y(t)  =  B cos 2t - A sin 2t          ( 1

2y x′= ). 
 
 Then  2 2 2 2,x y A B+ = +  so the origin is a stable center, and the trajectories are 

clockwise-oriented circles centered at (0, 0), as in the left-hand figure below. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20. Substitution of  y x′ ′′=  from the first equation into the second one gives  

5x x y′′ = − −  5 4 ,x x′= − −  so  4 5 0.x x x′′ ′+ + =   The characteristic roots of this 
equation are  2 ,r i= − ±  so we get the general solution 

  
   x(t)  =  e-2t(A cos t + B sin t),  
   y(t)  =  e-2t[(-2A + B)cos t - (A + 2B)sin t] 
 
 (the latter because  y x′= ).  Clearly ( ), ( ) 0x t y t →  as  ,t → +∞   so the origin is an 

asymptotically stable spiral point with trajectories approaching  (0,0), as in the right-hand 
figure above. 

 
21. We want to solve the system 
 

   
2 2

2 2

(1 ) 0
(1 ) 0.

ky x x y
kx y x y

− + − − =
+ − − =

 

 
If we multiply the first equation by  –y  and the second one by  x, then add the two 
results, we get  2 2( ) 0.k x y+ =   It therefore follows that  x  =  y  =  0. 
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22. After separation of variables, a partial-fractions decomposition gives 
 

  
2

1 1 1
(1 ) 2( 1) 2( 1)

1 1 1ln ln( 1) ln( 1) ,
2 2 2

drt
r r r r r

r r r

 = = − − − + − 

= − + − − +

⌠⌠
 ⌡ ⌡  

 so 

   
2

22 ln
1

Crt
r

=
−

 

 
 (assuming that  r > 1, for instance).  The initial condition  0(0)r r=  then gives 
 

   
2 2 2 2

20 0
2 2 2 2

0 0

( 1) ( 1)2 ln , so .
( 1) ( 1)

tr r r rt e
r r r r

− −= =
− −

 

 
 We now solve readily for 
 

   
2 2 2

2 0 0
2 2 2 2 2 2

0 0 0 0

.
(1 ) (1 )

t

t t
r e rr

r e r r r e−= =
+ − + −

 

 
23. The equation  / /dy dx x y= −   separates to  0,x dx y dy+ =   so  2 2 .x y C+ =   Thus 

the trajectories consist of the origin  (0, 0)  and the circles  x2 + y2  =  C > 0, as shown in 
the left-hand figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24. The equation  / /dy dx x y=   separates to  0,y dy x dx− =   so  2 2 .y x C− =   Thus the 

trajectories consist of the origin  (0, 0)  and the hyperbolas  y2 - x2  =  C, as shown in the 
right-hand figure above. 
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25. The equation  / / 4dy dx x y= −   separates to  4 0,x dx y dy+ =   so  2 24 .x y C+ =   
Thus the trajectories consist of the origin  (0, 0)  and the ellipses  x2 + 4y2  =  C > 0, as 
shown in the left-hand figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26. The equation  3 3/ /dy dx x y= −   separates to  3 3 0,x dx y dy+ =   so  4 4 .x y C+ =   

Thus the trajectories consist of the origin  (0, 0)  and the ovals of the form  x4 + y4  =  C, 
as illustrated in the right-hand figure above. 

 
27. If  φ(t)  =  x(t + γ)  and  ψ(t)  =  y(t + γ)  then 
 
  φ′(t)  =  x′(t + γ)  =  y(t + γ)  =  ψ(t), 
 but 
  ψ(t)  =  y′(t + γ)  =  x(t + γ)⋅(t + γ)  =  t φ(t) + γ φ(t) ≠ t φ(t). 
 
28. If  φ(t)  =  x(t + γ)  and  ψ(t)  =  y(t + γ)  then 
 
  φ′(t)  =  x′(t + γ)  =  F(x(t + γ),     y(t + γ))  =  F(φ(t), ψ(t)), 
 and 
  ψ′(t)  =  G(φ(t),ψ(t))   
 
 similarly.  Therefore  φ(t)  and  ψ(t)  satisfy the given differential equations. 
 
 
SECTION 9.2 
 
LINEAR AND ALMOST LINEAR SYSTEMS 
 
In Problems 1–10 we first find the roots  λ1  and λ2  of the characteristic equation of the 
coefficient matrix of the given linear system.  We can then read the type and stability of the 
critical point (0,0) from Theorem 1 and the table of Figure 9.2.9 in the text. 
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1. The roots  λ1  =  -1  and  λ2  =  -3  of the characteristic equation  2 4 3 0λ λ+ + =  are 
both negative, so  (0,0)  is an asymptotically stable node as shown on the left below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. The roots  λ1  =  2  and  λ2  =  3  of the characteristic equation  2 5 6 0λ λ− + =  are both 

positive, so  (0,0)  is an unstable improper node as shown on the right above. 
 

3. The roots  λ1  =  -1  and  λ2  =  3  of the characteristic equation  2 2 3 0λ λ− − =  have 
different signs, so  (0,0)  is an unstable saddle point as shown on the left below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. The roots  λ1  =  -2  and  λ2  =  4  of the characteristic equation  2 2 3 0λ λ− − =  have 

different signs, so  (0,0)  is an unstable saddle point as shown on the right above. 
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5. The roots  λ1  =  λ2  =  -1  of the characteristic equation  2 2 1 0λ λ+ + =  are negative and 
equal, so  (0,0)  is an asymptotically stable node as in the left-hand figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. The roots  λ1  =  λ2  =  2  of the characteristic equation  2 4 4 0λ λ− + =  are positive and 

equal, so  (0,0) is an unstable node as in the right-hand figure above. 
 

7. The roots  λ1, λ2  =  1 ± 2 i  of the characteristic equation  2 2 5 0λ λ− + =  are complex 
conjugates with positive real part, so  (0,0)  is an unstable spiral point as shown in the 
left-hand figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. The roots  λ1, λ2  =  -2 ± 3 i  of the characteristic equation  2 4 13 0λ λ+ + =  are complex 

conjugates with negative real part, so  (0,0)  is an asymptotically stable spiral point as 
shown in the right-hand figure above. 
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9. The roots  λ1, λ2  =  ±2 i  of the characteristic equation  2 4 0λ + =  are pure imaginary, so  
(0,0)  is a stable (but not asymptotically stable) center as in the left-hand figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10. The roots  λ1, λ2  =  ±3 i  of the characteristic equation  2 9 0λ + =  are pure imaginary, so  

(0,0)  is a stable (but not asymptotically stable) center as in the right-hand figure above. 
 

11. The Jacobian matrix  
1 2
3 4

− =  − 
J   has characteristic equation  2 3 2 0λ λ+ + =  

 and eigenvalues  λ1 = -1,  λ2 = -2  that are both negative.  Hence the critical point   
 (2, 1)  is an asymptotically stable node as in the left-hand figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12. The Jacobian matrix  
1 2
1 4

− =  
 

J   has characteristic equation  2 5 6 0λ λ− + =  

 and eigenvalues  λ1 = 2,  λ2 = 3  that are both positive.  Hence the critical point   
 (2,–3)  is an unstable node as in the right-hand figure above. 



 Section 9.2 465 

 
 

 
 

−5 0 5

−5

0

5

x

y

 
 

 
 

−5 0 5

−5

0

5

x

y

 
 

 
 

−5 0 5

−5

0

5

x

y

 
 

 
 

−5 0 5

−5

0

5

x

y

13. The Jacobian matrix  
2 1
3 2

− =  − 
J   has characteristic equation  2 1 0λ − =  

 and eigenvalues  λ1 = -1,  λ2 = +1  having different signs.  Hence the critical point   
 (2, 2)  is an unstable saddle point as in the left-hand figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14. The Jacobian matrix  
1 1
3 1
 =  − 

J   has characteristic equation  2 4 0λ − =  

 and eigenvalues  λ1 = -2, λ2 = 2  that are real with different signs.  Hence the critical 
point  (3, 4)  is an unstable saddle point as in the right-hand figure above. 

 

15. The Jacobian matrix  
1 1
5 3

− =  − 
J   has characteristic equation  2 2 2 0λ λ+ + =  

 and eigenvalues  λ1, λ2  =  -1 ± i  that are complex conjugates with negative real part.  
Hence the critical point  (1, 1)  is an asymptotically stable spiral point as shown in the 
figure on the left below. 
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16. The Jacobian matrix  
1 2
1 3

− =  
 

J   has characteristic equation  2 4 5 0λ λ− + =  

 and eigenvalues  λ1, λ2  =  2 ± i  that are complex conjugates with positive real part.  
Hence the critical point  (3, 2)  is an unstable spiral point as shown in the right-hand 
figure at the bottom of the preceding page. 

 

17. The Jacobian matrix  
1 5
1 1

− =  − 
J   has characteristic equation  2 4 0λ + =  and pure 

imaginary eigenvalues  λ1, λ2  =  ±2i.  Hence  (5/2,-1/2)  is a stable (but not 
asymptotically stable) center as shown on the left below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

18. The Jacobian matrix  
4 5
5 4

− =  − 
J   has characteristic equation  2 9 0λ + =  and pure 

imaginary eigenvalues  λ1, λ2  =  ±3i.  Hence  (-2,-1)  is a stable (but not asymptotically 
stable) center as shown on the right above. 

 
In each of Problems 19–28 we first calculate the Jacobian matrix  J  and its eigenvalues at (0,0) 
and at each of the other critical points we observe in our phase portrait for the given system.  
Then we apply Theorem 2 to determine as much as we can about the type and stability of each of 
these critical points of the given almost linear system. Finally we  a phase portrait that 
 

19. 
1 2 3 2
4 6

y x
y x

+ − + =  − − − 
J  

 At (0,0):  The Jacobian matrix  
1 3
4 6

− =  − 
J   has characteristic equation  2 5 6 0λ λ+ + =  

 and eigenvalues  λ1 = -3,  λ2 = -2  that are both negative.  Hence  (0,0)  is an 
asymptotically stable node of the given almost linear system. 
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 At (2/3, 2/5):  The Jacobian matrix  
9 / 5 5/ 3

18 / 5 20 / 3
− =  − 

J   has characteristic equation  

 2 73
15 6 0λ λ+ − =   and approximate eigenvalues  1 25.89, 1.02λ λ≈ − ≈  with different  

 signs.  Hence  (2/3, 2/5)  is a saddle point. 

 The left-hand figure below shows both these critical points. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20. 
6 2 5

2 1 2
x

y
+ − =  − + 

J  

 At (0,0):  The Jacobian matrix  
6 5
2 1

− =  − 
J   has characteristic equation  2 5 4 0λ λ− + =  

 and eigenvalues  λ1 = 1,  λ2 = 4  that are both positive.  Hence  (0,0)  is an unstable node 
of the given almost linear system. 

 At (–1,–1):  The Jacobian matrix  
4 5
2 3

− =  − 
J   has characteristic equation  

 2 2 0λ λ− − =   and eigenvalues  1 21, 2λ λ= − =  with different signs.  Hence (–1,–1) is a 
 saddle point. 

 At (–2.30,–1.70):  The Jacobian matrix  
1.40 5

2 4.40
− ≈  − 

J   has complex conjugate 

 eigenvalues 1 21.5 1.25 , 1.5 1.25i iλ λ≈ − + ≈ − −  with negative real parts.  Hence  
 (–2.30,–1.70) is a spiral sink. 

 The figure on the right above shows these three critical points. 
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21. 
1 2 2 2
2 3 2 3

x y
y x

+ + =  − − − 
J  

 At (0,0):  The Jacobian matrix  
1 2
2 2
 =  − 

J   has characteristic equation  2 6 0λ λ+ − =  

 and eigenvalues  λ1 = –3,  λ2 = 2  with different signs.  Hence  (0,0)  is a saddle point of 
the given almost linear system. 

 At (–0.51,–2.12):  The Jacobian matrix  
0.014 2.236

8.354 0.479
− − ≈  − 

J   has complex conjugate 

 eigenvalues 1 20.25 4.32 , 0.25 4.32i iλ λ≈ − + ≈ − +  with negative real parts.  Hence  
 (–0.51,–2.12) is a spiral sink.  

 The figure on the left below shows these two critical points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

22. 
2

2

1 4 2
2 2 1

y xy
xy x

 − −
=  + − + 

J  

 At (0,0):  The Jacobian matrix  
1 4
2 1
 =  − 

J   has characteristic equation  2 9 0λ − =  

 and eigenvalues  λ1 = –3,  λ2 = 3  that have different signs.  Hence  (0,0)  is a saddle point 
of the given almost linear system. 

 At ( 3.65, 0.59)± ∓ :  The Jacobian matrix  
0.649 8.325
2.325 12.325

 ≈  − 
J   has positive real 

 eigenvalues 1 22.649, 10.325.λ λ≈ ≈  Hence these critical points are both nodal sources. 

 At ( 0.82, 5.06)± ± :  The Jacobian matrix  
24.649 4.325

10.325 0.325
− − ≈  − 

J   has negative real 

 eigenvalues 1 222.649, 2.325.λ λ≈ − ≈ −  Hence these critical points are both nodal  
 sinks. 

 The figure on the right above shows these five critical points. 
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23. 
2

3

2 3 5
4 6 4

x
y

 + −
=  − + 

J  

 At (0,0):  The Jacobian matrix  
2 5
4 6

− =  − 
J   has characteristic equation  2 4 8 0λ λ+ + =  

 and complex conjugate eigenvalues  1 22 2 , 2 2i iλ λ= − + = − −   with negative real part.  
Hence  (0,0)  is a spiral sink of the given almost linear system. 

 At ( 1.08, 0.68)− − :  The Jacobian matrix  
5.495 5

4 7.276
− ≈  − 

J   has eigenvalues  

 1 25.45, 3.67λ λ≈ − ≈  with different signs. Hence ( 1.08, 0.68)− −  is a saddle point. 

 The figure on the left below shows these two critical points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

24. 
2 2

2 2

5 2 3 3
5 2 3

xy x y
xy x y

 + − + +
=  + + 

J  

 At (0,0):  The Jacobian matrix  
5 3
5 0

− =  
 

J   has characteristic equation  

 2 5 15 0λ λ− + = and complex conjugate eigenvalues  1 22.5 2.96 , 2.5 2.96i iλ λ≈ + ≈ −   
 with positive real part.  Hence  (0,0)  is a spiral source of the given almost linear system. 
 The figure on the right above shows this critical point. 
 

25. 
1 3 2 3
2 2 3 2

y x
x y

+ − + =  − − − 
J  

 At (0,0):  The Jacobian matrix  
1 2
2 3

− =  − 
J   has characteristic equation  2 2 1 0λ λ+ + =  

 and equal negative eigenvalues  λ1 = –1,  λ2 = –1.  Hence  (0,0)  is either a nodal sink or a 
spiral sink of the given almost linear system. 
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 At (0.74, 3.28)− :  The Jacobian matrix  
8.853 0.226

0.516 3.568
− ≈  
 

J   has real eigenvalues 

 1 28.86, 3.58λ λ≈ − ≈  with different signs.  Hence (0.74, 3.28)− is a saddle point. 

 At (2.47, 0.46)− :  The Jacobian matrix  
0.370 5.410
2.940 2.087

− ≈  − − 
J   has complex conjugate  

 eigenvalues 1 21.23 3.89 , 1.23 3.89i iλ λ≈ − + ≈ − +  with negative real part. Hence 
 (2.47, 0.46)−  is a spiral sink. 

 At (0.121,0.074) :  The Jacobian matrix  
1.222 1.636
1.758 3.148

− ≈  − 
J   has real eigenvalues  

 1 22.34, 0.42λ λ≈ − ≈  with different signs.  Hence (0.121,0.074) is a saddle point. 

 The left-hand figure below shows clearly the first three of these critical points. The right- 
 hand figure is a close-up near the origin with the final critical point now visible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

26. 
3 2 2 2
2 3 1 3

x y
y x

− − − =  − − − 
J  

 At (0,0):  The Jacobian matrix  
3 2
2 1

− =  − 
J   has characteristic equation  2 2 1 0λ λ− + =  

 and equal positive eigenvalues  λ1 = 1,  λ2 = 1.  Hence  (0,0)  is either a nodal source or a 
spiral source of the given almost linear system. 

 At (0.203,0.253) :  The Jacobian matrix  
2.592 2.506
1.241 1.611

− ≈  − 
J   has real eigenvalues 

 1 20.65, 1.63λ λ≈ − ≈  with different signs.  Hence (0.203,0.253) is a saddle point. 
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 At ( 0.231, 1.504)− − :  The Jacobian matrix  
3.462 1.008
6.511 0.307
 ≈  − 

J   has real eigenvalues 

 1 21.60, 4.76λ λ≈ − ≈  with different signs.  Hence ( 0.231, 1.504)− − is a saddle point. 

 At (2.360,0.584) :  The Jacobian matrix  
1.721 3.168
0.247 8.081

− − ≈  − − 
J   has unequal negative   

 eigenvalues 1 27.96, 1.85λ λ≈ − ≈ − . Hence  (2.47, 0.46)−  is a nodal sink. 

 The figure below shows these four critical points. 
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27. 
3

3

1 4 1 2
2 2 1 4

x y
x y

 + − −
=  − − + 

J  

 At (0,0):  The Jacobian matrix  
1 1
2 1

− =  − 
J   has characteristic equation  2 1 0λ + =  

 and equal positive eigenvalues  λ1 = –i,  λ2 = +i.  Hence  (0,0)  is either a center or a 
spiral point, but its stability is not determined by Theorem 2. 

 At ( 0.254, 0.507)− − :  The Jacobian matrix  
0.934 0.014
2.508 1.521
 ≈  − 

J   has real eigenvalues 

 1 21.53, 0.95λ λ≈ − ≈  with different signs.  Hence ( 0.254, 0.507)− − is a saddle point. 

 At ( 1.557, 1.637)− − :  The Jacobian matrix  
14.087 4.273
5.113 16.532

− − ≈  
 

J   has real eigenvalues 

 1 213.36, 15.80λ λ≈ − ≈  with different signs.  Hence ( 1.557, 1.637)− − is a saddle point. 
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 At ( 1.070, 1.202)− − :  The Jacobian matrix  
3.905 1.403

4.141 7.940
− ≈  − 

J   has unequal negative  

  eigenvalues 1 29.07, 2.78λ λ≈ − ≈ − . Hence  ( 1.070, 1.202)− −  is a nodal sink. 

 The left-hand figure below shows these four critical points.  The close-up on the right  
 suggests that the origin may (but may not) be a stable center. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

28. 
2 23 3 1 3

13 3 3 3
x y
y x

 + − +
=  + − + 

J  

 At (0,0):  The Jacobian matrix  
3 1

13 3
− =  − 

J   has characteristic equation  2 4 0λ + =  

 and equal positive eigenvalues  λ1 = –2i,  λ2 = +2i.  Hence  (0,0)  is either a center or a 
spiral point, but its stability is not determined by Theorem 2. 

 At ( 0.121, 0.469)− − :  The Jacobian matrix  
3.044 0.340

11.593 3.364
− ≈  − 

J   has real eigenvalues 

 1 22.67, 2.35λ λ≈ − ≈  with different signs.  Hence ( 0.121, 0.469)− − is a saddle point. 

 At (0.126,0.626) :  The Jacobian matrix  
3.048 0.176

14.878 2.621
 ≈  − 

J   has real eigenvalues 

 1 23.05, 3.48λ λ≈ − ≈  with different signs.  Hence (0.126,0.626) is a saddle point. 

 At (5.132, 5.382)− :  The Jacobian matrix  
82.000 85.903

3.146 12.395
 ≈  − 

J   has unequal positive   

 eigenvalues 1 216.52, 77.87λ λ≈ ≈ . Hence  (5.132, 5.382)−  is a nodal source. 

 The first three of these critical points are shown in the figure at the top of the next page. 
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29. 
1 1

2 1x
− =  − 

J  

 At (0,0):  The Jacobian matrix  
1 1
0 1

− =  − 
J   has characteristic equation  2 1 0λ − =  and 

 real eigenvalues 1 21, 1λ λ≈ − ≈ +  with different signs.  Hence (0,0) is a saddle point. 

 At (1,1) :  The Jacobian matrix  
1 1
2 1

− =  − 
J   has characteristic equation  2 1 0λ + =  and 

 pure imaginary eigenvalues 1 2, .i iλ λ≈ + ≈ −  Hence  (1,1)  is either a center or a spiral  
 point, but its stability is not determined by Theorem 2. 

 The left-hand figure below suggests that  (1,1)  is a stable center. 
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30. 
0 1

2 1x
 =  − 

J  

 At (1,1) :  The Jacobian matrix  
0 1
2 1
 =  − 

J   has characteristic equation  2 2 0λ λ+ − =  

 and real eigenvalues 1 22, 1λ λ≈ − ≈ +  with different signs.  Hence (1,1)  is a saddle point. 

 At (1, 1)− :  The Jacobian matrix  
0 1
2 1

 =  − − 
J   has characteristic equation  

 2 2 0λ λ+ + =  and complex conjugate eigenvalues 1 20.5 1.323 , 0.5 1.323i iλ λ≈ − + ≈ − −  
 with negative real part.  Hence (1,–1)  is a spiral sink as in the right-hand figure on the 
 preceding page. 
 

31. 2

0 2
3 1

y
x

 =  − 
J  

 At (1,1) :  The Jacobian matrix  
0 2
3 1
 =  − 

J   has characteristic equation  2 6 0λ λ+ − =  

 and real eigenvalues 1 23, 2λ λ= − = +  with different signs.  Hence (1,1)  is a saddle point. 

At ( 1, 1)− − :  The Jacobian matrix  
0 2
3 1

− =  − 
J   has characteristic equation 

2 6 0λ λ+ + =  and complex conjugate eigenvalues 1 20.5 2.398 , 0.5 2.398i iλ λ≈ − + ≈ − −   
with negative real part.  Hence (–1,–1)  is a spiral sink. 

These two critical points are shown in the figure below. 
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  32. 
1 2
y x =  − 

J  

 At (2,1) :  The Jacobian matrix  
1 2
1 2
 =  − 

J   has characteristic equation  2 4 0λ λ+ − =  

 and real eigenvalues 1 22.56, 1.56λ λ≈ − ≈ +  with different signs.  Hence (1,1)  is a saddle 
 point. 

At ( 2, 1)− − :  The Jacobian matrix  
1 2

1 2
− − =  − 

J   has characteristic equation 

2 3 4 0λ λ+ + =  and complex conjugate eigenvalues 1 1.5 1.323 ,iλ ≈ − +   

2 1.5 1.323iλ ≈ − − with negative real part.  Hence (–2,–1)  is a spiral sink. 

These two critical points are shown in the figure below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33. The characteristic equation of the given linear system is 
 
     (λ - ε)2 + 1  =  0 
  
 with characteristic roots  λ1, λ2  =  ε ± i. 
 
 (a) So if  ε < 0  then  λ1, λ2  are complex conjugates with negative real part,  and 

hence  (0, 0)  is an asymptotically stable spiral point. 
 
 (b) If  ε  =  0  then λ1, λ2  =  ±i  (pure imaginary),  so  (0,0)  is a stable center. 
 
 (c) If  ε > 0, the situation is the same as in (a) except that the real part is positive, so  

(0, 0)  is an unstable spiral point. 
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34. The characteristic equation of the given linear system is 
 
     (λ + 1)2 - ε  =  0. 
 
 (a) If  ε < 0  then  λ1, λ2  =   -1 ± i ε− .  Thus the characteristic roots are complex 

conjugates with negative real part, so it follows that  (0,0)  is an asymptotically stable 
spiral point. 

 
 (b) If  ε  =  0  then the characteristic roots  λ1  =  λ2  =  -1  are equal and negative, so  

(0,0)  is an asymptotically stable node.  If  0 < ε < 1  then  λ1, λ2  =  -1 ± ε   are both 
negative, so  (0,0)  is an asymptotically stable improper node. 

 
35. (a) If  h  =  0  we have the familiar system  x′  =  y,  y′  =  -x  with circular trajectories 

about the origin, which is therefore a center. 
 
 (b) The change to polar coordinates as in Example 6 of Section 9.1 is routine, 

yielding  r′  =  hr3  and  θ′  =  -1. 
 
 (c) If  h  =  -1,  then  r′  =  -r3  integrates to give  2r2  =  1/(t + C)  where  C  is a 

positive constant, so clearly  0r →   as  t → +∞ ,  and thus the origin is a stable spiral 
point. 

 
 (d) If  h  =  +1,  then  r′  =  r3  integrates to give  2r2  =  -1/(t + C)  where  C  =  -B  

is a positive constant.  It follows that  2r2  =  1/(B - t),  so now  r  increases as  t  starts at 
0  and increases. 

 
36. (a) Again, the change of variables is essentially the same as in Example 6 of Section 

9.1. 
 
 (b) If  ε  =  -a2  then the equation  r′  =  -r(a2 + r2)  integrates to give the equation 
 

2 2

2 2
ln ln( )

2
r a rt C

a a
++ = − +  

 
 that (after exponentiating) we readily solve for 
 

2 2 2
2

2 2
exp( 2 2 ) .

1 exp( 2 2 )
a ta Car

ta Ca
− −=

− − −  

 
 This makes it clear that  0r →   as  t → +∞ ,  so the origin is an asymptotically stable 

spiral point in this case. 
 
 (c) If  ε  =  a2  then the equation  r′  =  r(a2 - r2)  integrates to give the equation 
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2
2 ln ln( ) ln( )

2
r a r a rt C

a
− − − ++ =  

 
 that (after exponentiating) we solve for 
 

2
2

2 2 .
1 exp( 2 2 )

ar
ta Ca

=
+ − −  

 
 It therefore follows that  r a→   as  t → +∞ . 
 
37. The substitution  y  =  vx  in the homogeneous first-order equation 
 

3 3

3 3
(2 )
( 2 )

dy y x y
dx x x y

−=
−  

 yields 
4

3 .
2 1

dv v vx
dx v

+= −
−  

 
 Separating the variables and integrating by partial fractions, we get 
 

2
1 1 2 1

1 1
v dxdv

v v v v x
⌠ ⌠
 

 ⌡⌡

− − + + = − + − + 
 

 
2ln(( 1)( 1)) ln ln lnv v v v x C+ − + = − +  

 
2( 1)( 1) Cvv v v

x
+ − + =  

 
3 1 .Cvv

x
+ =  

               
 Finally, the replacement  /v y x=   yields  3 3 .x y Cxy+ =  
 
38. The roots of the characteristic equation  2 0T Dλ λ− + =   are given by 
 

     
2

1 2
4, .

2
T T Dλ λ ± −=  

 We examine the various possibilities individually. 

• If the point ( , )T D  lies above the parabola  2 4T D=  in the trace-determinant plane 
but off the D-axis, so the radicand  2 4T D−  is negative, then 1 2andλ λ  have 
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nonzero imaginary part and nonzero real part  / 2.T  Hence we have a spiral source if  
0,T >  a spiral sink if  0.T <  

• If the point ( , )T D  lies on the positive D-axis, so  0 but 0,T D= >  then 

1 2 ,i Dλ λ= =  pure imaginary, so we have a stable center.  

• If the point ( , )T D  lies beneath the T-axis, then ( )21
1 2 2, 4T T Dλ λ = ± +  because  

0.D <   It follows that  1 2andλ λ  are real with different signs, so we have a saddle 
point. 

• If the point ( , )T D  lies between the T-axis and the parabola  2 4 ,T D=  then the 
radicand 2 4T D−  is positive but less than  2.T   It follows that 1 2andλ λ  are real 
and both have the same sign as  T,  so we have a nodal source if  0,T >  a nodal sink 
if  0.T <  

 
 

 
SECTION 9.3 
 
ECOLOGICAL APPLICATIONS:   
PREDATORS AND COMPETITORS 
 

1. 
200 4 4

2 150 2
y x

y x
− − =  − + 

J  

 At (0,0) :  The Jacobian matrix  
200 0
0 150

 =  − 
J   has characteristic equation  

 (200 )( 150 ) 0λ λ− − − =  and real eigenvalues 1 2150, 200λ λ= − =  with different  signs.  
 Hence (0,0)  is a saddle point of the linearized system  200 , 150 .x x y y′ ′= = −  See the  
 left-hand figure below. 
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 At (75,50) :  The Jacobian matrix  
0 300

100 0
− =  

 
J   has characteristic equation  

 2 30000 0λ + =  and pure imaginary eigenvalues 1 2, 100 3.iλ λ = ±   Hence (75,50)   is a 
 stable center of the linearization  300 , 100 .u v v u′ ′= − =  See the right-hand figure at the 
 bottom of the preceding page. 
 
2. Upon separation of variables, the equation  
 

    150 2 ( 150 2 )
200 4 (200 4 )

dy y xy y x
dx x xy x y

− + − += =
− −

 

 yields 

    
200 1504 2 ,

200ln 4 2 150ln

dy dx
y x

y y x x C

   − = −  
  

− = − +

⌠ ⌠

⌡⌡  

 
 assuming that  , 0.x y >  
 
3. The effect of using the insecticide is to replace  b  by  b + f  and  a  by  a - f  in the 

predator-prey equations, while leaving  p  and  q  unchanged.  Hence the new harmful 
population is  (b + f)/q  >  b/q =  xE,  and the new benign population is 

 (a - f)/p  <  a /p  =  yE. 
 
Problems 4–7 deal with the competition system 
 
   2 260 4 3 , 42 2 3x x x xy y y y xy′ ′= − − = − −    (2) 
 

that has Jacobian matrix  
60 8 3 3

.
3 42 4 3
x y x
y y x

− − − =  − − − 
J  

 

4. At (0,0)  the Jacobian matrix  
60 0
0 42

 =  
 

J   has characteristic equation  

 (60 )(42 ) 0λ λ− − =  and positive real eigenvalues 1 242, 60.λ λ= =   Hence (0,0)  is a 
 nodal source of the linearized system  60 , 42 .x x y y′ ′= =  
 

5. At (0,21)  the Jacobian matrix  
3 0
63 42

− =  − − 
J   has characteristic equation  

 ( 3 )( 42 ) 0λ λ− − − − =  and negative real eigenvalues 1 242, 3.λ λ= − = −   Hence (0,21)  is 
 a nodal sink of the linearized system  3 , 63 42u u v u v′ ′= − = − − . 
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6. At (15,0)  the Jacobian matrix  

60 45
0 3

− − =  − 
J   has characteristic equation  

 ( 60 )( 3 ) 0λ λ− − − − =  and negative real eigenvalues 1 260, 3.λ λ= − = −   Hence (15,0)  is 
 a nodal sink of the linearized system  60 45 , 3u u v v v′ ′= − − = − . 
 

7. At (6,12)  the Jacobian matrix  
24 18
36 24

− − =  − − 
J   has characteristic equation  

 2( 24 ) ( 36)( 18) 0λ− − − − − =  and real eigenvalues  1 0,24 18 2λ + >= −  

 2 024 18 2λ − <= −   with different signs.  Hence (6,12)  is a saddle point of the 
 linearized system  24 18 ,u u v′ = − − 36 24v u v′ = − − .  The figure on the left below 
 illustrates this saddle point.  The figure on the right shows all four critical points of the 
 system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problems 8–10 deal with the competition system 
 
   2 260 3 4 , 42 3 2x x x xy y y y xy′ ′= − − = − −    (3) 
 

that has Jacobian matrix  
60 6 4 4

.
2 42 6 2
x y x
y y x

− − − =  − − − 
J  

 

8. At (0,14)  the Jacobian matrix  
4 0
28 42

 =  − − 
J   has characteristic equation  

 (4 )( 42 ) 0λ λ− − − =  and real eigenvalues  1 42,λ = −  2 4λ =   with different signs.  Hence 
 (0,14)  is a saddle point of the linearized system  4 , 28 42u u v u v′ ′= = − − . 
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(0,14) 

(12,6) 

(20,0) 

9. At (20,0)  the Jacobian matrix  
60 80
0 2

− − =  
 

J   has characteristic equation  

 ( 60 )(2 ) 0λ λ− − − =  and real eigenvalues  1 60,λ = −  2 2λ =   with different signs.  Hence 
 (20,0)  is a saddle point of the linearized system  60 80 , 2u u v v v′ ′= − − = . 
 

10. At (12,6)  the Jacobian matrix  
36 48
12 18

− − =  − − 
J   has characteristic equation  

 ( 36 )( 18 ) ( 12)( 48) 0λ λ− − − − − − − =  and negative real eigenvalues 1 2, .27 3 73λλ = − ±   
 Hence (12,6)  is a nodal sink of the linearized system  36 48 ,u u v′ = − −  12 18v u v′ = − − .  
 The figure on the left below illustrates this sink.  The figure on the right shows all four 
 critical points of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problems 11–13 deal with the predator-prey system 
 
    25 , 2x x x xy y y xy′ ′= − − = − +    (4) 
 

that has Jacobian matrix  
5 2

.
2

x y x
y x

− − − =  − + 
J  

 

11. At (0,0)  the Jacobian matrix  
5 0
0 2
 =  − 

J   has characteristic equation  

 (5 )( 2 ) 0λ λ− − − =  and real eigenvalues  1 2,λ −=  2 5λ =   with different signs.  Hence 
 (0,0)  is a saddle point of the linearized system  5 , 2 .x x y y′ ′= = −  
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12. At (5,0)  the Jacobian matrix  
5 5

0 3
− − =  
 

J   has characteristic equation  

 ( 5 )(3 ) 0λ λ− − − =  and real eigenvalues  1 5,λ −=  2 3λ =   with different signs.  Hence 
 (5,0)  is a saddle point of the linearized system  5 5 , 3u u v v v′ ′= − − = . 
 

13. At (2,3)  the Jacobian matrix  
2 2

3 0
− − =  
 

J   has characteristic equation  

 2( 2 )( ) (3)( 2) 2 6 0λ λ λ λ− − − − − = + + =  and complex conjugate eigenvalues  
 1 2, 1 5iλλ = − ±   with negative real part.  Hence (2,3)  is a spiral sink of the 
 linearized system  2 2 , 3u u v v u′ ′= − − =  (illustrated below). 
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Problems 14–17 deal with the predator-prey system 
 
    2 22 , 4x x x xy y y y xy′ ′= − − = − +    (5) 
 

that has Jacobian matrix  
2 2

.
2 4

x y x
y y x

− − − =  − + 
J  

 

14. At (0,0)  the Jacobian matrix  
2 0

0 4
− =  − 

J   has characteristic equation  

 ( 2 )( 4 ) 0λ λ− − − − =  and negative real eigenvalues  1 4,λ −=  2 2.λ −=  Hence (0,0)  is a 
 nodal sink of the linearized system  2 , 4 .x x y y′ ′= − = −  
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15. At (0,4)  the Jacobian matrix  
6 0

4 4
− =  
 

J   has characteristic equation  

 ( 6 )(4 ) 0λ λ− − − =  and real eigenvalues  1 6,λ −=  2 4λ =   with different signs.  Hence 
 (0,4)  is a saddle point of the linearized system  , 4 46u u v u v′ ′= − = + . 
 

16. At (2,0)  the Jacobian matrix  
2 2
0 2

− =  − 
J   has characteristic equation  

 (2 )( 2 ) 0λ λ− − − =  and real eigenvalues  1 2,λ −=  2 2λ =  with different signs.  Hence 
 (2,0)  is a saddle point of the linearized system  2 2 , 2u u v v v′ ′= − = − . 
 

17. At (3,1)  the Jacobian matrix  
3 3
1 1

− =  
 

J   has characteristic equation  

 2(3 )(1 ) (1)( 3) 4 6 0λ λ λ λ− − − − = − + =  and complex conjugate eigenvalues  
 1 2, 2 2iλλ = ±   with positive real part.  Hence (3,1)  is a spiral source of the 
 linearized system  3 3 ,u u v′ = −   v u v′ = +  (illustrated below). 
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Problems 18 and 19 deal with the predator-prey system 
 
    2 , 5x x xy y y xy′ ′= − = − +     (7) 
 

that has Jacobian matrix  
2

.
5

y x
y x
− − =  − + 

J  
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18. At (0,0)  the Jacobian matrix  
2 0
0 5
 =  − 

J   has characteristic equation  

 (2 )( 5 ) 0λ λ− − − =  and real eigenvalues  1 5,λ −= 2 2λ =   with different signs.  Hence 
 (0,0)  is a saddle point of the linearized system  2 , 5 .x x y y′ ′= = −  
 

19. At (5,2)  the Jacobian matrix  
0 5
2 0

− =  
 

J   has characteristic equation  

 2( )( ) (2)( 5) 10 0λ λ λ− − − − = + =  and pure imaginary roots 10,iλ = ±  so the origin 
 is a stable center for the linearized system  5 , 2u v v u′ ′= − = .  This is the indeterminate 
 case, but the figure below suggests that (5,2)  is also a stable center for the 
 original system in (7). 
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Problems 20–22 deal with the predator-prey system 
 
   23 , 5x x x xy y y xy′ ′= − + − = − +     (8) 
 

that has Jacobian matrix  
3 2

.
5

x y x
y x

− + − − =  − + 
J  

 

20. At (0,0)  the Jacobian matrix  
3 0

0 5
− =  − 

J   has characteristic equation  

 ( 3 )( 5 ) 0λ λ− − − − =  and negative real eigenvalues 1 5,λ −= 2 3λ −= .  Hence (0,0)  is a 
 nodal sink of the linearized system  3 , 5 .x x y y′ ′= − = −  
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21. At (3,0)  the Jacobian matrix  
3 3
0 2

− =  − 
J   has characteristic equation  

 (3 )( 2 ) 0λ λ− − − =  and real eigenvalues  1 2,λ −=  2 3λ =  with different signs.  Hence 
 (3,0)  is a saddle point of the linearized system  3 3 , 2u u v v v′ ′= − = − . 
 

22. At (5,2)  the Jacobian matrix  
5 5
2 0

− =  
 

J   has characteristic equation  

 2(5 )( ) (2)( 5) 5 10 0λ λ λ λ− − − − = − + =  and complex conjugate eigenvalues  

 ( )1
1 2 2, 5 15iλ λ = ±   with positive real part.  Hence (5,2)  is a spiral source of the 

 linearized system  5 5 , 2u u v v u′ ′= − =  (illustrated below). 
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Problems 23–25 deal with the predator-prey system 
 
   27 , 5x x x xy y y xy′ ′= − − = − +     (9) 
 

that has Jacobian matrix  
7 2

.
5

x y x
y x

− − − =  − + 
J  

 

23. At (0,0)  the Jacobian matrix  
7 0
0 5
 =  − 

J   has characteristic equation  

 (7 )( 5 ) 0λ λ− − − =  and real eigenvalues  1 5,λ −=  2 7λ =  with different signs.  Hence 
 (0,0)  is a saddle point of the linearized system  7 , 5 .x x y y′ ′= = −  
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24. At (7,0)  the Jacobian matrix  
7 7

0 2
− − =  
 

J   has characteristic equation  

 ( 7 )(2 ) 0λ λ− − − =  and real eigenvalues  1 7,λ −=  2 2λ =  with different signs.  Hence 
 (7,0)  is a saddle point of the linearized system  7 7 , 2u u v v v′ ′= − − = . 
 

25. At (5,2)  the Jacobian matrix  
5 5

2 0
− − =  
 

J   has characteristic equation  

 2( 5 )( ) (2)( 5) 5 10 0λ λ λ λ− − − − − = + + =  and complex conjugate eigenvalues  

 ( )1
1 2 2, 5 15iλ λ = − ±   with negative real part.  Hence (5,2)  is a spiral sink of the 

 linearized system  5 5 , 2u u v v u′ ′= − − =  (illustrated below). 
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26. 
2

3
y x

y x
− − =  − − 

J  

 At (0,0) :  The Jacobian matrix  
2 0
0 3
 =  
 

J   has characteristic equation  2 5 6 0λ λ− + =  

 and positive real eigenvalues 1 22, 3λ λ= = .  Hence (0,0)  is a nodal source. 

At (3,2) :  The Jacobian matrix  
0 3
2 0

− =  − 
J   has characteristic equation 2 6 0λ − =   

and real eigenvalues 1 2, 6λ λ = ±  with different signs.  Hence (3,2)  is a saddle point.   

If the initial point  0 0( , )x y  lies above the southwest-northeast separatrix through (3,2) ,  
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then  ( )( )( ), (0, )x t y t → ∞  as  .t → ∞   But if  0 0( , )x y  lies below this separatrix, then  

( )( )( ), ( ,0)x t y t → ∞  as  .t → ∞  See the left-hand figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27. 
2 4 2

3
y x
y x
− =  − 

J  

 At (0,0) :  The Jacobian matrix  
4 0

0 3
− =  − 

J   has characteristic equation  

 2 7 12 0λ λ+ + =  and negative real eigenvalues 1 24, 3λ λ= − = − .  Hence (0,0)  is a nodal 
 sink. 

At (3,2) :  The Jacobian matrix  
0 6
2 0
 =  
 

J   has characteristic equation 2 12 0λ − =  and  

real eigenvalues 1 2, 2 3λ λ = ±   with different signs.  Hence (3,2)  is a saddle point.   

If the initial point  0 0( , )x y  lies below the northwest-southeast separatrix through (3,2) , 

then ( )( )( ), (0,0)x t y t →  as  .t → ∞   But if  0 0( , )x y  lies above this separatrix, then  

( )( )( ), ( , )x t y t → ∞ ∞  as  .t → ∞  See the right-hand figure above. 
 

28. 
2 16 2

4
y x

y x
− =  − − 

J  

 At (0,0) :  The Jacobian matrix  
16 0
0 4

− =  
 

J   has characteristic equation  

 2 12 64 0λ λ+ − =  and real eigenvalues 1 216, 4λ λ= − =  with opposite signs.  Hence 
 (0,0)  is a saddle point. 
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At (4,8) :  The Jacobian matrix  
0 8
8 0

 =  − 
J   has characteristic equation 2 64 0λ + =  

and conjugate imaginary eigenvalues 1 2, 8iλ λ = ± .  This is the indeterminate case, but the 
figure in the answers section of the textbook indicates that (4,8)  is a stable center for the  
original nonlinear system.   

As  ,t → ∞   each solution point ( )( )( ),x t y t  with nonzero initial conditions encircles the stable 
center (4,8)  periodically in a clockwise direction.  See the figure below. 
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29. 
1 1
2 22 3

2 4 2
x y x

y x
− − + − =  − − 

J  

 At (0,0) :  The Jacobian matrix  
3 0
0 4
 =  
 

J   has characteristic equation  

 2 7 12 0λ λ− + =  and positive real eigenvalues 1 23, 4λ λ= = .  Hence (0,0)  is a nodal 
 source. 

 At (3,0) :  The Jacobian matrix  
3
23

0 2
− − =  − 

J   has characteristic equation  

 2 5 6 0λ λ+ + =  and negative real eigenvalues 1 23, 2λ λ= − = − .  Hence (3,0)  is a nodal 
 sink. 

At (2,2) :  The Jacobian matrix  
2 1
4 0

− − =  − 
J   has characteristic equation 

2 2 4 0λ λ+ − =  and real eigenvalues 1 23.2361, 1.2361λ λ≈ − =   with different signs.   
Hence (2,2)  is a saddle point.   



 Section 9.3 489 

 
 

 
 

0 5

0

5

x

y

(0,0) (3,0) 

(2,2) 

 
 

 
 

0 5 10

0

5

10

x

y

(5,4) 

(0,0) (3,0) 

If the initial point  0 0( , )x y  lies above the southwest-northeast separatrix through (2,2) , 

then  ( )( )( ), (0, )x t y t → ∞  as  .t → ∞   But if  0 0( , )x y  lies below this separatrix, then  

( )( )( ), (3,0)x t y t →  as  .t → ∞   See the left-hand figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

30. 
1 1
2 2

1 1
5 5

2 3
1

x y x
y x

− + + 
=  − 

J  

 At (0,0) :  The Jacobian matrix  
3 0
0 1
 =  − 

J   has characteristic equation  

 2 2 3 0λ λ− − =  and real eigenvalues 1 21, 3λ λ= − =  of opposite sign.  Hence (0,0)  is a 
 saddle point. 

 At (3,0) :  The Jacobian matrix  
3
23

0 2
− − =  − 

J   has characteristic equation  

 2 17 17
5 5 0λ λ+ + =  and  negative real eigenvalues 17

1 2 53,λ λ= − = − .  Hence (3,0)  is a 
 nodal sink. 

At (5,4) :  The Jacobian matrix  
5
2

4
5

5
0

− 
=  
 

J   has characteristic equation 2 5 2 0λ λ+ − =  

and real eigenvalues 1 25.3723, 0.3723λ λ≈ − =   with different signs.  Hence (5,4)  is a  
saddle point.   

If the initial point  0 0( , )x y  lies above the northwest-southeast separatrix through (5,4) , 

then  ( )( )( ), ( , )x t y t → ∞ ∞  as  .t → ∞   But if  0 0( , )x y  lies below this separatrix, then  

( )( )( ), (3,0)x t y t →  as  .t → ∞   See the right-hand figure above. 
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31. 
1 1
4 42 3

2
x y x

y x
− − + − =  − 

J  

 At (0,0) :  The Jacobian matrix  
3 0
0 2
 =  − 

J   has characteristic equation   2 6 0λ λ− − =  

 and real eigenvalues 1 22, 3λ λ= − =  of opposite sign.  Hence (0,0)  is a  saddle point. 

 At (3,0) :  The Jacobian matrix  
3
43

0 1
− − =  
 

J   has characteristic equation  

 2 2 3 0λ λ+ − =  and real eigenvalues 1 23, 1λ λ= − =   of opposite sign.  Hence (3,0)  is a 
 saddle point. 

At (2,4) :  The Jacobian matrix  
1
22

4 0
− − =  
 

J   has characteristic equation 

2 2 2 0λ λ+ + =  and complex conjugate eigenvalues 1 2, 1 iλ λ = − ±  with negative real  
part.  Hence (2,4)  is a spiral sink. 

As  ,t → ∞   each solution point ( )( )( ),x t y t  with nonzero initial conditions approaches 
the spiral sink (2,4) , as indicated by the direction arrows in the figure below. 
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32. 
6 30

4 4 6 60
x y x

y x y
− + + =  − + 

J  

 At (0,0) :  The Jacobian matrix  
30 0
0 60

 =  
 

J   has characteristic equation  

 2 90 1800 0λ λ− + =  and positive real eigenvalues 1 230, 60λ λ= = .  Hence (0,0)  is a 
 nodal source. 
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 At (0,20) :  The Jacobian matrix  
50 0
80 60
 =  − 

J   has characteristic equation  

 2 10 3000 0λ λ+ − =  and real eigenvalues 1 260, 50λ λ= − =  of opposite sign.  Hence 
 (0,20)  is a saddle point. 

 At (10,0) :  The Jacobian matrix  
30 10
0 100

− =  
 

J   has characteristic equation  

 2 70 3000 0λ λ− − =  and real eigenvalues 1 230, 100λ λ= − =  of opposite sign.  Hence 
 (10,0)  is a saddle point. 

At (30,60) :  The Jacobian matrix  
90 30

240 180
− =  − 

J   has characteristic equation 

2 240 9000 0λ λ+ + =  and negative real eigenvalues 1 2231.05, 38.95λ λ≈ − = − .  Hence  
(30,60)  is a nodal sink.   

As  ,t → ∞   each solution point ( )( )( ),x t y t  with nonzero initial conditions approaches 
the nodal sink (30,60) .  See the figure below. 
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33. 
6 30

4 4 6 60
x y x

y x y
− + + =  − + 

J  

 At (0,0) :  The Jacobian matrix  
30 0
0 80

 =  
 

J   has characteristic equation  

 2 110 2400 0λ λ− + =  and positive real eigenvalues 1 230, 80λ λ= = .  Hence (0,0)  is a 
 nodal source. 
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 At (0,20) :  The Jacobian matrix  
10 0
40 80
 =  − 

J   has characteristic equation  

 2 70 800 0λ λ+ − =  and real eigenvalues 1 280, 10λ λ= − =  of opposite sign.  Hence 
 (0,20)  is a saddle point. 

 At (15,0) :  The Jacobian matrix  
30 15
0 110

− =  
 

J   has characteristic equation  

 2 80 3300 0λ λ− − =  and real eigenvalues 1 230, 110λ λ= − =  of opposite sign.  Hence 
 (15,0)  is a saddle point. 

At (4,22) :  The Jacobian matrix  
8 4

44 88
− − =  − 

J   has characteristic equation 

2 96 880 0λ λ+ + =  and negative real eigenvalues 1 285.736, 10.264λ λ≈ − = − .  Hence  
(4,22)  is a nodal sink.   

As  ,t → ∞   each solution point ( )( )( ),x t y t  with nonzero initial conditions approaches 
the nodal sink (4,22) .  See the figure below. 
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34. 
4 30

2 2 8 20
x y x

y x y
− − + − =  − + 

J  

 At (0,0) :  The Jacobian matrix  
30 0
0 20

 =  
 

J   has characteristic equation  

 2 50 600 0λ λ− + =  and positive real eigenvalues 1 220, 30λ λ= = .  Hence (0,0)  is a 
 nodal source. 
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 At (0,5) :  The Jacobian matrix  
25 0
10 20
 =  − 

J   has characteristic equation  

 2 5 500 0λ λ− − =  and real eigenvalues 1 220, 25λ λ= − =  of opposite sign.  Hence 
 (0,5)  is a saddle point. 

 At (15,0) :  The Jacobian matrix  
30 15
0 50

− − =  
 

J   has characteristic equation  

 2 20 1500 0λ λ− − =  and real eigenvalues 1 230, 50λ λ= − =  of opposite sign.  Hence 
 (15,0)  is a saddle point. 

At ( )10,10 :  The Jacobian matrix  
20 10

20 40
− − =  − 

J   has characteristic equation 

2 60 1000 0λ λ+ + =  and complex conjugate eigenvalues 1 2, 30 10iλ λ ≈ − ±  with  
negative real part.  Hence ( )10,10  is a spiral sink.   

As  ,t → ∞   each solution point ( )( )( ),x t y t  with nonzero initial conditions approaches 

the nodal sink ( )10,10 .  See the figure below. 
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SECTION 9.4 
 
NONLINEAR MECHANICAL SYSTEMS 
 
In each of Problems 1–4 we need only substitute the familiar power series for the exponential, 
sine, and cosine functions, and then discard all higher-order terms.  For each problem we give 
the corresponding linear system, the eigenvalues  λ1  and  λ2,  and the type of this critical point. 
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1. ( )21
21 1 2 2x x x y x y′ = − + + + + ≈ − +�  

 ( )31
64 4y x y y x y′ = − − − + ≈ − −�  

The coefficient matrix  
1 2
1 4

− =  − − 
A   has negative eigenvalues λ1 = -2  and   

λ2  = -3  indicating a stable nodal sink as illustrated in the figure below.  Alternatively,  
we can calculate the Jacobian matrix 

      
1 22

( , ) , so (0,0) .
1 41 4cos

xe
x y

x
− −  = =   − −− −   

J J  

 
 

 
 

−10 0 10

−5

0

5

x

y

 
 
2. ( ) ( )3 31 1

6 62 2x x x y y x y′ = − + + − + ≈ +� �  

 ( ) ( )3 31 1
6 62 2y x x y y x y′ = − + + − + ≈ +� �  

The coefficient matrix  
2 1
1 2
 =  
 

A  has positive eigenvalues  λ1 = 1  and  λ2 = 3  

indicating an unstable nodal source.  Alternatively, we can calculate the Jacobian matrix 

      
2cos cos 2 1

( , ) , so (0,0) .
cos 2cos 1 2

x y
x y

x y
   = =   
   

J J  

 
 
3. ( )21

21 2 1 2x x x y x y′ = + + + + − ≈ +�  

 ( )21
28 1 1 8y x y y x y′ = + + + + − ≈ +�  
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−3 0 3

−3

0

3

x

y
The coefficient matrix  

1 2
8 1
 =  
 

A  has real eigenvalues  λ1 = -3  and  λ2 = 5  of 

opposite sign, indicating an unstable saddle point as illustrated in the left-hand figure  
below.  Alternatively, we can calculate the Jacobian matrix 

      
1 22

( , ) , so (0,0) .
8 18

x

y

e
x y

e
   = =   

  
J J  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. The linear system is   x′  =   x - 2y,  y′  =  4x - 3y  because 
 
   sin x cos y  =  (x - x3 /3! + ⋅⋅⋅)(1 - y2 /2! + ⋅⋅⋅)  =  ,x +�  
 

and  cos sinx y y≈  similarly.  The coefficient matrix  
1 2
4 3

− =  − 
A   has complex 

conjugate eigenvalues  λ1,λ2 = -1 ± 2 i  with negative real part, indicating a stable  
spiral point as illustrated in the right-hand figure above.  Alternatively, we can calculate 

the Jacobian matrix 

 
cos cos sin sin 2 1 2

( , ) , so (0,0) .
3sin sin 4 3cos cos 4 3

x y x y
x y

x y x y
− − −   = =   + − −   

J J  

 
 

5. The critical points are of the form  (0, nπ)  where  n  is an integer, so we substitute   
 ,x u=   .y v nπ= +   Then 

  sin( ) (cos ) ( 1) .nu x u v n u n v u vπ π′ ′= = − + + = − + = − + −  

 
 

 
 

−4 0 4

−4

0

4

x

y
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 Hence the linearized system at  (0, nπ)  is 

     u′  =  -u ± v,   v′  =  2u 

 where we take the plus sign if  n  is even, the minus sign if  n  is odd.  If  n  is even the 
eigenvalues are  λ1 = 1  and  λ2 = -2,  so  (0, nπ)  is an unstable saddle point.  If  n  is odd  

 the eigenvalues are  λ1,λ2  =  (-1 ± i 7 )/2,  so  (0, nπ)  is a stable spiral point. 
 
 

 
 

−5 0 5

−3pi

−2pi

−pi

0

pi

2pi

3pi

x

y

 

 Alternatively, we can start by calculating the Jacobian matrix 
1 cos

( , )
2 0

y
x y

− =  
 

J . 

 At (0, ), evenn nπ :  The Jacobian matrix  
1 1

2 0
− =  
 

J   has characteristic equation  

 2 2 0λ λ+ − =  and real eigenvalues 1 22, 1λ λ= − =  of opposite sign.  Hence (0, )nπ  is a  
 saddle point if  n  is even, as we see in the figure above. 
 

 At (0, ), oddn nπ :  The Jacobian matrix  
1 1

2 0
− − =  
 

J   has characteristic equation  

 2 2 0λ λ+ + =  and complex conjugate eigenvalues 1
1 2 2, ( 1 7)iλ λ = − ±  with negative 

 real.  Hence (0, )nπ  is a spiral sink if  n  is odd, as indicated in the figure. 
 
 
6. The critical points are of the form  (n, 0)  where  n  is an integer, so we substitute 
 , .x u n y v= + =   Then 

  sin ( ) cos sin ( 1) ,nv y u n v n u u vπ π π π′ ′= = + − = ≈ − −  

 Hence the linearized system at  (n, 0)  is 
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     u′  =    v,     v′  =  ±πu - v 

 with coefficient matrix  
0 1

1π
 =  ± − 

A   where we take the plus sign if  n  is even, the 

minus sign if  n  is odd.  The characteristic equation   
 
     λ2 + λ - π  =  0 
 
 has one positive and one negative root, so  (n, 0)  is an unstable saddle point if  n  is even. 

The equation   
     λ2 + λ + π  =  0   
 
 has complex conjugate roots with negative real part, so  (n, 0)  is a stable spiral point if  n  

is odd. 
 
 

 
 

−3 0 3

−4

0

4

x

y

 

 Alternatively, we can start by calculating the Jacobian matrix  
0 1

( , )
cos 1

x y
xπ π

 =  − 
J . 

 At ( ,0), evenn n :  The Jacobian matrix  
0 1

1π
 =  − 

J   has characteristic equation  

 2 0λ λ π+ − =  and real eigenvalues 1 22.3416, 1.3416λ λ≈ − ≈  of opposite sign.  Hence 
 ( ,0)n  is a saddle point if  n  is even, as we see in the figure above. 
 

 At ( ,0), oddn n :  The Jacobian matrix  
0 1

1π
 =  − − 

J   has characteristic equation  

 2 0λ λ π+ + =  and complex conjugate eigenvalues 1 2, 0.5 1.7005iλ λ ≈ − ±  with negative 
 real.  Hence ( ,0)n  is a spiral sink if  n  is odd, as we see in the figure. 
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7. The critical points are of the form  (nπ, nπ)  where  n  is an integer,  so we substitute   
 , .x u n y v nπ π= + = +   Then 

  ( )21
21 1 1 ( ) ( )u vu x e u v u v u v−′ ′= = − = − + − + − + ≈ − +� , 

  ( )2sin 2sin cos 2( 1) .nv y u n u n uπ π′ ′= = + = ≈ −  

   Hence the linearized system at  (nπ, nπ)  is 

     u′  =  -u + v,     v′  =  ±2u 

 and has coefficient matrix  
1 1

,
2 0

− =  ± 
A   where we take the plus sign if  n  is even, the 

minus sign if  n  is odd.  With  n  even, The characteristic equation  2 2 0λ λ+ − =   has 
real roots λ1 = 1   and  λ2 = -2  of opposite sign,  so (nπ, nπ)  is an unstable saddle point.  
With  n  odd,  the characteristic equation  2 2 0λ λ+ + =   has complex conjugate 
eigenvalues are  λ1, λ2  =  (-1 ± i 7 )/2  with negative real part,  so  (nπ, nπ)  is a stable  

 spiral point. 
 
 

 
 

−3pi −2pi −pi 0 pi 2pi 3pi

−3pi

−2pi

−pi

0

pi

2pi

3pi

x

y

 
 

 Alternatively, we can start by calculating the Jacobian matrix  ( , )
2cos 0

x y x ye e
x y

x

− − −
=  
 

J . 

 

 At ( , ), evenn n nπ π :  The Jacobian matrix  
1 1

2 0
− =  
 

J   has characteristic equation  

 2 2 0λ λ+ − =  and real eigenvalues 1 22, 1λ λ= − =  of opposite sign.  Hence ( , )n nπ π  is 
 a saddle point if  n  is even, as we see in the figure above. 
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 At ( , ), oddn n nπ π :  The Jacobian matrix  
1 1
2 0

− =  − 
J   has characteristic equation  

 2 2 0λ λ+ + =  and complex conjugate eigenvalues 1 2, 0.5 1.3229iλ λ ≈ − ±  with negative 
 real.  Hence ( , )n nπ π  is a spiral sink if  n  is odd, as we see in the figure. 
 
8. The critical points are of the form  (nπ, 0)  where  n  is an integer, so we substitute   
 , .x u n y vπ= + =   Then 

  3sin( ) 3sin cos 3( 1) ,nu x u n v u n v u vπ π′ ′= = + + = + ≈ − +  
  sin( ) 2 sin cos 2 ( 1) 2 ,nv y u n v u n v u vπ π′ ′= = + + = + ≈ − +  

   Hence the linearized system at  (nπ, 0) is 

     u′  =  ±3u + v,      v′  =  ±u + 2v 

 with coefficient matrix  
3 1
1 2

± =  ± 
A ,  where we take the plus signs if  n  is even, the 

minus signs if  n  is odd.  If  n  is even then the characteristic equation  2 5 5 0λ λ− + =  
has roots  λ1,λ2 = (5 ± 5 )/2  that are both positive, so  (nπ, 0)  is an unstable nodal 
source.  If n  is odd then the characteristic equation  2 5 5 0λ λ− + =  has real roots   

 λ1,λ2 = (-1 ± 21 )/2  with opposite signs, so  (nπ, 0)  is an unstable saddle point. 
 
 

 
 

−3pi −2pi −pi 0 pi 2pi 3pi

−4

0

4

x

y

 
 

 Alternatively, we can start by calculating the Jacobian matrix  
3cos 1

( , )
cos 2

x
x y

x
 =  
 

J . 
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 At ( ,0), evenn nπ :  The Jacobian matrix  
3 1
1 2
 =  
 

J   has characteristic equation  

 2 5 5 0λ λ− + =  and positive real eigenvalues 1 21.3812, 2.6180λ λ≈ = .  Hence ( ,0)nπ  is 
 a nodal source if  n  is even, as we see in the figure on the preceding page. 
 

 At ( ,0), oddn nπ :  The Jacobian matrix  
3 1
1 2

− =  − 
J   has characteristic equation  

 2 5 0λ λ+ − =  and real eigenvalues 1 22.7913, 1.7913λ λ≈ − =  of opposite sign.  Hence 
 ( ,0)nπ  is a saddle point if  n  is odd, as we see in the figure. 

 
 

As preparation for Problems 9–11, we first calculate the Jacobian matrix 

    2

0 1
( , )

cos
x y

x cω
 =  − − 

J   

of the damped pendulum system in (34) in the text.  At the critical point ( ,0)nπ we have 

  2 2

0 1 0 1
( ,0) ,

cos
n

n c c
π

ω π ω
   = =   − − ± −   

J  

where we take the plus sign if  n  is odd, the minus sign if  n  is even. 
 
9. If  n  is odd then the characteristic equation  2 2 0cλ λ ω+ − =   has real roots 

     
2 2

1 2
4,

2
c c ωλ λ − ± +=  

 with opposite signs, so  (nπ, 0)  is an unstable saddle point.   
 
10. If  n  is even then the characteristic equation  2 2 0cλ λ ω+ + =   has roots 

    
2 2

1 2
4,

2
c c ωλ λ − ± −= . 

 If  2 24c ω>   then  λ1  and  λ2  are both negative so  (nπ, 0)  is a stable nodal sink.  
 
11. If  n  is even and  2 24c ω<   then the two eigenvalues 

   
2 2

2 2
1 2

4, 4
2 2 2

c c c i cωλ λ ω− ± −= = − ± −  

 are complex conjugates with negative real part, so  (nπ, 0)  is a stable spiral point. 
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Problems 12–16 call for us to find and classify the critical points of the first order-system 

, ( , )x y y f x y′ ′= = −   that corresponds to the given equation  ( , ) 0.x f x x′′ ′+ =   After finding 
the critical points  ( ,0)x   where  ( ,0) 0,f x =  we first calculate the Jacobian matrix  ( , ).x yJ    
 

12. 2

0 1
( , )

15 20 0
x y

x
 =  − 

J . 

 At (0,0) :   The Jacobian matrix  
0 1
20 0

 =  − 
J   has characteristic equation  

 2 20 0λ + =  and pure imaginary eigenvalues 1 2, 20iλ λ = ±  consistent with the stable 
 center we see at (0,0) in Fig. 9.4.4 in the textbook. 

 At ( 2,0) :±   The Jacobian matrix  
0 1
40 0
 =  
 

J   has characteristic equation  

 2 40 0λ − =  and real eigenvalues 1 2, 40λ λ = ±  of opposite sign, consistent with the 
 saddle  points we see at ( 2,0)±  in Fig. 9.4.4. 
 

13. 2

0 1
( , )

15 20 2
x y

x
 =  − − 

J . 

 At (0,0) :   The Jacobian matrix  
0 1
20 2

 =  − − 
J   has characteristic equation  

 2 2 20 0λ λ+ + =  and complex conjugate eigenvalues 1 2, 1 19iλ λ = − ±  consistent with 
 the spiral node we see at (0,0) in Fig. 9.4.6 in the textbook. 

 At ( 2,0) :±   The Jacobian matrix  
0 1
40 2
 =  − 

J   has characteristic equation  

 2 2 40 0λ λ+ − =  and real eigenvalues 1 2, 1 41λ λ = − ±  of opposite sign, consistent with 
 the saddle points we see at ( 2,0)±  in Fig. 9.4.6. 
 

14. 2

0 1
( , )

8 6 0
x y

x
 =  − 

J . 

 At (0,0) :   The Jacobian matrix  
0 1
8 0
 =  
 

J   has characteristic equation   2 8 0λ − =  and 

 real eigenvalues 1 2, 8λ λ = ±  of opposite sign, consistent with the saddle point we see at 
 (0,0) in Fig. 9.4.12 in the textbook. 

 At ( 2,0) :±   The Jacobian matrix  
0 1
16 0

 =  − 
J   has characteristic equation  

 2 16 0λ + =  and pure imaginary eigenvalues 1 2, 4 ,iλ λ = ±  consistent with the stable 
 centers we see at ( 2,0)±  in Fig. 9.4.12. 
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15. 
0 1

( , )
2 4 0

x y
x

 =  − 
J . 

 At (0,0) :   The Jacobian matrix  
0 1
4 0

 =  − 
J   has characteristic equation  

 2 4 0λ + =  and pure imaginary eigenvalues 1 2, 2 ,iλ λ = ±  consistent with the stable center 
 we see at (0,0) in Fig. 9.4.13 in the textbook. 

 At (4,0) :   The Jacobian matrix  
0 1
4 0
 =  
 

J   has characteristic equation 2 4 0λ − =  and 

 real eigenvalues 1 2, 2λ λ = ±  of opposite sign, consistent with the saddle point we see at 
 (4,0)  in Fig. 9.4.13. 
 
 

16. 2 4

0 1
( , )

4 15 5 0
x y

x x
 =  − + − 

J . 

 At (0,0) :   The Jacobian matrix  
0 1
4 0

 =  − 
J   has characteristic equation  

 2 4 0λ + =  and pure imaginary eigenvalues 1 2, 2 ,iλ λ = ±  consistent with the stable center 
 we see at (0,0) in Fig. 9.4.14 in the textbook. 

 At ( 1,0) :±   The Jacobian matrix  
0 1
6 0
 =  
 

J   has characteristic equation 2 6 0λ − =  and 

 real eigenvalues 1 2, 6λ λ = ±  of opposite sign, consistent with the saddle points we see 
 at ( 1,0)±  in Fig. 9.4.14. 

 At ( 2,0) :±   The Jacobian matrix  
0 1
24 0

 =  − 
J   has characteristic equation  

 2 24 0λ + =  and pure imaginary eigenvalues 1 2, 24,iλ λ = ±  consistent with the stable 
 centers we see at ( 2,0)±  in Fig. 9.4.14. 
 
 

17. 215
4

0 1
( , )

5 2
x y

x
 

=  − − − 
J . 

 At (0,0) :   The Jacobian matrix  
0 1
5 2

 =  − − 
J   has characteristic equation  

 2 2 5 0λ λ+ + =  and complex conjugate eigenvalues 1 2, 1 2iλ λ = − ±  with negative real 
 part, consistent with the spiral sink we see in the left-hand figure at the top of the next 
 page. 
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18. 215
4

0 1
( , )

5 4
x y

x y
 

=  − + − 
J . 

 At (0,0) :   The Jacobian matrix  
0 1
5 0

 =  − 
J   has characteristic equation   2 5 0λ + =  and 

 pure imaginary eigenvalues 1 2, 5.iλ λ = ±   This corresponds to the indeterminate case of 
 Theorem 2 in Section 9.3, but is not inconsistent with the spiral sink we see at the origin 
 in the figure on the right above. 

 At ( 2,0) :±   The Jacobian matrix  
0 1

10 0
 =  
 

J   has characteristic equation 2 10 0λ − =  

 and real eigenvalues 1 2, 10,λ λ = ±  consistent with the saddle points we see at ( 2,0)±  in 
 the right-hand figure above. 
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19. 215
4

0 1
( , )

5 4
x y

x y
 

=  − − − 
J . 

 At (0,0) :   The Jacobian matrix  
0 1
5 0

 =  − 
J   has characteristic equation   2 5 0λ + =  and 

 pure imaginary eigenvalues 1 2, 5.iλ λ = ±   This corresponds to the indeterminate case of 
 Theorem 2 in Section 9.3, but is not inconsistent with the spiral sink we see in the figure 
 at the bottom of the preceding page. 
 

20. 1
2

0 1
( , )

cos
x y

x y
 

=  − − 
J . 

 At ( ,0), evenn nπ :  The Jacobian matrix  
0 1
1 0

 =  − 
J   has characteristic equation  

 2 1 0λ + =  and pure imaginary eigenvalues 1 2, .iλ λ = ±  This corresponds to the 
 indeterminate case of  Theorem 2 in Section 9.3, but is not inconsistent with the spiral 
 sinks we see in the figure below. 

 At ( ,0), oddn nπ :  The Jacobian matrix  
0 1
1 0
 =  
 

J   has characteristic equation  

 2 1 0λ − =  and real eigenvalues 1 2, 1λ λ = ±  of opposite sign, consistent with the saddle 
 points we see in the figure. 

 
 

−3pi −2pi −pi 0 pi 2pi 3pi

−4

0

4

x

y

 
 
The statements of Problems 21–26 in the text include their answers and rather fully outline their 
solutions, which therefore are omitted here. 
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CHAPTER 10 
  
LAPLACE TRANSFORM METHODS 
 
 
SECTION 10.1 
 
LAPLACE TRANSFORMS AND INVERSE TRANSFORMS 
 
The objectives of this section are especially clearcut.  They include familiarity with the definition 
of the Laplace transform  L{f(t)}  =  F(s)  that is given in Equation (1) in the textbook, the direct 
application of this definition to calculate Laplace transforms of simple functions (as in Examples 
1–3), and the use of known transforms (those listed in Figure 10.1.2) to find Laplace transforms 
and inverse transforms (as in Examples 4-6).  Perhaps students need to be told explicitly to 
memorize the transforms that are listed in the short table that appears in Figure 10.1.2. 

1. 
0

2 2 20
0

}{ ( , )

1 1 1( 1)

st

u u

t e t dt u st du s dt

ue du u e
s s s

∞ −

−∞
−∞⌠



⌡

= = − = −

   = = − =   

∫L  

 
2. We substitute  u  =  -st  in the tabulated integral 
 

( )2 2 2 2u uu e du e u u C= − + +∫  

      (or, alternatively, integrate by parts) and get 
 

{ }
2

2 2
2 3 30

0

2 2 2 .st st

t

t tt e t dt e
s s s s

∞
∞ − −

=

  
= = − + + =  

  
∫L  

 

3. { }3 1 3 1 ( 3)

0 0 3
t st t s t ee e e dt e e dt

s
∞ ∞+ − + − −= = =

−∫ ∫L    

 
4. With  a  =  -s  and  b  =  1  the tabulated integral 
 

2 2
cos sincosau au a bu b bue bu du e C

a b
+ = + + 

∫  

yields 

{ } 2 20
0

( cos sin )cos cos
1 1

st
st

t

e s t t st e t dt
s s

∞−∞ −

=

 − += = = + + 
∫L . 
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5.  { } { } ( ) ( )( 1) ( 1)1 1 1
2 2 20 0

2

sinh

1 1 1 1
2 1 1 1

t t st t t s t s tt e e e e e dt e e dt

s s s

∞ ∞− − − − − − += − = − = −

 = − = − + − 

∫ ∫L L  

6. { } ( )12 2
20 0

2 2
0

sin sin 1 cos2

1 1 cos2 2sin 2 1 1
2 4 2 4

st st

st st

t

t e t dt e t dt

s t t se e
s s s s

∞ ∞− −

∞
− −

=

= = −

− +    = − − ⋅ = −    + +    

∫ ∫L  

 

7. { }
1

1

0
0

1 1( )
s

st st ef t e dt e
s s

−
− − − = = − =  

∫L  

 

8. { }
2 22

1
1

( )
st s s

st e e ef t e dt
s s

− − −
−   −= = − = 

 
∫L  

  

9. { } 1

20

1( )
s s

st e sef t e t dt
s

− −
− − −= =∫L  

 

10. { }
1

1

2 2 20
0

1 1 1 1( ) (1 )
s

st st t ef t t e dt e
s s s s s s

−
− −  = − = − − − = − +  

  
∫L  

 

11. { } 3/ 2 2 3/ 2 2
(3/ 2) 1 33 3

2
t t

s s s s
πΓ+ = + ⋅ = +L  

  

12. { }5 / 2 3
7 / 2 4 7 / 2 2

(7 / 2) 3! 45 243 4 3 4
8

t t
s s s s

πΓ− = ⋅ − ⋅ = −L  

 

13. { }3
2

1 22
3

tt e
s s

− = −
−

L  

 

14. { }3/ 2 10
5/ 2 5/ 2

(5 / 2) 1 3 1
10 4 10

tt e
s s s s

π− Γ+ = + = +
+ +

L  

 

15. { } 2
11 + cosh 5

25
st

s s
= +

−
L  
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16. { } 2 2 2
2 2sin 2   cos 2

4 4 4
s st t

s s s
++ = + =

+ + +
L  

 

17. { } { }2
2

1 1 1cos 2 1+cos4
2 2 16

st t
s s

 = = + + 
L L  

 

18. { } { } 2 2
1 1 6 3sin 3 cos 3 sin 6
2 2 36 36

t t t
s s

= = ⋅ =
+ +

L L  

 

19. ( ){ } { }3 2 3
2 3 4 2 3 4

1 1! 2! 3! 1 3 6 61 1 3 3 3 3t t t t
s s s s s s s s

+ = + + + = + ⋅ + ⋅ + = + + +L L  

 
20. Integrating by parts with  u  =  t,  dv  =  e-(s-1)tdt,  we get 
 

{ }

{ }

( 1)

0 0

( 1)

20
0

1 1 1
.1 1 1 ( 1)

t st t s t

s t
st t

te e te dt te dt

te e e dt t
s s s s

∞ ∞− − −

∞− − ∞ −

= =

 −= + = = − − − − 

∫ ∫

∫

L

L
 

 
21. Integration by parts with  u  =  t  and  dv  =   e-stcos 2t dt  yields 
 

{ } ( )

{ } { }

( )

20 0

2

2 2

2 2 2 22

1cos2 cos2 cos2 2sin 2
4

1 cos2 2 sin 2
4

1 4 4
.4 4 4 4

st stt t te t dt e s t t dt
s

s t t
s

s s
s s s s

∞ ∞− −= = − − +
+

= − − +  +
 − −= − + = + + +  +

∫ ∫L

L L  

 

22. { } { }2
2

1 1 1sinh 3 cosh 6 1
2 2 36

st t
s s

 = − = − − 
L L  

 

23. 1 1 3
4 4

3 1 6 1
2 2

t
s s

− −   = ⋅ =   
   

    L L  

 

24. 1 1 1/ 2
3/ 2 3/ 2
1 2 2 2

2
tt

s s
π

ππ π
− −     = ⋅ = ⋅ =   
    

    L L  

                       

25. 
3/ 2

1 1 3/ 2
5/ 2 5 / 2 3 1

2 2

1 2 1 2 (5 / 2) 2 81 1
(5 / 2) 3

tt
s s s s π π

− −  Γ − = − ⋅ = − ⋅ = −   Γ ⋅   

    L L  
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26. 1 51
5

te
s

− −  = = + 

  L  

 

27. 1 1 43 13 3
4 4

te
s s

− −   = ⋅ =   − −   

    L L  

 

28. 1 1 1
2 2 2

3 1 1 2 13 3cos2 sin 2
4 4 2 4 2

s s t t
s s s

− − −+     = ⋅ + ⋅ = +     + + +     

      L L L  

 

29. 1 1 1
2 2 2

5 3 5 3 53 sin 3 3cos3
9 3 9 9 3
s s t t

s s s
− − −−     = ⋅ − ⋅ = −     + + +     

      L L L  

 

30. 1 1 1
2 2 2

9 9 2 9 sinh 2 cosh 2
4 2 4 4 2

s s t t
s s s

− − −+     = − ⋅ − = − −     − − −     

      L L L  

 

31. 1 1 1
2 2 2

10 3 3 5 310 10cosh5 sinh5
25 25 5 25 5

s s t t
s s s

− − −−     = − ⋅ ⋅ = −     − − −     

      L L + L +  

 

32. 
3

1
32 2 ( 3) 2 ( )

se u t u t
s

−
−  

⋅ = − = 
 

  L           [See Example 8 in the textbook.] 

 

33. { } 1 1 1sin
2 2

ikt ikte ekt
i i s ik s ik

− −  = = −   − +  
L L  

 2
2 2

1 2 (because 1)
2 ( )( )

ik k i
i s ik s ik s k

= ⋅ = = −
− − +

 

 

34. { } 2 2 2 2
1 1 1 1 2sinh

2 2 2

kt kte e k kkt
s k s k s k s k

− −  = = − = ⋅ =   − + − −  
L L  

 

35. Using the given tabulated integral with  a = –s  and  b = k,  we find that 
 

 { } ( )2 2
0 0

cos cos cos sin
st

st

t

ekt e kt dt s kt k kt
s k

∞∞ −
−

=

 
= = − + + 

⌠

⌡

L  

 ( )
0

2 2 2 2 2 2lim cos sin ( 1 0) .
st

t

e e ss kt k kt s k
s k s k s k

−

→∞

 
= − + − − ⋅ + ⋅ = + + + 
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36. Evidently the function  
2

( ) sin( )tf t e=   is of exponential order because it is bounded;  
we can simply take  c = 0  and  M = 1  in Eq. (23) of this section in the text.  However, 

 its derivative 
2 2

( ) 2 cos( )t tf t t e e′ =  is not bounded by any exponential function  cte , 

because  
2 2

/ as .t ct t cte e e t−= → ∞ → ∞  
 
37. ( )f t   =  1 - ua(t)  =  1 - u(t - a)  so         

   { } { } { } 11( ) 1 ( ) (1 ).
as

as
a

ef t u t s e
s s

−
− −= − = − = −L L L  

 For the graph of  f,  note that  ( ) 1 ( ) 1 1 0.f a u a= − = − =  

 
38. ( ) ( ) ( ),f t u t a u t b= − − − so          

  { } { } { } ( )1( ) ( ) ( ) .
as bs

as bs
a b

e ef t u t u t s e e
s s

− −
− − −= − = − = −L L L  

 For the graph of  f,  note that  ( ) (0) ( ) 1 0 1f a u u a b= − − = − =  because ,a b<  but 
 ( ) ( ) (0) 1 1 0.f b u b a u= − − = − =  
 
39. Use of the geometric series gives 

{ } { } ( )2 3

0 0

1( ) ( ) 1
ns

s s s

n n

ef t u t n e e e
s s

−∞ ∞
− − −

= =

= − = = + + + +∑ ∑ �L L  

 ( ) ( )
2 31 1 1 11 ( ) ( ) ( ) .

1 1
s s s

s se e e
s s e s e

− − −
− −= + + + + = ⋅ =

− −
�  

40. Use of the geometric series gives 

{ } { } ( )2 3

0 0

( 1) 1( ) ( 1) ( ) 1
n ns

n s s s

n n

ef t u t n e e e
s s

−∞ ∞
− − −

= =

−= − − = = − + − +∑ ∑ �L L  

 ( ) ( )
2 31 1 1 11 ( ) ( ) ( ) .

1 ( ) 1
s s s

s se e e
s s e s e

− − −
− −= + − + − + − + = ⋅ =

− − +
�  

41. By checking values at sample points, you can verify that  ( ) 2 ( ) 1g t f t= −   in terms of  
 the square wave function ( )f t  of Problem 40.  Hence 

 { } { } ( )
2 1 1 2 1 1( ) 2 ( ) 1 1

1 11

s

s ss

eg t f t
s s e s es e

−

− −−

− = − = − = − = ⋅ + ++  
L L  

 
( )
( )

/ 2 / 21/ 2 / 2 / 2
2

/ 2 / 2 / 2 / 2 / 21
2

1 1 1 1
1

s ss s s s

s s s s s s

e ee e e e
s e e s e e s e e

−− −

− − −

−− −= ⋅ ⋅ = ⋅ = ⋅
+ + +
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 1 sinh( / 2) 1 tanh .
cosh( / 2) 2

s s
s s s

= ⋅ =  

 
42. Let's refer to  ( 1, ]n n−   as an odd interval if the integer  n  is odd, and even interval if  n  
 is even.  Then our function  ( )h t   has the value  a  on odd intervals, the value  b  on even 
 intervals.  Now the unit step function  ( )f t   of  Problem 40 has the value  1  on odd 
 intervals, the value  0  on even intervals.  Hence the function  ( ) ( )a b f t−  has the value  
 ( )a b− on odd intervals, the value  0  on even intervals.  Finally, the function  
 ( ) ( )a b f t b− + has the value  ( )a b b a− + =   on odd intervals, the value  b  on even  
 intervals, and hence ( ) ( ) ( ).a b f t b h t− + =   Therefore 

  { ( )} {( ) ( )} { } .
(1 ) (1 )

s

s s
a b b a beL h t L a b f t L b

s e s s e

−

− −

− += − + = + =
+ +

 

 
 
 
 
SECTION 10.2 
 
TRANSFORMATION OF INITIAL VALUE PROBLEMS 
 
The focus of this section is on the use of transforms of derivatives (Theorem 1) to solve initial 
value problems (as in Examples 1 and 2).  Transforms of integrals (Theorem 2) appear less 
frequently in practice, and the extension of Theorem 1 at the end of Section 10.2 may be 
considered entirely optional (except perhaps for electrical engineering students). 
 
In Problems 1–10 we give first the transformed differential equation, then the transform  X(s)  of 
the solution, and finally the inverse transform  x(t)  of  X(s). 
 

1. [s2X(s) - 5s] + 4{X(s)}  =  0 

 2 2
5( ) 5

4 4
s sX s

s s
= = ⋅

+ +
 

 x(t)  =  L-1{X(s)}  =  5 cos 2t 
 

2. [s2X(s) - 3s - 4] + 9[X(s)]  =  0 

 2 2 2
3 4 4 3( ) 3

9 9 3 9
s sX s

s s s
+= = ⋅ + ⋅
+ + +

 

 x(t)  =  L-1{X(s)}  =  3 cos 3t + (4/3)sin 3t 
 

3. [s2X(s) - 2] - [sX(s)] - 2[X(s)]  =  0 
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 2
2 2 2 1 1( )

2 ( 2)( 1) 3 2 1
X s

s s s s s s
 = = = − − − − + − + 

 

 x(t)  =  (2/3)(e2t - e-t) 
 

4. [s2X(s) - 2s + 3] + 8[s X(s) - 2] + 15[X(s)]  =  0 

 2
2 13 7 1 3 1( )

8 15 2 3 2 5
sX s

s s s s
+= = ⋅ − ⋅

+ + + +
 

 x(t)   =  L-1{X(s)}  =  (7/2)e-3t - (3/2)e-5t  
  

5. [s2X(s)] + [X(s)]  =  2/(s2 + 4) 

 2 2 2 2
2 2 1 1 2( )

( 1)( 4) 3 1 3 4
X s

s s s s
= = ⋅ − ⋅

+ + + +
 

 x(t)   =  (2 sin t - sin 2t)/3 
 
6. [s2X(s)] + 4[X(s)]  =  L{cos t}  =  s/(s2 + 1) 

 2 2 2 2
2 1 1( )

( 1)( 4) 3 1 3 4
s sX s

s s s s
= = ⋅ − ⋅

+ + + +
  

 x(t)   =  L-1{X(s)}  =  (cos t - cos 2t)/3 
 

7. [s2X(s) - s] + [X(s)]  =  s/s2 + 9) 

 (s2 + 1)X(s)  =  s + s /(s2 + 9)  =  (s3 + 10s)/(s2 + 9) 

 
2

2 2 2 2
10 9 1( )

( 1)( 9) 9 1 8 9
s s s sX s

s s s s
+= = ⋅ − ⋅

+ + + +
 

 x(t)  =  (9 cos t - cos 3t)/8 
 

8. [s2X(s)] + 9[X(s)]  =  L{1}  =  1/s 

 2 2
1 1 1 1( )

( 9) 9 9 9
sX s

s s s s
= = ⋅ − ⋅

+ +
 

 x(t)  =  L-1{X(s)}  =  (1 - cos 3t)/9 
 

9. s2X(s) + 4sX(s) + 3X(s)  =  1/s 

 2
1 1 1 1 1 1 1 1( )

( 4 3) ( 1)( 3) 3 2 1 6 3
X s

s s s s s s s s s
= = = ⋅ − ⋅ + ⋅

+ + + + + +
 

 x(t)   =  (2 - 3e-t + e-3t)/6 
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  10. [s2X(s) - 2] + 3[sX(s)] + 2[X(s)]  =  L{t}  =  1/s2 

 (s2 + 3s + 2)X(s)  =  2 + 1/s2  =  (2s2 + 1)/s2 

 
2 2

2 2 2 2
2 1 2 1 3 1 1 1 1 9 1( ) 3

( 3 2) ( 1)( 2) 4 2 1 4 2
s sX s

s s s s s s s s s s
+ += = = − ⋅ + ⋅ + ⋅ − ⋅

+ + + + + +
 

 x(t)   =  L-1{X(s)}  =  (-3 + 2t + 12e-t - 9e-2t)/4 
 

11. The transformed equations are 
  
    sX(s) - 1  =  2X(s) +  Y(s) 

    sY(s) + 2  =  6X(s) + 3Y(s). 
 
 We solve for the Laplace transforms 
 

    5 1( )
( 5)
sX s

s s s
−= =
−

 

    Y(s)  =  2 10 2( ) .
( 5)
sX s

s s s
− += = −

−
 

 
 Hence the solution is given by 
 
    x(t)  =  1,  y(t)  =  -2. 
 
12. The transformed equations are 
 
    s X(s)  =  X(s) + 2Y(s) 

    s Y(s)  =  X(s) + 1/(s + 1), 
 
 which we solve for 
 

  2 2
2 2 1 1 1( ) 3

( 2)( 1) 9 2 1 ( 1)
X s

s s s s s
 = = − − ⋅ − + − + + 

 

  2 2
1 1 1 1 1( ) 6 .

( 2)( 1) 9 2 1 ( 1)
sY s

s s s s s
 −= = − − ⋅ − + − + + 

 

 
 Hence the solution is 
 
    x(t)  =  (2/9)(e2t - e-t - 3t e-t) 

    y(t)  =  (1/9)(e2t - e-t + 6t e-t). 
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13. The transformed equations are 
 
   sX(s) + 2[sY(s) - 1] + X(s)  =  0 
   sX(s) -  [sY(s) - 1] + Y(s)  =  0, 
 
 which we solve for the transforms 
 

  
( )22 2 2

2 2 1 2 1/ 3( )
3 1 3 1/ 3 3 1/ 3

X s
s s s

= − = − ⋅ = − ⋅
− − −

 

  
( ) ( )2 22 2 2 2

3 1 1/ 3 1 1/ 3( )
3 1 1/ 3 31/ 3 1/ 3

s s sX s
s s s s

+ += = = + ⋅
− − − −

. 

 Hence the solution is 
 
   x(t)  =  ( ) ( )2 / 3 sinh / 3t−  

   y(t)  =  ( ) ( ) ( )cosh / 3 1/ 3 sinh / 3t t+ . 

  
14. The transformed equations are 
 
    s2X(s) + 1 + 2X(s) + 4Y(s)  =  0 

    s2Y(s) + 1 +   X(s) + 2Y(s)  =  0, 
 
 which we solve for 
 

   
2

2 2 2 2
2 1 1 2( ) 2 3

( 4) 4 4
sX s

s s s s
− +  = = ⋅ − ⋅ + + 

 

   
2

2 2 2 2
1 1 1 2( ) 2 3 .

( 4) 8 4
sY s

s s s s
− −  = = − ⋅ + ⋅ + + 

 

 
 Hence the solution is  
 
              x(t)  =   (1/4)(2t - 3 sin 2t) 

              y(t)  =   (-1/8)(2t + 3 sin 2t). 
 
15. The transformed equations are 
 
   [s2X - s] + [sX - 1] + [sY - 1] + 2X -  Y  =  0 
   [s2Y - s] + [sX - 1] + [sY - 1] + 4X - 2Y  =  0, 
 
 which we solve for 
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2

3 2 2 2

2 2 2 2

3 2 1 2 3 1 2 3( )
3 3 3 3 3 3 ( 3/ 2) (3/ 4)

1 2 3/ 2 3 / 23
3 ( 3/ 2) ( 3 / 2) ( 3/ 2) ( 3 / 2)

s s s sX s
s s s s s s s s

s
s s s

 + + + + = = + = +   + + + + + +   

 += + + ⋅ 
+ + + + 

 

  

3 2

3 2 2

2

2 2 4 1 28 9 2 15( )
3 3 21 1 3 3

1 28 9 2 15
21 1 ( 3/ 2) 3/ 4

s s s sY s
s s s s s s s

s
s s s

− − + + + = = − + + + − + + 

 += − + − + + 

 

  
2 2 2 2

1 28 9 3/ 2 3 / 22 8 3 .
21 1 ( 3/ 2) ( 3 / 2) ( 3/ 2) ( 3 / 2)

s
s s s s

 += − + ⋅ + ⋅ − + + + + 
 

 
 Here we've used some fairly heavy-duty partial fractions (Section 7.3).  The transforms 
 

  { } { }2 2 2 2cos , sin
( ) ( )

at ats a ke kt e kt
s a k s a k

−= =
− + − +

L L  

 
 from the inside-front-cover table (with  3 / 2, 3 / 2)a k= − =  finally yield 
   

  ( ) ( ){ }3 / 21( ) 2 cos 3 / 2 3sin 3 / 2
3

tx t e t t−  = + +
 

  

  ( ) ( ){ }3 / 21( ) 28 9 2cos 3 / 2 8 3 sin 3 / 2 .
21

t ty t e e t t−  = − + +
 

 

 
16. The transformed equations are 
 
   s X(s) - 1  =     X(s) + Z(s) 

   s Y(s)        =     X(s) + Y(s) 

   s Z(s)        =  -2X(s) - Z(s), 
 
 which we solve for 
 

   
2

2 2
1 1( )

( 1)( 1) 1
s sX s

s s s
− += =

− + +
 

   2 2
1 1( )

( 1)( 1) 1 1
s sY s

s s s s
+= = −

− + − +
 

   2 2
2 2 2( ) .

( 1)( 1) 1
sZ s

s s s
− += = −
− + +
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 Hence the solution is 
 
        x(t)  =  cos t + sin t 

        y(t)  =  et - cos t 

        z(t)  =  -2 sin t. 
 

17. ( )3 3 3

0
0

1 1( ) 1
3 3

t
t tf t e d e eτ τ

τ

τ
=

 = = = −  
∫  

 

18. ( )5 5 5

0
0

3 33 1( )
5 5

t
t tf t e d e eτ τ

τ

τ− − −

=

 − = −= =   
∫   

 

19. ( )1
20

0

1 1sin 2 cos2 1 cos2( )
4 4

t
t

tf t d
τ

τ τ τ
=

 − = −= =   
∫  

 

20. ( ) ( )1
30

0

2 1 12cos3 sin 3 sin 3 cos3 6sin 3 cos3 1( )
3 9 9

t
t

d t tf t
τ

τ τ τ τ τ
=

 + − = − += =   
∫  

  

21. [ ]
0 00 0

sin (1 cos ) sin sin( )
ttt

t dt d t tf t d
τ

τ
τ τ τ τ τ

=

  − = − = −= =
  ∫ ∫∫   

 

22. ( )1
30

0

1 1sinh 3 cosh 3 cosh 3 1( )
9 9

t
t

tf t d
τ

τ τ τ
=

  = −= =   
∫  

  

23. [ ] 00 00
sinh (cosh 1) sinh sinh( )

tt tt dt d t tf t d
τ

ττ τ τ τ τ
=

  − = − = −= =
  ∫ ∫∫   

 

24. ( ) ( )2 2 2

0
0

1 1 2 1( )
2 2

t
t t te e e e e ef t dτ τ τ τ

τ

τ− − − − − −

=

 − − + = − += =   
∫  

 

25. With  f(t)  =  cos kt  and  F(s)  =  s /(s2 + k2),  Theorem 1 in this section yields 
 

  L{-k sin kt}  =  L{f′ (t)}  =  sF(s) - 1  
2

2 2 2 21 ,s ks
s k s k

= ⋅ − = −
+ +

 

 
 so division by  -k  yields  L{sin kt}  =  k /(s2 + k2). 
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26. With  f(t)  =  sinh kt  and  F(s)  =  k /(s2 - k2),  Theorem 1 yields 
 
  L{f′ (t)}  =  L{k cosh kt}  =  ks /(s2 - k2)  =  sF(s), 
 
 so it follows upon division by  k  that  L{cosh kt}  =  s/(s2 - k2). 
 
27. (a)  With  f(t)  =  tneat  and  f′ (t)  =  ntn-1eat + atneat,  Theorem 1 yields 
 
    L{ntn-1eat + atneat}  =  s L{tneat} 
 so 
    n L{tn-1eat}  =  (s - a)L{tneat} 
 and hence 

    { } { }1 .n at n atnt e t e
s a

−=
−

L L  

 

 (b) { } { } 2
1 1 1 11:

( )
at atn t e e

s a s a s a s a
= = = ⋅ =

− − − −
L L  

  { } { }2
2 3

2 2 1 2!2 :
( ) ( )

at atn t e t e
s a s a s a s a

= = = ⋅ =
− − − −

L L  

  { } { }3 2
3 4

3 3 2! 3!3 :
( ) ( )

at atn t e t e
s a s a s a s a

= = = ⋅ =
− − − −

L L  

 And so forth. 

 
28. Problems 28 and 30 are the trigonometric and hyperbolic versions of essentially the same 

computation.  For Problem 30 we let  f(t)  =  t cosh kt,  so  f(0)  =  0.  Then 
 
     ( )f t′   =  cosh kt + kt sinh kt 

    ( )f t′′ =  2k sinh kt + k2t cosh kt, 
 
 and thus  f′ (0)  =  1,  so Formula (5) in this section yields 
 
   L{2k sinh kt + k2 t cosh kt}  =  s2L{t cosh kt} - 1,  

   2 22 kk
s k

⋅
−

  +  k2F(s)  =  s2F(s) - 1. 

 We readily solve this last equation for 

   L{t cosh kt}  =  F(s)  =  
( )

2 2

22 2
.s k

s k
+

−
 

 
29. Let   f(t)  =  t sinh kt,  so  f(0)  =  0.  Then 
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     ( )f t′   =  sinh kt + kt cosh kt 

    ( )f t′′ =  2k cosh kt + k2t sinh kt, 
 
 and thus  f′ (0)  =  0,  so Formula (5) in this section yields 
 
   L{2k cosh kt + k2 t sinh kt}  =  s2L{sinh kt},  

   2 22 sk
s k

⋅
−

  +  k2F(s)  =  s2F(s). 

 We readily solve this last equation for 

   L{t cosh kt}  =  F(s)  =  
( )22 2

2 .ks
s k−

 

30. See Problem 28. 
 
31. Using the known transform of  sin kt  and the Problem 28 transform of  t cos kt, we obtain 
 

 ( )
( )

2 2

23 3 2 2 3 2 2

1 1sin cos
2 2 2

k k s kkt kt kt
k k s k k s k

− − = ⋅ − ⋅  +  +
L  

  
( ) ( ) ( )

2 2 2

2 2 22 2 2 22 2 2 2 2 2

1 1 1 2 1
2 2

s k k
k s k ks k s k s k

 − = − = ⋅ =
 + + + + 

 

 
32. If  f(t)  =  u(t - a),  then the only jump in  f(t)  is  j1  =  1  at  t1  =  a.  Since  f(0)  =  0  and 

f′ (t)  =  0,  Formula (21) in this section yields  
 
    0  =  s F(s) - 0 - eas(1). 
 
 Hence  L{u(t - a)}  =  F(s)  =  s-1e-as. 
 
33. ( ) ( ) ( ) ( ) ( ),a bf t u t u t u t a u t b= − = − − − so the result of Problem 32 gives 
 

  { } { } { }( ) ( ) ( ) .
as bs as bse e e ef t u t a u t b

s s s

− − − −−= − − − = − =L L L  

 
34. The square wave function of Figure 7.2.9 has a sequence  {tn}  of jumps with  tn  =  n  

and  jn  =  2(-1)n  for  n  =  1, 2, 3, ... .  Hence Formula (21) yields 
 

    0  =  s F(s) - 1 - 
1

2( 1) .ns n

n
e

∞
−

=
⋅ −∑  

 It follows that 
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                 s F(s)  =  1 + 2 
1
( 1)n ns

n
e

∞
−

=
−∑  

                          =  -1 + 2(1 - e-s + e-2s - e-3s +  ⋅ ⋅ ⋅ ) 

                          =  -1 + 2/(1 + e-s) 

                        =  (1 - e-s)/(1 + e-s) 

                       =  (es/2 - e-s/2)/(es/2 + e-s/2) 

           s F(s)  =  tanh(s /2), 
 
      because  2 cosh(s /2)  =  es/2 + e-s/2  and  2 sinh(s/2)  =  es/2 - e-s/2. 
 

35. Let's write  ( )g t  for the on-off function of this problem to distinguish it from the square 
wave function of Problem 34.  Then comparison of Figures 7.2.9 and 7.2.10 makes it 
clear that  ( )1

2( ) 1 ( ) ,g t f t= +   so (using the result of Problem 34) we obtain 
  

  
/ 2 / 2 / 2

/ 2 / 2 / 2
1 1 1 1 1( ) ( ) tanh 1
2 2 2 2 2 2

s s s

s s s
s e e eG s F s

s s s s e e e

− −

− −

 −= + = + = + ⋅ + 
 

  ( )
1 1 1 2 11 .
2 1 2 1 1

s

s s s

e
s e s e s e

−

− − −

 −= + = ⋅ = + + + 
 

 

36. If  g(t)  is the triangular wave function of Figure 7.2.11 and  f(t)  is the square wave 
function of Problem 34, then  ( ) ( ).g t f t′ =   Hence Theorem 1 and the result of Problem 
34 yield 

        { }( )g t′L   =  s L{g(t)} - g(0), 

                 F(s)  =  s G(s),               (because  g(0) = 0) 

        L{g(t)}  =  s-1F(s)  =  s-2tanh(s/2). 
 

37. We observe that  (0) 0f =  and that the sawtooth function has jump  –1  at each of the 
points  1, 2, 3, .nt n= = �   Also,  ( ) 1f t′ ≡ wherever the derivative is defined.  Hence  
Eq. (21) in this section gives 
 

 ( ) ( ) ( )
1 0

1 11 1 ,
1

ns ns
ns

n n
s F s e s F s e s F s

s e

∞ ∞
− −

−
= =

= + = − + = − +
−∑ ∑  

 using the geometric series  
0

1/(1 )n

n
x x

∞

=
= −∑   with  .sx e−=   Solution for  F(s)  gives 
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  ( ) ( )2 2
1 1 1 1( ) .

1 1

s

s s

eF s
s s ss e s e

−

− −
= + − = −

− −
 

 
 
SECTION 10.3 
 
TRANSLATION AND PARTIAL FRACTIONS 
 
This section is devoted to the computational nuts and bolts of the staple technique for the 
inversion of Laplace transforms — partial fraction decompositions.  If time does not permit 
going further in this chapter, Sections 10.1–10.3 provide a self-contained introduction to Laplace 
transforms that suffices for the most common elementary applications. 
 

1. L{t4}  =  5
24
s

,    so   L{t4eπ t}  =  5
24

( )s π−
 

 

2. L{t3/2}  =  5/ 2
3 ,
4s

π    so  L{t3/2 e–4t} =  5/ 2
3 .

4( 4)s
π

+
 

 

3. L{sin 3πt}  =  2 2
3 ,

9s
π

π+
   so  L{e-2tsin 3πt}  =  2 2

3 .
( 2) 9s

π
π+ +

 

 

4. cos2 cos 2
8 4

t tπ π   − = −   
   

  =  ( )1 cos2 sin 2
2

t t+  

 cos2
8

t π  −  
  

L   =  2
1 2

42
s
s

+
+

 

 ( )
( )

/ 2
2 2

1/ 2 21 1 2 5cos2
8 4 4 172 21/ 2 4

t s se t
s ss

π− + +  + − = =   + +  + + 
L  

 

5. 23 3 1 3( ) , so ( )
2 4 2 2 2

tF s f t e
s s

= = ⋅ =
− −

 

 

6. ( )2 2
3 2 3

( 1) 2 1 2( ) , so ( )
( 1) ( 1) ( 1)

t t tsF s f t te t e e t t
s s s

− − −+ −= = − = − = −
+ + +

 

 

7. 
( )2

1( )
2

F s
s

=
+

,   so   f(t)  =  t e-2t 

 

8. 
( )2

2( )
2 1

sF s
s

+=
+ +

,   so   f(t)  =  e-2tcos t 
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9. 
( ) ( )2 2

3 7 4( ) 3 ,
23 16 3 16

sF s
s s

−= ⋅ + ⋅
− + − +

   so   f(t)  =  e3t[3 cos 4t + (7/2)sin 4t] 

 

10. 
( ) ( )2 2

2 3 1 2 3( )
93 2 16 2 / 3 16 / 9

s sF s
s s

− −= = ⋅
− + − +

 

 
( ) ( ) ( ) ( )2 2 2 2

2 2 / 3 5 4 / 3
9 362 / 3 4 / 3 2 / 3 4 / 3

s
s s

−= ⋅ − ⋅
− + − +

 

 2 / 31 4 4( ) 8cos 5sin
36 3 3

t t tf t e  = − 
 

 

 

11. 1 1 1 1( ) ,
4 2 4 2

F s
s s

= ⋅ − ⋅
− +

   so   ( )2 21 1( ) sinh 2
4 2

t tf t e e t−= − =  

 

12. 1 1( ) 2 3 ,
3

F s
s s

= ⋅ + ⋅
−

   so   3( ) 2 3 tf t e= +  

 

13. 2 51 1( ) 3 5 , so ( ) 3 5
2 5

t tF s f t e e
s s

− −= ⋅ − ⋅ = −
+ +

 

 

14. 21 1 1( ) 2 3 , so ( ) 2 3
1 2

t tF s f t e e
s s s

−= ⋅ − ⋅ + = − +
+ −

 

  

15. ( )5
2

1 1 1 1 1( ) 1 5 , so ( ) 1 5
25 5 25

tF s f t t e
s s s

 = − ⋅ − ⋅ + = − − + − 
 

 

16. 
( ) ( ) ( ) ( )2 2 2 2

1 1 2 5 2 5( )
125 3 23 2 3 2

F s
s ss s s s

 
= = + − + 

 + −+ − + − 
 

 ( ) ( )3 21( ) 2 5 2 5
125

t tf t e t e t− = + + − +   

  

17. 2 2 2 2
1 1 1 1 2 2( )
8 4 4 16 4 4

F s
s s s s

   = − = −   − + − +   
 

 ( )1( ) sinh 2 sin 2
16

f t t t= −  

 

18. 
( ) ( ) ( )2 3 4

1 1 48 64( )
4 4 4 4

F s
s s s s

= + + +
− − − −
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 4 2 332( ) 1 12 24
3

tf t e t t t = + + + 
 

 

 

19. ( ) ( )
2

2 22 2

2 1 2 1 2 4( )
3 1 41 4

s s s sF s
s ss s

− − − + = = + + ++ +  
 

 ( )1( ) 2cos sin 2cos2 2sin 2
3

f t t t t t= − − + +  

20. 
( ) ( ) ( ) ( ) ( )2 2 2 2 22

1 1 1 1 2 1 2( )
32 2 22 2 2 24

F s
s ss s s ss

 
= = = + − + 

 + −− + + −−  
 

 ( ) ( )2 21( ) 1 2 1 2
32

t tf t e t e t− = + + − +   

 
21. First we need to find  , , ,A B C D  so that 
 

   
( ) ( )

2

2 222 2

3 .
2 22 2 2 2

s As B Cs D
s ss s s s

+ + += +
+ ++ + + +

 

 
When we multiply both sides by the quadratic factor  2 2 2s s+ +   and collect 
coefficients, we get the linear equations 
 

    

2 3 0
2 2 0
2 1 0

0

B D
A B C
A B

A

− − + =
− − − =
− − + =
− =

 

 
 which we solve for  0, 1, 2, 1.A B C D= = = − =   Thus 
 

 
( ) ( ) ( ) ( ) ( )

2 2 2 2 22 2 2

1 2 1 1 1 1( ) 2 3 .
1 1 1 11 1 1 1 1 1

s sF s
s ss s s

− + += + = − ⋅ + ⋅
+ + + +     + + + + + +

     

 

 
We now use the inverse Laplace transforms given in Eq. (16) and (17) of Section 10.3 — 
supplying the factor  te−  corresponding to the translation  1s s→ +  — and get 

 

 ( ) ( )1 1 1( ) sin 2 sin 3 sin cos 5sin 2 sin 3 cos .
2 2 2

t tf t e t t t t t t e t t t t t− − = − ⋅ + ⋅ − = − −  
 

 
22. First we need to find  A, B, C, D  so that 
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   ( ) ( )
3 2

2 222 2

2 .
4 4 54 4 5 4 4 5

s s As B Cs D
s ss s s s

− + += +
− +− + − +

 

 
 When we multiply each side by the quadratic factor (squared) 5 we get the identity  
 
   2s3 - s2  =  (As + B)(4s2 - 4s + 5) + Cs + D. 
 
 When we substitute the root  s  =  1/2 + i  of the quadratic into this identity, we find that  

C  =  -3/2  and  D  =  - 5/4.  When we first differentiate each side of the identity and then 
substitute the root, we find that  A  =  1/2  and B  =  1/4. Writing 

 
    4s2 - 4s + 5  =  4[(s - 1/2)2 + 1], 
 it follows that 

   
( )
( )

( )
( )

1 1
2 2

2 221 12 2

1 3 41 1( ) .
8 321 1

s s
F s

s s

− + − +
= ⋅ − ⋅

− +  − +
 

 

 Finally the results 
 
    L-1{2s/(s2 + 1)2}  =  t sin t 

     L-1{2/(s2 + 1)2}  =  sin t - t cos t 
 
 of Eqs. (16) and (17) in Section 10.3, together with the translation theorem, yield 
 

  
( ) ( )

( ) ( )

/ 2

/ 2

1 3 1 4 1( ) cos sin sin sin cos
8 32 2 32 2

1 8 4 cos 4 3 sin .
64

t

t

f t e t t t t t t t

e t t t t

 = ⋅ + − ⋅ − ⋅ −  

= + + −  

 

 

23. 
3

4 4 2 2 2 2
1 ,

4 2 2 2 2 2
s s a s a

s a s as a s as a
− + = + + − + + + 

 

 
 and  s2 ± 2as + 2a2  =  (s ± a)2 + a2,  so it follows that 
 

  ( )
3

1
4 4

1 cos cosh cos .
4 2

at ats e e at at at
s a

− − 
= + = + 

L  

 

24. 4 4 2 2 2 2 2
1 ,

4 4 2 2 2 2
s a a

s a a s as a s as a
 = − + − + + + 

 

 
 and  s2 ± 2as + 2a2  =  (s ± a)2 + a2,  so it follows that 
 



 Section 10.3 523 

  ( )
3

1
4 4 2 2

1 1sin sinh sin .
4 4 2

at ats e e at at at
s a a a

− − 
= − = + 

L  

 

25. 4 4 2 2 2 2
1

4 4 2 2 2 2
s s s

s a a s as a s as a
 = − + − + + + 

 

 2 2 2 2 2 2 2 2
1 ,

4 2 2 2 2 2 2 2 2
s a a s a a

a s as a s as a s as a s as a
− + = + − + − + − + + + + + 

 

 
 and  s2 ± 2as + 2a2  =  (s ± a)2 + a2,  so it follows that 
 

  

( )

( ) ( )

( )

1
4 4

1 (cos sin ) cos sin
4 4

1 1 1sin cos
2 2 2
1 cosh sin sinh cos .

2

at at

at at at at

s e at at e at at
s a a

e e at e e at
a

at at at at
a

− −

− −

 
 = + − −   + 

 = + + −  

= +

L

 

 

26. 4 4 3 2 2 2 2
1 1 2 2
4 8 2 2 2 2

s a s a
s a a s as a s as a

− + + = + + − + + + 
 

 3 2 2 2 2 2 2 2 2
1 ,

8 2 2 2 2 2 2 2 2
s a a s a a

a s as a s as a s as a s as a
− + = − + + + − + − + + + + + 

 

 
 and  s2 ± 2as + 2a2  =  (s ± a)2 + a2,  so it follows that 
 

  

( )

( ) ( )

( )

1
4 4 3

3

3

1 ( cos sin ) cos sin
4 8

1 1 1sin cos
4 2 2
1 cosh sin sinh cos .

4

at at

at at at at

s e at at e at at
s a a

e e at e e at
a

at at at at
a

− −

− −

 
 = − + + +   + 

 = + − −  

= −

L

 

 

In Problems 27–40 we give first the transformed equation, then the Laplace transform  ( )X s  of 
the solution, and finally the desired solution  ( ).x t  
 
27. [s2X(s) - 2s - 3] + 6[sX(s) - 2] + 25X(s)  =  0 

 
( ) ( )2 22

2 15 3 9 4( ) 2
6 25 43 16 3 16

s sX s
s s s s

+ += = ⋅ + ⋅
+ + + + + +

 

 x(t)  =  e-3t[2 cos 4t + (9/4)sin 4t] 
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28. 2 2( ) 6 ( ) 8 ( )s X s sX s X s
s

− + =  

 2
2 1 1 1 2( )

( 6 8) 4 4 2
X s

s s s s s s
 = = + − − + − − 

 

 ( )4 21( ) 1 2
4

t tx t e e= + −   

 

29. 2
2

3( ) 4 ( )s X s X s
s

− =  

 ( ) 2 22 2

3 3 1 1( )
4 44

X s
s ss s

 = = − −−  
  

 ( )3 3 3( ) sinh 2 sinh 2 2
8 4 8

x t t t t t= − = −  

  

30. 2 1( ) 4 ( ) 8 ( )
1

s X s sX s X s
s

+ + =
+

 

 
( )( )

( ) ( )

22

2 2

1 1 1 3( )
5 1 4 81 4 8

1 1 2 1 2
5 1 22 4 2 4

sX s
s s ss s s

s
s s s

+ = = − + + ++ + +  

 += − − ⋅ 
 + + + + + 

 

 21( ) 2 (2cos2 sin 2 )
10

t tx t e e t t− − = − +   

 
31. [s3X(s) - s - 1] + [s2X(s) - 1] - 6[sX(s)]  =  0 

 3 2
2 1 5 1 6( )

6 15 3 2
sX s

s s s s s s
+  = = − − + + − + − 

  

 ( )3 21( ) 5 6
15

t tx t e e−= − − +  

 
32. 4 3( ) ( ) 0s X s s X s − − =   

 
3

4 2 2
1( )

1 2 1 1
s s sX s

s s s
 = = + − + − 

 

 ( )1( ) cos cosh
2

x t t t= +  
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33. [s4X(s) - 1] + X(s)  =  0 

 4
1( )

1
X s

s
=

+
 

  
 It therefore follows from Problem 26 with  4 1/ 4 1/ 2a = = that 
 

  1( ) cosh sin sinh cos .
2 2 2 2 2

t t t tx t  = − 
 

 

 
34. [s4X(s) - 2s2 + 13] + 13[s2X(s) - 2] + 36 X(s)  =  0 

 
2

4 2 2 2
2 13 1 1( )

13 36 4 9
sX s

s s s s
+= = +

+ + + +
 

 1 1( ) sin 2 sin 3
2 3

x t t t= +  

   
35. 4 2( ) 1 8 ( ) 16 ( ) 0s X s s X s X s − + + =   

 
( )24 2 2

1 1( )
8 16 4

X s
s s s

= =
+ + +

 

 ( )1( ) sin 2 2 cos2
16

x t t t t= −   (by Eq. (17) in Section 10.3) 

 

36. 4 2 1( ) 2 ( ) ( )
2

s X s s X s X s
s

+ + =
−

 

 
( ) ( ) ( )224 2 2

1 1 1 2 5( 2)( )
25 2 12 2 1 1

s sX s
s ss s s s

 + + = = − −
 − +− + + + 

 

 
( )2

2

1 1 1( ) cos 2sin 5 sin 10 sin cos
25 2 2
1 2 (10 2)cos (5 14)sin
50

t

t

x t e t t t t t t t

e t t t t

− = − − − ⋅ − ⋅ − 
 

 = + − − + 

 

 

37. 
( )

2
2

1( ) 2 4 ( ) 13 ( )
1

s X s sX s X s
s

 − + + =  +
 

 ( )
2 2

2 2 2

2 1/( 1) 2 4 13( )
4 13 ( 1) 4 13

s s sX s
s s s s s
+ + + += =

+ + + + +
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2 2

2 2 2

1 1 5 98
50 1 ( 1) ( 2) 9

1 1 5 2 332
50 1 ( 1) ( 2) 9 ( 2) 9

s
s s s

s
s s s s

 += − + + + + + + 

 += − + + + ⋅ + + + + + + 

 

 21( ) ( 1 5 ) (cos3 32sin 3 )
50

t tx t t e e t t− − = − + + +   

 

38. [ ]2
2( ) 1 6 ( ) 1 18 ( )

4
ss X s s sX s X s

s
 − + + − + =  +

 

 
( ) ( )2 2 2

2 2 2

5( )
6 18 4 6 18

5 1 7 12 7 54
6 18 170 4 6 18

s sX s
s s s s s

s s s
s s s s s

+= +
+ + + + +

+ + + = + − + + + + + 

 

 

( ) ( )

2 2

2 22

1 7 12 163 796
170 4 6 18

1 7 12 163( 3) 307( )
170 4 3 9 3 9

s s
s s s

s sX s
s s s

+ + = + + + + 

 + += + + 
 + + + + + 

 

 ( ) ( )31 1( ) 7cos2 6sin 2 489cos3 307sin 3
170 510

tx t t t e t t−= + + +  

 

39. 9 6cos3 , (0) (0) 0x x t x x′′ ′+ = = =  

 2
2
6( ) 9 ( )

9
ss X s X s

s
+ =

+
 

 
( )22

6( )
9

sX s
s

=
+

 

 1( ) 6 sin 3 sin 3
2 3

x t t t t t= ⋅ =
⋅

 (by Eq. (16) in Section 10.3) 

 
 The graph of this resonance is shown in the figure at the top of the next page. 
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8 p
t

-20

20 x=+t

x=-t

 
 

40. /52 2260.4 9.04 6 cos3
5 25

tx x x x x e t−′′ ′ ′′ ′+ + = + + =  

 2
2

2 226 6( 1/5)( )
5 25 ( 1/ 5) 9

ss s X s
s

+ + + =  + + 
 

 22

6( 1/ 5)( )
( 1/ 5) 9

sX s
s

+=
 + + 

 

 /5( ) sin 3tx t t e t−=   (by Eq. (16) in Section 10.3) 
 
 
 
 
SECTION 10.4 
 
DERIVATIVES, INTEGRALS, AND  
PRODUCTS OF TRANSFORMS 
 
This section completes the presentation of the standard "operational properties" of Laplace 
transforms, the most important one here being the convolution property  L{f*g}  =  L{f}⋅L{g},  
where the convolution  f*g  is defined by  
 

    
0

* ( ) ( ) ( ) .
t

f g t f x g t x dx= −∫  
 
Here we use  x  rather than  τ  as the variable of integration; compare with Eq. (3) in Section 10.4 
of the textbook 
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1. With  ( ) and ( ) 1f t t g t= =   we calculate  
 

   2 2

0
0

1 1*1 1 .
2 2

x t
t

x

t x dx x t
=

=

 = ⋅ = =  
∫  

 
2. With  ( ) and ( ) atf t t g t e= =   we calculate   
 

  

( )

0 0

2

2

2 20

*

(with )

( 1) (integral formula #46 inside back cover)

( 1) ( 1) 1

*

t tat a t x at ax

at
at u u

at
u

at atx tax at

x

t e x e dx e x e dx

u du ee e ue du u ax
a a a

e u e
a
e eax e at e
a a

t e

− −

−
−

−
−

−

−

=− −

=

= ⋅ = ⋅

   = − − = = −   
   

 = − 

   = − − = − − +   

⌠

⌡

∫ ∫

∫

( )2
1 1 .at ate at
a

= − −

 

 

3. To compute  
0

(sin ) *(sin ) sin sin( ) ,
t

t t x t x dx= −∫   we first apply the identity  

  sin A sin B  =  [cos(A - B) - cos(A + B)]/2.  This gives 
 

  

[ ]

( )

0

0

0

(sin ) *(sin ) sin sin( )

1 cos(2 ) cos
2
1 1 sin(2 ) cos
2 2
1(sin ) *(sin ) sin cos .
2

t

t

x t

x

t t x t x dx

x t t dx

x t x t

t t t t t

=

=

= −

= − −

 = − −  

= −

∫

∫
 

  

4. To compute  2 2

0
*cos cos( ) ,

t
t t x t x dx= −∫   we first substitute   

 
   cos(t - x)  =  cos t cos x + sin t sin x,   
 
 and then use the integral formulas 
 
        2 2cos sin 2 cos 2sinx x dx x x x x x C= + − +∫  

   2 2sin cos 2 sin 2cos .x x dx x x x x x C= − + + +∫  
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 from #40 and #41 inside the back cover of the textbook.  This gives 
 

  

2 2

0

2 2

0 0

2

0

2

0
2

*cos (cos cos sin sin )

(cos ) cos (sin ) sin

(cos ) sin 2 cos 2sin

(sin ) cos 2 sin 2cos

*cos 2( sin ).

t

t t

x t

x
x t

x

t t x t x t x dx

t x x dx t x x dx

t x x x x x

t x x x x x

t t t t

=

=
=

=

= +

= +

 = + − 

 + − + + 

= −

∫

∫ ∫
 

 

5. [ ]( )
00 0

*
t t x tat at ax a t x at at at

x
e e e e dx e dx e x t e=−

=
= = = =∫ ∫  

 

6. ( ) ( )

0 0
*

t tat bt ax b t x bt a b xe e e e dx e e dx− −= =∫ ∫  

 
( )( )( )

0

1x t bt a b ta b x at bt
bt

x

e ee e ee
a b a b a b

= −−

=

−  −= = = − − − 
 

 

7. ( )3 3 3 3

0

1( ) 1* *1 1 1
3

tt t x tf t e e e dx e= = = ⋅ = −∫  

 

8. ( )
0

1 1 1( ) 1* sin 2 sin 2 1 cos2
2 2 4

t

f t t x dx t= = = −⌠
⌡

 

 

9. 
0

1 1( ) sin 3 *sin 3 sin 3 sin 3( )
9 9

t
f t t t x t x dx= = −∫  

 

[ ]

( )

0

2

0 0

2

0 0

1 sin 3 sin 3 cos3 cos3 sin 3
9
1 1sin 3 sin 3 cos3 cos3 sin 3
9 9
1 1 1 1 1sin 3 sin 3 cos3 sin 6
9 6 9 2 6
1( ) sin 3 3 cos3

54

t

t t

x tx t

x x

x t x t x dx

t x x dx t x dx

t x t x x

f t t t t

==

= =

= −

= −

    = − −       

= −

∫

∫ ∫
 

 

10. 
0

1( ) *(sin ) / sin ( )
t

f t t kt k kx t x dx
k

= = ⋅ −∫  
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 30 0

1 sinsin sin
t tt kt ktkx dx x kx dx

k k k
−= − =∫ ∫  

 

11. 
0

( ) cos2 *cos2 cos2 cos2( )
t

f t t t x t x dx= = −∫  

 

( )

( )

0

2

0 0

2

00

cos2 cos2 cos2 sin 2 sin 2

(cos2 ) cos 2 (sin 2 ) cos2 sin 2

1 1 1(cos2 ) sin 4 (sin 2 ) sin 2
2 4 4

1( ) sin 2 2 cos2
4

t

t t

x t x t

xx

x t x t x dx

t x dx t x x dx

t x x t x

f t t t t

= =

==

= +

= +

    = + +        

= +

∫

∫ ∫
 

 

12. f(t)  =  (e-2tsin t)*(1) 2 2

0

1sin 1 (cos 2sin )
5

t x te x dx e t t− − = = − + ∫   

 

13. ( )3 3( )

0
( ) *cos cos

tt t xf t e t x e dx−= = ∫  

 ( )

( )

3 3

0

3
3

0

3

cos

3cos sin (by integral formula #50)
10

1( ) 3 3cos sin
10

tt x

x tx
t

x

t

e e x dx

ee x x

f t e t t

−

=−

=

=

 
= − + 

 

= − +

∫

 

  

14. 
0

( ) cos2 *sin cos2 sin( )
t

f t t t x t x dx= = −∫  

 
( )

0

0 0

cos2 (sin cos cos sin )

(sin ) cos2 cos cos cos2 sin

t

t t

x t x t x dx

t x x dx t x x dx

= −

= −

∫

∫ ∫
 

 
( ) ( ) ( )

( )

0 0

1 1(sin ) cos3 cos cos sin 3 sin
2 2
1( ) cos cos2
3

t t
t x x dx t x x dx

f t t t

= + − −

= −

∫ ∫
 

 

15. ( )
( )22 2

3 6{ sin } {sin }
9 9

d d st t t
ds ds s s

 = − = − = +  +
L L  
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16. ( )
( )

2 2 2
2

32 2 2 2

2 ( 12){ cos2 } {cos2 }
4 4

d d s s st t t
ds ds s s

− = = = +  +
L L  

 
17. L{e2tcos 3t}   =  (s - 2)/(s2 - 4s + 13) 

 L{te2tcos 3t}  =  -(d/ds)[(s - 2)/(s2 - 4s + 13)]  =  (s2 - 4s - 5)/(s2 - 4s + 13)2 
 

18. L{sin2t}  =  L{(1 - cos 2t)/2}  =  2/s(s2 + 4) 

 L{e-tsin2t}  =  2/[(s + 1)(s2 + 2s + 5)] 

 L{te-tsin2t}  =  -(d/ds)[2/((s + 1)(s2 + 2s + 5))]   

           =  2(3s2 + 6s + 7)/[(s + 1)2(s2 + 2s + 5)2] 
 

19. 1 1 1
2

sin 1tan tan tan
1 2ss

t ds s s
t s s

π∞ ∞− − −⌠


⌡

    = = = − =     +   
L  

 

20. { } 2
11 cos2 , so4

st
s s

− = −
+

L  

 
2

2 2

11 cos2 4lnln4 4s s

st s sdss st ss

∞∞
⌠


⌡

  − +    −= = =          +    +    
L  

  

21. { }3 1 11 , so
3

te
s s

− = −
−

L  

 
3 1 1 1 3ln ln

3 3

t

s s

e s sds
t s s s s

∞∞
 − −      = − = =        − −       

⌠

⌡

L  

      

22. { } 2
1 1 2 , so

1 1 1
t te e

s s s
−− = − =

− + −
L  

 1 1 1 1ln ln
1 1 1 1

t t

s s

e e s sds
t s s s s

∞∞− − − +      = − = =        − + + −       

⌠

⌡

L  

 

23. { } ( )1 1 2 21 1 1 1 1 2sinh 2( ) ( )
2 2

t t tf t F s e e
t t s s t t

− − − ′= − = − − = − − = − − + 
L L  

 

24. { } ( )1 1
2 2

1 1 2 2 2( ) ( ) cos2 cos
1 4

s sf t F s t t
t t s s t

− −  ′= − = − − = − + + 
L L
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25. { } ( )1 1 2 3
2

1 1 2 1 1 1( ) ( ) 2cos
1 2 3

t tsf t F s e e t
t t s s s t

− − − ′= − = − − − = + − + + − 
L L  

 

26. { }
( )

2
1 1

2
1 1 3 sin 3( ) ( )

2 9

te tf t F s
t t ts

−
− −

  ′= − = − − = 
+ +  

L L  

 

27. { }
3

1 1
2

1 1 2 /( ) ( )
1 1/

sf t F s
t t s

− −  −′= − = −  + 
L L

 

 
( )1 1

3 2
2 1 2 1 2 1 cos

1
s t

t s s t s s t
− −   = = − = −   + +   

L L
 

 

28. An empirical approach works best with this one.  We can construct transforms with 
powers of  (s2 + 1)  in their denominators by differentiating the transforms of  sin t  and   

 cos t.  Thus,   

   { }
( )22 2

1 2sin
1 1

d st t
ds s s

 = − = +  +
L  

   { }
( )

2

22 2

1cos
1 1

d s st t
ds s s

− = − = +  +
L  

   { } ( ) ( )
2 3

2
2 32 2

1 2 6cos .
1 1

d s s st t
ds s s

 − − = − =
 + + 

L  

 
 From the first and last of these formulas it follows readily that 
 

   
( ) ( )1 2

32

1 sin cos .
81

s t t t t
s

−
 
  = − 

+  

L  

 
 Alternatively, one could work out the repeated convolution 
 

   
( )

1
32

(cos ) *(sin *sin ).
1

s t t t
s

−
 
  = 

+  

L  

 

29. -[s2X(s) - x′(0)]′ - [s X(s)]′ - 2[s X(s)] + X(s)  =  0 

 s(s + 1)X'(s) + 4s X(s)  =  0           (separable) 
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 X(s)  =  4( 1)
A

s +
  with  A  ≠  0 

 x(t)   =  Ct3e-t  with   C  ≠  0 
   

30. -[s2X(s) - x'(0)]′ - 3[s X(s)]′ - [s X(s)] + 3X(s)  =  0 

 -(s2 + 3s)X'(s) - 3s X(s)  =  0    (separable) 

 X(s)  =  3( 3)
A

s +
  with  A  ≠  0 

 x(t)   =  Ct2e-3t with  C  ≠  0 
 

31. -[s2X(s) - x'(0)]′ + 4[s X(s)]′ - [s X(s)] -4[X(s)]′ + 2X(s)  =  0 

 (s2 - 4s + 4)X'(s)+(3s - 6)X(s)  =  0     (separable) 

 (s - 2)X'(s)+ 3X(s)  =  0 

 X(s)  =  3( 2)
A

s −
  with   A  ≠  0 

 x(t)   =  Ct2e2t  with   C  ≠  0 
 

32. -[s2X(s) - x'(0)]′ - 2[s X(s)]′ - 2[s X(s)] - 2X(s)  =  0 

 -(s2 + 2s)X' (s) - (4s + 4)X(s)  =  0    (separable) 

 X(s)  =  2 2 2 2
1 1 1 1

( 2) 2 ( 2)
A C

s s s s s s
 = − − − + + + 

 

 x(t)  =  C(1 - t - e-2t - te-2t)  with  C  =  -A/4  ≠  0 
 

33. -[s2X(s) - x(0)]′ - 2[s X(s)] - [X(s)]′  =  0 

 (s2 + 1)X'(s)+ 4s X(s)  =  0     (separable) 

 X(s)  =  2 2( 1)
A

s +
  with  A  ≠  0 

 x(t)  =  C(sin t - t cos t)  with  C  ≠  0 
 

34. -(s2 + 4s + 13)X'(s) - (4s + 8)X(s)  =  0 

 X(s)  =  22 2 2( 4 13) ( 2) 9

C C
s s s

=
+ +  + + 
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 It now follows from Problem 31 in Section 10.2 that   
 
   x(t)  =  Ae-2t(sin 3t - 3t cos 3t)  with  A  ≠  0. 
 

35. 1

0

1 1 1*
( 1)

t
t t xe e dx

s s t xπ π
− − 

= = ⋅ − 

⌠

⌡

L  

 ( )2 2

00

1 22 erf
tt t tu u te ee udu e du e t
uπ π

− −= ⋅ ⋅ = =⌠
⌡ ∫  

  

36. s2X(s) + 4X(s)  =  F(s) 

 X(s)  =  2
1 2( )
2 4

F s
s

⋅
+

 

 x(t)   =  
0

1 1( )*sin 2 ( )sin 2
2 2

t
f t t f t dτ τ τ= −∫  

 

37. 2 ( ) 2 ( ) ( ) ( )s X s sX s X s F s+ + =  

 2
1( ) ( )

( 1)
X s F s

s
= ⋅

+
 

 
0

( ) * ( ) ( )
ttx t te f t e f t dττ τ τ− −= = −∫  

 

38. 2 ( ) 4 ( ) 13 ( ) ( )s X s sX s X s F s+ + =  

 2 2
( ) 1 3( ) ( )

4 13 3 ( 2) 9
F sX s F s

s s s
= = ⋅

+ + + +
 

 ( )2 2

0

1 1( ) ( ) * sin 3 sin 3
3 3

ttx t f t e t e f t dτ τ τ τ− −= = −∫  

 
 
 
SECTION 10.5 
 
PERIODIC AND PIECEWISE CONTINUOUS  
INPUT FUNCTIONS 
 
In Problems 1 through 10, we first derive the inverse Laplace transform  ( ) of ( )f t F s  and then 
show the graph of  ( ).f t  
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1. { }3( ) sF s e t−= L   so  Eq. (3b) in Theorem 1 gives  

   
0 if 3,

( ) ( 3) ( 3)
3 if 3.

t
f t u t t

t t
<

= − ⋅ − =  − ≥
 

3
t

fHtL

 
 

2. 
0 if 1,

( ) ( 1) ( 1) ( 3) ( 3) 1 if 1 3,
2 if 3.

t
f t t u t t u t t t

t

<
= − − − − − = − ≤ <
 ≥

 

1 3
t

2

fHtL

 

3. { }2( ) s tF s e e− −= L   so  2( 1)
2( 1)

0 if 1,
( ) ( 1)

if 1.
t

t

t
f t u t e

e t
− −

− −

<
= − ⋅ =  ≥

 

1
t

1

fHtL
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4. 2 2( ) { } { }s sF s e t e e t− −= −L L so 

  1 2 2 1

1

0 if 1,
( ) ( 1) ( 2) if 1 2,

if 2.

t t t

t t

t
f t e u t e e u t e t

e e t

− − −

−

<
= − − − = ≤ <
 − ≥

 

1 2
t

-10

-5

1

fHtL

 
 
5. ( ) {sin }sF s e tπ−= L   so   

  
0 if ,

( ) ( ) sin( ) ( )sin
sin if .

t
f t u t t u t t

t t
π

π π π
π

<
= − ⋅ − = − − = − ≥

 

 

p 3 p 5 p
t

-1

1

fHtL

 
 
 
6. ( ) {cos }sF s e tπ−= L   so   

  
0 if 1,

( ) ( 1) cos ( 1) ( 1)cos
cos if 1.

t
f t u t t u t t

t t
π π

π
<

= − ⋅ − = − − = − ≥
 

 
7. 2( ) {sin } {sin }sF s t e tπ−= −L L   so   

  [ ] sin if 2 ,
( ) sin ( 2 )sin( 2 ) 1 ( 2 ) sin

0 if 2 .
t t

f t t u t t u t t
t

π
π π π

π
<

= − − − = − − =  ≥
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The left-hand figure below is the graph for Problem 6 on the preceding page, and the right-hand 
figure is the graph for Problem 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 

8. 2( ) {cos } {cos }sF s t e tπ π−= −L L   so   

  [ ] cos if 2,
( ) cos ( 2)cos ( 2) 1 ( 2) cos

0 if 2.
t t

f t t u t t u t t
t

π
π π π

<
= − − − = − − =  ≥

 

2
t

-1

1

fHtL

 
 

9. 3( ) {cos } {cos }sF s t e tπ π−= +L L   so   

  [ ] cos if 3,
( ) cos ( 3)cos ( 3) 1 ( 3) cos

0 if 3.
t t

f t t u t t u t t
t

π
π π π

<
= + − − = − − =  ≥

 

3
t

-1

1

fHtL

 

1 2 3 4 5
t

-1

1

fHtL

p 2 p
t

-1

1

fHtL
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10. 2( ) {2cos2 } {2cos2 }s sF s e t e tπ π− −= +L L   so   

  [ ]

( ) 2 ( )cos2( ) 2 ( 2 )cos2( 2 )
0 if or 2 ,

2 ( ) ( 2 ) cos2
2cos2 if 2 .

f t u t t u t t
t t

u t u t t
t t

π π π π
π π

π π
π π

= − − − − −
< ≥

= − − − =  ≤ <

 

 

p 2 p
t

-2

2

fHtL

 
 

11. ( )3 32 2 2( ) 2 ( 3) 2 so ( ) 1 .s sf t u t F s e e
s s s

− −= − − ⋅ = − = −  

 

12. ( )
3

31( ) ( 1) ( 4) so ( ) .
s s

s se ef t u t u t F s e e
s s s

− −
− −= − − − = − = −  

 
13. ( ) [1 ( 2 )]sin sin ( 2 )sin( 2 ) sof t u t t t u t tπ π π= − − = − − −  

 
2

2
2 2 2
1 1 1( ) .

1 1 1

s
s eF s e

s s s

π
π

−
− −= − ⋅ =

+ + +
 

 

14. ( ) [1 ( 2)]cos cos ( 2)cos ( 2) sof t u t t t u t tπ π π= − − = − − −  

 
( )2

2
2 2 2 2 2 2

1
( ) .

s
s s es sF s e

s s sπ π π

−
− −

= − ⋅ =
+ + +

 

 

15. ( ) [1 ( 3 )]sin sin ( 3 )]sin ( 3 ) sof t u t t t u t tπ π π= − − = + − −  

 
3 3

2 2 2
1 1( ) .

1 1 1

s se eF s
s s s

π π− −+= + =
+ + +

 

 

16. ( ) [ ( ) ( 2 )]sin 2 ( )sin 2( ) ( 2 )sin 2( 2 ) sof t u t u t t u t t u t tπ π π π π π= − − − = − − − − −  

 ( ) ( )2
2

2 2

22( ) .
4 4

s s
s s e e

F s e e
s s

π π
π π

− −
− − −

= − ⋅ =
+ +
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17. ( ) [ ( 2) ( 3)]sin ( 2)sin ( 2) ( 3)sin ( 3) sof t u t u t t u t t u t tπ π π= − − − = − − + − −  

 ( ) ( )2 3
2 3

2 2 2 2( ) .
s s

s s e e
F s e e

s s
ππ

π π

− −
− − +

= + ⋅ =
+ +

 

 

18. ( ) [ ( 3) ( 5)]cos ( 3)sin ( 3) ( 5)sin ( 5) so
2 2 2
tf t u t u t u t t u t tπ π π= − − − = − − + − −  

 ( ) ( )3 5
3 5

2 2 2 2

2/ 2( ) .
/ 4 4

s s
s s e e

F s e e
s s

ππ
π π

− −
− − +

= + ⋅ =
+ +

 

 

19. If ( ) 1 then ( ) ( 1) ( 1) ( 1) sog t t f t u t t u t g t= + = − ⋅ = − ⋅ −  

 2 2
1 1 ( 1)( ) ( ) { 1} .

s
s s s e sF s e G s e L t e

s s s

−
− − − + = = + = ⋅ + = 

 
 

 
20.  If ( ) 1g t t= + then  [ ]( ) 1 ( 1) ( 1) ( 1) ( 1) ( 1) sof t u t t u t t u t g t u t= − − + − = − − − + −  

 2 2 2 2
1 1 1 1 1( ) ( ) .

s s s
s se e eF s e G s e

s s s s s s s

− − −
− − − = − ⋅ + = − ⋅ + + = 

 
 

 
21. If ( ) 1 and ( ) 2g t t h t t= + = +   then   

  
[ ] [ ]( ) 1 ( 1) (2 ) ( 1) ( 2

2 ( 1) 2 ( 1) 2 ( 2) ( 2)
2 ( 1) ( 1) 2 ( 1) 2 ( 2) ( 2) ( 2)

f t t u t t u t u t
t t u t u t u t t u t
t u t g t u t u t u t h t

= − − + − − − −
= − − + − − − + −
= − − − + − − − + − −

 

 so 

  
( )2

2
2

2 2 2 2

11 1 1 2 2 1 2( ) 2 .
ss s

s s ee eF s e e
s s s s s s s s

−− −
− −

−   = − + + − + + =   
   

 

 
22. f(t)  =  [u1(t) - u2(t)] t3  =  u1(t)g(t - 1) - u2(t)h(t - 2)   where   
 
   g(t)  =  (t + 1)3  =  t3 + 3t2 + 3t + 1, 

   h(t)  =  (t + 2)3  =  t3 + 6t2 + 12t + 8.  

 It follows that 

  F(s)  =  e-sG(s) - e-2sH(s) 

           =  [(s3 + 3s2 + 6s + 6)e-s - (8s3 + 12s2 + 12s + 6)e-2s]/s4. 
 
23. With  ( ) 1 and 1f t p= = , Formula (6) in the text gives 
 

   
1

1

0
0

1 1 1{1} 1 .
1 1

tst
st

s s
t

ee dt
e e s s

=−
−

− −
=

 
= ⋅ = − = − −  

∫L  
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24. With  f(t)  =  cos kt  and  p  =  2π/k,  Formula (6) and the integral formula 
 

   2 2
cos sincosat at a bt b bte bt dt e C

a b
+ = + + 

∫  

 give 

   

2 /

2 / 0

2 /

2 / 2 2
0

2 / 0
2 / 2 2 2 2

1{cos } cos
1

1 cos sin
1

1 ( ) .
1

k st
s k

t k
st

s k
t

s k
s k

kt e kt dt
e

s kt k kte
e s k

s se e s
e s k s k

π

π

π

π

π
π

−
−

=
−

−
=

− −
−

= ⋅
−

− +  =   − +  

−  = − − =  − + +  

∫L

 

    
25. With  p  =  2a  and  f(t)  =  1  if  0 ≤ t ≤ a,  f(t)  =  0  if   a < t ≤ 2a,  Formula (6) gives 
 

   2 20
0

1 1{ ( )} 1
1 1

t asta st
as as

t

ef t e dt
e e s

=−
−

− −
=

 
= ⋅ = − − −  

∫L  

   ( ) ( ) ( )
1 1 .

1 1 1

as

as as as

e
s e e s e

−

− − −

−= =
− + +

 

 
26. With  p  =  a  and  f(t)  =  t/a,  Formula (6) and the integral formula ( 1)u uue du u e= −∫  

(with  u st= − ) give 

   ( ) ( )0
0

1 1{ ( )}
1 1

as
a st u

as as

u duf t e t dt e
s sa e a e

−
−

− −
   = ⋅ = ⋅ − −   − −    

⌠

⌡

∫L  

   ( ) ( ) ( )2 2 00

1 1 1
1 1

as asu u
as ase u du u e

as e as e
− −

− −
 = = − − −∫  

   ( ) ( ) ( )22

1 11 1 .
1 1

as
as

as as

eas e
asas e s e

−
−

− −
 = − − + = − − −

 

 
27. G(s)  =  { }/ ( )t a f t−L   =  (1/as2) - F(s).  Now substitution of the result of Problem 26 

in place of  F(s)  immediately gives the desired transform. 
 
28. This computation is very similar to the one in Problem 26, except that  p = 2a: 

 2 20
0

1 1{ ( )}
1 1

as
a st u

as as
u duf t e t dt e

e e s s

−
−

− −
   = ⋅ = ⋅ − −   − −    

⌠

⌡

∫L  

   ( ) ( ) ( )2 2 2 2 00

1 1 1
1 1

as asu u
as ase u du u e

s e s e
− −

− −
 = = − − −∫  



 Section 10.5 541 

   ( ) ( ) ( )2 2 2 2

1 1 (1 )1 1 .
1 1

as
as

as as

e asas e
s e s e

−
−

− −

− +
 = − − + = − −

 

 
29. With  p  =  2π/k  and  f(t)  =  sin kt  for 0 ≤ t ≤ π/k  while  f(t)  =  0  for  π/k ≤ t ≤ 2π/k,  

Formula (6) and the integral formula 
 

   2 2
sin cossinat at a bt b bte bt dt e C

a b
− = + + 

∫  

 give 

   
/

2 / 0

1{ ( )} sin
1

k st
s kf t e kt dt

e
π

π
−

−= ⋅
− ∫L  

   
/

2 / 2 2
0

1 sin cos
1

t k
st

s k
t

s kt k kte
e s k

π

π

=
−

−
=

− −  =   − +  
 

   ( )/

2 / 2 2

( )1
1

s k

s k

e k k
e s k

π

π

−

−

 − −
=  − + 

 

   
( )

( ) ( ) ( ) ( ) ( )
/

/ / 2 2 2 2 /

1
.

1 1 1

s k

s k s k s k

k e k
e e s k s k e

π

π π π

−

− − −

+
= =

− + + + −
 

 
30. ( ) ( ) ( ) ( ) ( / ) ( / ),h t f t g t f t u t k f t kπ π= + = + − − so Problem 29 gives 

  
( )

( ) ( ) ( )

/ /

/ / 2
/

2 2 / / 22 2 /

( ) ( ) ( ) 1 ( )

11
11

s k s k

s k s k
s k

s k s ks k

H s F s e F s e F s

k k e ee
s k e es k e

π π

π π
π

π ππ

− −

−
−

−−

= + = +

+= + ⋅ = ⋅ ⋅
+ −+ −

 

  
/ 2 / 2

2 2 / 2 / 2 2 2 2 2
cosh( / 2 ) coth .
sinh( / 2 ) 2

s k s k

s k s k
k e e k s k k s

s k e e s k s k s k k

π π

π π
π π
π

−

−
+= ⋅ = =

+ − + +
 

 
In Problems 31–42, we first write and transform the appropriate differential equation.  Then we 
solve for the transform of the solution, and finally inverse transform to find the desired solution. 
 
31. x'' + 4x  =  1 - u(t – π) 

 s2X(s) + 4X(s)  =  1 se
s

π−−  

 X(s)  =  ( ) ( ) 22

1 1 11
4 44

s
se se

s ss s

π
π

−
−−  = − − ++  

 

 x(t)  =  (1/4)[1 - u(t – π)][1 - cos 2(t - π)]  =  (1/2)[1 - u(t – π)]sin2t 

 The graph of  the position function ( )x t  is shown at the top of the next page. 
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p
t

1
2

xHtL

 
 

32. x'' + 5x' + 4x  =  1 - u(t – 2) 

 s2X(s) + 5s X(s) + 4X(s)  =  
21 se

s

−−  

 X(s)  =  ( )
2

2

1
5 4

se
s s s

−−
+ +

  =  (1 - e-2s)G(s) 

 where 

  ( )41 3 4 1 1( ) , so ( ) 3 4 .
12 1 4 12

t tG s g t e e
s s s

− − = − + = − + + + 
 

 It follows that 

   
( ) if 2,

( ) ( ) ( 2) ( 2)
( ) ( 2) if 2.

g t t
x t g t u t g t

g t g t t
<

= − − − =  − − ≥
 

 

2 4
t

0.1

0.2

xHtL

 
 

 

33. x'' + 9x  =  [1 - u(t – 2π)]sin t 
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p 2 p
t

-0.1

0.1

xHtL

 X(s)  =  ( ) ( ) ( )
2

2
2 22 2

1 1 1 11
8 1 91 4

s
se e

s ss s

π
π

−
−−  = − − + ++ +  

 

 x(t)   =  [ ]1 11 ( 2 ) sin sin 3
8 3

u t t tπ  − − − 
 

 

 The left-hand figure below show the graph of this position function. 
 

 
 
 

 

 

 

 

 

 

34. x'' + x  =  [1 - u(t – 1)] t  1 ( 1) ( 1), where ( ) 1u t f t f t t= − − − = +  

 s2X(s) + X(s)  =  2 2 2
1 1 1 1( )s se G s e
s s s s

− −  − = − + 
 

 

 It follows that 
 

  
2 2 2 2

2 2 2

1 ( 1)( )
( 1) ( 1)

1 1 1(1 ) (1 ) ( ) ( )
1 1

s

s s s s

e sX s
s s s s

se e e G s e H s
s s s s

−

− − − −

+= −
+ +

   = − − − − = − −   + +   

 

 where  g(t)  =  t - sin t,  h(t)  =  1 - cos t.  Hence 
      
   x(t)  =  g(t) - u(t – 1)g(t - 1) - u(t – 1)h(t - 1) 
 and so 
   x(t)  =  t - sin t  if t < 1, 
   x(t)  =  -sin t + sin(t - 1) + cos(t - 1)  if  t > 1. 
  
 The right-hand figure above shows the graph of this position function. 
 

35. x″ + 4x′ + 4x  =  [1 - u(t – 2)] t  =  t - u(t – 2)g(t – 2)  where  ( ) 2g t t= +  

 (s + 2)2X(s)  =  2
2 2

1 2 1se
s s s

−  − + 
 

 

1 1 + 2 p 1 + 4 p
t

-0.5

0.5

xHtL
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( ) ( )

2
2 22 2

1 2 1( )
2 2

s sX s e
s s s s

− += −
+ +

 

 
( ) ( )

2
2 22 2

1 1 1 1 1 1 1 1 1 3
4 2 4 22 2

se
s s s s s ss s

−
   

= − + + + − + − −   
   + ++ +   

 

 x(t)  =  (1/4){-1 + t + (1 + t)e-2t + u(t –2)[1 – t + (3t - 5)e-2(t-2)]} 
 
               

2 4
t

1
4

xHtL

 
 
 
36. x'' + 4x  =  f(t),       x(0)  =  x'(0)  =  0 
 

 ( ) ( )
( )

2 4 1
4 ( )

1

s

s

e
s X s

s e

π

π

−

−

−
+ =

+
   (by Example 5 of Section 10.5) 

 ( )2

1

4 84 ( ) ( 1)n n s

n
s X s e

s s
π

∞
−

=

+ = + −∑   (as in Eq. (10) of Section 10.5) 

 Now let 

   1 2
2
4( ) 1 cos2 2sin .

( 4)
g t t t

s s
−  = = − = + 

L  

 Then it follows that 

  2 2

1 1
( ) ( ) 2 ( 1) ( ) ( ) 2sin 4 ( 1) ( )sin .n n

n n
n n

x t g t u t g t n t u t tπ ππ
∞ ∞

= =

= + − − = + −∑ ∑  

 Hence 

   
2

2

2sin if 2 (2 1) ,
( )

2sin if (2 1) 2 .
t n t n

x t
t n t n

π π
π π

 ≤ < +
= − − ≤ <
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 Consequently the complete solution 
 
    ( ) 2 sin sinx t t t=  
 
 is periodic, so the transient solution is zero.  The graph of  ( ) :x t  
 
 

2 p 4 p 6 p
t

-2

2

xHtL

 
 
 
 
37. x'' + 2x' + 10x  =  f(t),      x(0)  =  x'(0)  =  0 
  
 As in the solution of Example 7 we find first that 

   ( )2

1

10 202 10 ( ) ( 1) ,n n s

n
s s X s e

s s
π

∞
−

=

+ + = + −∑  

 so 

   2 2
1

10 10( 1)( ) 2 .
( 2 10) ( 2 10)

n n s

n

eX s
s s s s s s

π−∞

=

−= +
+ + + +∑  

 If 

   ( )1
2

10 1( ) 1 3cos3 sin 3 ,
3( 1) 9

tg t e t t
s s

− −
  = = − + 

 + +   

L  

 then it follows that 
 

   
1

( ) ( ) 2 ( 1) ( ) ( ).n
n

n
x t g t u t g t nπ π

∞

=

= + − −∑  

 
 The graph of  ( )x t  appears at the top of the next page. 
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2 p 4 p 6 p
t

-2

2

xHtL

 
 

 
38. If the function  ( )x t  satisfies the initial value problem 
 
   0 1( ), ( ) , ( )mx cx kx F t x a b x a b′′ ′ ′+ + = = =  
 
 for  t a≥   and  ( ) 0x t =  for  ,t a<  then we may write  ( ) ( ) ( )x t u t a z t a= − −  where the 
 function  ( )z t  satisfies the initial value problem   
 
   0 1( ), (0) , ( ) .mz cz kz F t a z b z a b′′ ′ ′+ + = + = =  
 
 Then  ( ) { ( )}Z s z t= L   satisfies the equation 
 
  ( ) ( ) ( )2

0 1 0( ) ( ) ( ) { ( )}.m s Z s s b b c sZ s b k Z s F t a− − + − + = +L   (*) 

 Now 
  ( ) { ( )} { ( ) ( )} ( )asX s x t u t a z t a e Z s−= = − − =L L  
 
 by Theorem 1 in Section 10.5.  Substitution of  ( ) ( )asZ s e X s=  into Eq. (*) then gives the 
 desired result. 
 
39. When we substitute the inverse Laplace transforms  ( ), ( ), ( )a t b t c t   given at the 
 beginning of part (c), we get   
 

  ( ) ( )
0 1

21
0 14

( ) ( ) ( ) ( )

4cos4 2sin 4 sin 4 4 4cos4 2sin 4 .t

v t b a t b b t c t

e b t t b t t t−

= + +

= + + + − −  
 

 
 Similarly, Theorem 1 in this section gives 
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[ ]{ }
[ ]

( )
( )

1
0 1

0 1

2( )1
0 14

2( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4cos4( ) 2sin 4( ) sin 4( )

4 4cos4( ) 2sin 4( ) ( ).

s

t

t

w t L e c A s c B s C s

u t c a t c b t c t

e c t t c t

e t t u t

π

π

π

π π π π

π π π

π π π

− −

− −

−

= + −

= − − + − − −

= − + − + − −

− − − − ⋅ −

 

 
 where as usual  ( ) ( )u t u tππ− =  denotes the unit stop function at  .π   Then the four 
 continuity equations listed in part (c) yield the equations 
 

   
2 2 2

0 0 1 1
2 2 2

0 0 1 1

1 , ,

1 ,

e b e c e b c
e c e b e c b

π π π

π π π

− − −

− − −

+ − = =

− + = =
  

 
 that we solve readily for 

   
2

0 0 1 12
1 0.996372, 0.
1

eb c b c
e

π

π
−= − = ≈ − = =
+

 

 
 Finally, these values for the coefficients yield 
 

  ( ) ( )
2( )

2
2( ) 1 2cos4 sin 4 1 0.9981 2cos4 sin 4 ,

1

t
tev t t t e t t

e

π

π

− −
−= − + ≈ − +

+
 

 

  
( )

( )

2( 2 )

2

2( )

( ) 1 2cos4 sin 4 ( )
1

1 0.9981 2cos4 sin 4 ( ).

t

t

ew t t t u t
e

e t t u t

π

π

π

π

π

− −

− −

 = − − + − + 

 ≈ − − + − 
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CHAPTER 11 
 
POWER SERIES METHODS 
 
 
SECTION 11.1 
 
INTRODUCTION AND REVIEW OF POWER SERIES 
 
The power series method consists of substituting a series  y = Σcnxn  into a given differential 
equation in order to determine what the coefficients  {cn}  must be in order that the power series 
will satisfy the equation.  It might be pointed out that, if we find a recurrence relation in the form  
cn+1  =  φ(n)cn,  then we can determine the radius of convergence  ρ  of the series solution directly 
from the recurrence relation, 

1

1lim lim .
( )

n
n n

n

c
c n

ρ
φ→∞ →∞

+

= =  

 
In Problems 1–10 we give first that recurrence relation that can be used to find the radius of 
convergence and to calculate the succeeding coefficients  1 2 3, , ,c c c �  in terms of the arbitrary 
constant  c0.  Then we give the series itself 
 

1. 1 ;
1

n
n

cc
n+ =

+
   it follows that  0 and lim ( 1)

!n n

cc n
n

ρ
→∞

= = + = ∞ . 

   
2 3 4 2 3 4

0 0 0( ) 1 1
2 6 24 1! 2! 3! 4!

xx x x x x x xy x c x c c e
   

= + + + + + = + + + + + =   
   

� �  

 

2. 1
4 ;

1
n

n
cc

n+ =
+

   it follows that  04 1and lim
! 4

n

n n

c nc
n

ρ
→∞

+= = = ∞ . 

   

3 4
2

0

2 2 3 3 4 4
4

0 0

32 32( ) 1 4 8
3 4

4 4 4 41
1! 2! 3! 4!

x

x xy x c x x

x x x xc c e

 
= + + + + + 

 

 
= + + + + + = 

 

�

�

 

 

3. ( )1
3 ;

2 1
n

n
cc

n+ = −
+

   it follows that  ( ) ( )01 3 2 1
and lim

2 ! 3

n n

n n n

c n
c

n
ρ

→∞

− +
= = = ∞ . 

   
2 3 4

0
3 9 9 27( ) 1
2 8 16 128
x x x xy x c

 
= − + − + − 

 
�  
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2 2 3 3 4 4

3 / 2
0 02 3 4

3 3 3 31
1!2 2!2 3!2 4!2

xx x x xc c e− 
= − + − + − = 

 
�  

 

4. When we substitute  y  =  Σcnxn  into the equation  y' + 2xy  =  0,  we find that 

   [ ] 1
1 2

0
( 2) 2 0.n

n n
n

c n c c x
∞

+
+

=

+ + + =∑  

 Hence  c1  =  0 — which we see by equating constant terms on the two sides of this 

equation — and  2
2 .

2
n

n
cc

n+ = −
+

  It follows that   

  1 3 5 odd 0c c c c= = = = =�    and   0
2

( 1) .
!

k

k
cc

k
−=  

 Hence  

  
2

4 6 2 4 6
2

0 0 0( ) 1 1
2 3 1! 2! 3!

xx x x x xy x c x c c e−   
= − + − + = − + − + =   

   
� �  

 and  .ρ = ∞  
 

5. When we substitute  y  =  Σcnxn  into the equation  2 ,y x y′ =  we find that 

   [ ] 1
1 2 3

0
2 ( 3) 0.n

n n
n

c c x n c c x
∞

+
+

=

+ + + − =∑  

 Hence  c1  =  c2  =  0 — which we see by equating constant terms and  x-terms on the two 

sides of this equation — and  3 .
3

ncc
n

=
+

  It follows that   

  c3k+1  =  c3k+2  =  0     and    0 0
3 .

3 6 (3 ) !3k k
c cc

k k
= =

⋅ ⋅ ⋅�

 

 Hence  

  
3

3 6 9 3 6 9
( / 3)

0 0 02 3( ) 1 1 .
3 18 162 1!3 2!3 3!3

xx x x x x xy x c c c e
   

= + + + + = + + + + =   
   

� �  

 and  .ρ = ∞  
 

6. 1 ;
2
n

n
cc + =    it follows that  0 and lim 2 2.

2n n n

cc ρ
→∞

= = =  

   
2 3 4

0( ) 1
2 4 8 16
x x x xy x c

 
= + + + + + 

 
�  
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2 3 4

0 0
0

21
2 2 2 2 21

2

x x x x c cc x x
        = + + + + + = =         −          −

�  

 

7. 1 2 ;n nc c+ =    it follows that  0
1 12 and lim .
2 2

n
n n

c c ρ
→∞

= = =  

   ( )2 3 4
0( ) 1 2 4 8 16y x c x x x x= + + + + +�  

 ( ) ( ) ( ) ( )2 3 4 0
0 1 2 2 2 2

1 2
cc x x x x

x
 = + + + + + =
  −

�  

 

8. 1
(2 1) ;

2 2
n

n
n cc
n+
−= −
+

   it follows that  2 2lim 1.
2 1n

n
n

ρ
→∞

+= =
−

 

   
2 3 4

0
5( ) 1

2 8 16 128
x x x xy x c

 
= + − + − + 

 
�  

 Separation of variables gives  0( ) 1 .y x c x= +  
 

9. 1
( 2) ;

1
n

n
n cc

n+
+=

+
   it follows that  0( 1)nc n c= +   and  1lim 1.

2n

n
n

ρ
→∞

+= =
+

 

   ( )2 3 4
0( ) 1 2 3 4 5y x c x x x x= + + + + +�  

 Separation of variables gives  0
2( ) .

(1 )
cy x

x
=

−
 

 

10. 1
(2 3) ;

2 2
n

n
n cc
n+
−=
+

   it follows that  2 2lim 1.
2 3n

n
n

ρ
→∞

+= =
−

 

   
2 3 4

0
3 3 3( ) 1
2 8 16 128
x x x xy x c

 
= − + + + + 

 
�  

 Separation of variables gives  3/ 2
0( ) (1 ) .y x c x= −  

 
In Problems 11–14 the differential equations are second-order, and we find that the two initial 
coefficients  c0  and  c1  are both arbitrary.  In each case we find the even-degree coefficients in 
terms of  c0  and the odd-degree coefficients in terms of  c1.  The solution series in these 
problems are all recognizable power series that have infinite radii of convergence. 
 

11. 1 ;
( 1)( 2)

n
n

cc
n n+ =

+ +
   it follows that  0

2 (2 )!k
cc
k

=   and  1
2 1 .

(2 1)!k
cc

k+ =
+

 

 
2 4 6 3 5 7

0 1 0 1( ) 1 cosh sinh
2! 4! 6! 3! 5! 7!
x x x x x xy x c c x c x c x

   
= + + + + + + + + + = +   

   
� �  
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12. 1
4 ;

( 1)( 2)
n

n
cc

n n+ =
+ +

   it follows that  
2

0
2

2
(2 )!

k

k
cc

k
=   and  

2
1

2 1
2 .

(2 1)!

k

k
cc

k+ =
+

 

 
4 6 3 5 7

2
0 1

2 4 2 2 4( ) 1 2
3 45 3 15 315
x x x x xy x c x c x

   
= + + + + + + + + +   

   
� �  

 
2 4 6 3 5 7

1
0

(2 ) (2 ) (2 ) (2 ) (2 ) (2 )1 (2 )
2! 4! 6! 2 3! 5! 7!
x x x c x x xc x

   
= + + + + + + + + +   

   
� �  

 1
0 cosh 2 sinh 2

2
cc x x= +  

 

13.  1
9 ;

( 1)( 2)
n

n
cc

n n+ = −
+ +

  it follows that  
2

0
2

( 1) 3
(2 )!

k k

k
cc

k
−=   and  

2
1

2 1
( 1) 3 .
(2 1)!

k k

k
cc

k+
−=

+
 

 
2 4 6 3 5 7

0 1
9 27 81 3 27 81( ) 1
2 8 80 2 40 560
x x x x x xy x c c x

   
= − + − + + − + − +   

   
� �  

 
2 4 6 3 5 7

1
0

(3 ) (3 ) (3 ) (3 ) (3 ) (3 )1 (3 )
2! 4! 6! 3 3! 5! 7!
x x x c x x xc x

   
= − + − + + − + − +   

   
� �  

 1
0 cos3 sin

3
cc x x= +  

 
14. When we substitute  y  =  Σcnxn  into  y'' + y − x  =  0  and split off the terms of degrees 0 

and 1, we get 

  (2c2 + c0) + (6c3 + c1 − 1) x + 2
2
[(   1)(   2)  ] = 0. n

n n
n

n n c c x
∞

+
=

+ + +∑  

 Hence  0 1
2 3 2

1, , and for 2.
2 6 ( 1)( 2)

n
n

c c cc c c n
n n+

−= − = − = − ≥
+ +

  It follows that 

  
( )

( )

2 4 6 3 5 7

0 0 1 1

2 4 6 3 5 7

0 1

( ) 1
2! 4! 6! 3! 5! 7!

1 1
2! 4! 6! 3! 5! 7!

x x x x x xy x c c c x c

x x x x x xx c c x

   
= + − + − + + + − − + − +   

   

   
= + − + − + + − − + − +   

   

� �

� �

 

  0 1cos ( 1)sin .x c x c x= + + −  
 
15. Assuming a power series solution of the form  y  =  Σcnxn,  we substitute it into the 

differential equation  0xy y′ + =  and find that  (n + 1)cn  =  0  for all  n  ≥  0.  This 
implies that  cn  =  0  for all  n  ≥  0,  which means that the only power series solution of 
our differential equation is the trivial solution  ( ) 0.y x ≡  Therefore the equation has no 
non-trivial power series solution. 
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16. Assuming a power series solution of the form  y  =  Σcnxn,  we substitute it into the 
differential equation  2xy y′ =  and find that  2 n nnc c=   for all  n  ≥  0.  This implies that  

0 0 1 1 2 20 , 2 , 4 , ,c c c c c c= = = �  and hence that cn  =  0  for all  n  ≥  0,  which means that 
the only power series solution of our differential equation is the trivial solution  ( ) 0.y x ≡  
Therefore the equation has no non-trivial power series solution. 

 
17. Assuming a power series solution of the form  y  =  Σcnxn,  we substitute it into the 

differential equation  2 0.x y y′ + =   We find that  c0  =  c1  =  0  and that  cn+1  =  −ncn  for  
n  ≥  1, so it follows that  cn  =  0  for all  n  ≥  0.  Just as in Problems 15 and 16, this 
means that the equation has no non-trivial power series solution. 

   
18. When we substitute and assumed power series solution  y  =  Σcnxn  into  x3y'  =  2y,  we 

find that  c0  =  c1  =  c2  =  0  and that  cn+2  =  ncn /2  for  n  ≥  1.  Hence  cn  =  0  for all  
n ≥ 0,  just as in Problems 15–17. 

 
In Problems 19–22 we first give the recurrence relation that results upon substitution of an 
assumed power series solution  y  =  Σcnxn  into the given second-order differential equation.  
Then we give the resulting general solution, and finally apply the initial conditions  0(0)y c=  
and  1(0)y c′ =  to determine the desired particular solution. 
 

19. 
2 2 2

0 1
2 2 2 1

2 ( 1) 2 ( 1) 2for 0, so and .
( 1)( 2) (2 )! (2 1)!

k k k k
n

n k k
c c cc n c c

n n k k+ +
− −= − ≥ = =

+ + +
 

 
2 2 4 4 6 6 2 3 4 5 6 7

0 1
2 2 2 2 2 2( ) 1

2! 4! 6! 3! 5! 7!
x x x x x xy x c c x

   
= − + − + + − + − +   

   
� �  

 0 1(0) 0 and (0) 3,c y c y′= = = = so 

   
2 3 4 5 6 72 2 2( ) 3
3! 5! 7!
x x xy x x

 
= − + − + 

 
�  

   
3 5 73 (2 ) (2 ) (2 ) 3(2 ) sin 2 .

2 3! 5! 7! 2
x x xx x

 
= − + − + = 

 
�  

   

20. 
2 2 2

0 1
2 2 2 1

2 2 2for 0, so and .
( 1)( 2) (2 )! (2 1)!

k k
n

n k k
c c cc n c c

n n k k+ += ≥ = =
+ + +

 

 
2 2 4 4 6 6 2 3 4 5 6 7

0 1
2 2 2 2 2 2( ) 1

2! 4! 6! 3! 5! 7!
x x x x x xy x c c x

   
= + + + + + + + + +   

   
� �  

 0 1(0) 2 and (0) 0,c y c y′= = = = so 

   
2 4 6(2 ) (2 ) (2 )( ) 2 1 2cosh 2 .

2! 4! 6!
x x xy x x

 
= + + + + = 

 
�  
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21. 1
1 0 1

2 for 1; with (0) 0 and (0) 1,
( 1)

n n
n

nc cc n c y c y
n n

−
+

− ′= ≥ = = = =
+

we obtain 

 2 3 4 5 6
1 1 1 1 1 1 11, , , , .
2 6 3! 24 4! 120 5!

c c c c c= = = = = = = =   Evidently  1 ,
( 1)!nc
n

=
−

  so 

  
3 4 5 2 3 4

2( ) 1 .
2! 3! 4! 2! 3! 4!

xx x x x x xy x x x x x x e
 

= + + + + + = + + + + + = 
 

� �  

 

22. 1
1 0 1

2 for 1; with (0) 1 and (0) 2,
( 1)

n n
n

nc cc n c y c y
n n

−
+

− ′= − ≥ = = = = −
+

we obtain 

 
3 4 5

2 3 4 5
4 2 2 2 4 22, , , .
3 3! 3 4! 15 5!

c c c c= = − = − = = = − = −   Apparently  2 ,
!

n

nc
n

= ±   so 

  ( ) ( ) ( ) ( ) ( )2 3 4 5
22 2 2 2

( ) 1 2 .
2! 3! 4! 5!

xx x x x
y x x e−= − + − + − + =�  

 
23. c0  =  c1  =  0  and the recursion relation   
 
    (n2 − n + 1)cn + (n − 1)cn−1  =  0   
 
 for  n  ≥  2  imply that  cn  =  0  for  n  ≥  0.  Thus any assumed power series solution 
 y  =  Σcnxn  must reduce to the trivial solution  ( ) 0.y x ≡     
 

24. (a) The fact that  ( )y x   =  (1 + x)α  satisfies the differential equation   
 (1 )x y yα′+ =   follows immediately from the fact that  1( ) (1 ) .y x x αα −′ = +  

 (b) When we substitute  y  =  Σcnxn  into the differential equation  (1 )x y yα′+ =   we 
get the recurrence formula 

    1
( ) .

1
n

n
n cc

n
α

+
−=
+

cn+1  =  (α − n)cn /(n + 1).   

 
 Since  c0  =  1  because of the initial condition  y(0)  =  1,  the binomial series (Equation 

(12) in the text) follows. 
 
 (c) The function  (1 + x)α  and the binomial series must agree on  (−1, 1)  because of 

the uniqueness of solutions of linear initial value problems. 
  

25. Substitution of  
0

n
nn

c x∞

=∑  into the differential equation  y y y′′ ′= +  leads routinely — 

 via shifts of summation to exhibit  nx -terms throughout — to the recurrence formula 
 
    2 1( 2)( 1) ( 1) ,n n nn n c n c c+ ++ + = + +  
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 and the given initial conditions yield  0 0 1 10 and 1 .c F c F= = = =  But instead of 
 proceeding immediately to calculate explicit values of further coefficients, let us first 
 multiply the recurrence relation by  !n .  This trick provides the relation 
 
    2 1( 2)! ( 1)! ! ,n n nn c n c n c+ ++ = + +  
 
 that is, the Fibonacci-defining relation  2 1n n nF F F+ += +  where  ! ,n nF n c=  so we see that  
 / !n nc F n=   as desired. 
 
26. This problem is pretty fully outlined in the textbook.  The only hard part is squaring the 

power series: 
 

  ( )23 5 7 9 11
3 5 7 9 111 c x c x c x c x c x+ + + + + +�  

   
( ) ( )

( ) ( )

2 4 2 6 8
3 3 5 3 5 7

2 10 12
5 3 7 9 5 7 3 9 11

2 2 2 2

2 2 2 2 2

x c x c c x c c c x

c c c c x c c c c c x

= + + + + + +

+ + + + + +�

  

 
27. (b)  The roots of the characteristic equation  r3  =  1  are  r1  =  1,  r2  =  α  =   
 (−1 + i 3 )/2,  and  r3  =  β  =  (−1 − i 3 )/2.  Then the general solution is 
 
    ( ) .x x xy x Ae Be Ceα β= + +                    (*) 
 
 Imposing the initial conditions, we get the equations 
 
    A +    B +    C  =    1 

    A +  αB +  βC  =    1 

    A + α2B + β2C  =  −1. 
 
 The solution of this system is  A  =  1/3,  B  =  (1 − i 3 )/3,  C  =  (1 + i 3 )/3. 
 Substitution of these coefficients in (*) and use of Euler's relation  eiθ  =   
 cos θ + i sin θ  finally yields the desired result. 
 
 
 
SECTION 11.2 
 
POWER SERIES SOLUTIONS 
 
Instead of deriving in detail the recurrence relations and solution series for Problems 1 through 
15, we indicate where some of these problems and answers originally came from.  Each of the 
differential equations in Problems 1−10 is of the form 
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         (Ax2 + B)y'' + Cxy' + Dy  =  0 
 
with selected values of the constants  A, B, C, D.  When we substitute  y  =  Σcnxn,  shift indices  
where appropriate, and collect coefficients,  we get 

   [ ]2
0

( 1) ( 1)( 2) 0.n
n n n n

n
An n c B n n c Cnc Dc x

∞

+
=

− + + + + + =∑  

Thus the recurrence relation is 

    
2

2
( ) for 0.

( 1)( 2)n n
An C A n Dc c n

B n n+
+ − += − ≥

+ +
 

It yields a solution of the form 

     y  =  c0 yeven + c1  yodd 
 
where  yeven  and  yodd  denote series with terms of even and odd degrees, respectively.  The even-
degree series  2 4

0 2 4c c x c x+ + +�  converges (by the ratio test) provided that 
 

     
2 2

2lim 1.
n

n
nn

n

c x Ax
c x B

+
+

→∞
= <  

 
Hence its radius of convergence is at least /B Aρ = ,  as is that of the odd-degree series  

3 4
1 3 5c x c x c x+ + +� .  (See Problem 6 for an example in which the radius of convergence is, 

surprisingly, greater than  /B A .) 
 
In Problems 1–15 we give first the recurrence relation and the radius of convergence, then the 
resulting power series solution. 
 
1. 2 0 2 4 1 3 41; ;;n nc c c c c c c cρ+ = = = = = = = =� �  

 2 2 1 0 1
0 1 2

0 0
( )

1
n n

n n

c c xy c x c xx
x

∞ ∞
+

= =

+= + =
−∑ ∑  

 

2. 0 1
2 2 2 1

1 ( 1) ( 1); 2; ;
2 2 2

n n

n n n nn n
c cc c c cρ+ +

− −= − = = =  

 
2 2 1

0 1
0 0

( 1) ( 1)( )
2 2

n n
n n

n n
n n

x xy c cx
+∞ ∞

= =

= − + −∑ ∑  

  

3. 2 ; ;
( 2)

n
n

cc
n

ρ+ = − = ∞
+

 



556 Chapter 11 

 

0 0
2

1 1
2 1

( 1) ( 1) ;
(2 )(2 2) 4 2 !2

( 1) ( 1)
(2 1)(2 1) 5 3 (2 1)!!

n n

n n

n n

n

c cc
n n n

c cc
n n n+

− −= =
− ⋅ ⋅ ⋅

− −= =
+ − ⋅ ⋅ ⋅ +

�

�

 

 
2 2 1

0 1
0 0

( 1) ( 1)( )
!2 (2 1)!!

n n
n n

n
n n

x xy c cx
n n

+∞ ∞

= =

= − + −
+∑ ∑  

  

4. 2
4 1;2n n

nc c
n

ρ+
+= − =
+

 

 2 0 0 0
2 2 2 6 4 2 2( 1) ( 1) ( 1)

2 2 2 4 2 2
n n

n
n n nc c c n c

n n
+ +      = − − ⋅ ⋅ − − = − = − +      −      

�  

 2 0 1
2 3 2 1 7 5 2 3( 1)
2 1 2 1 5 3 3

n
n

n n nc c c
n n

+ + +       = − − ⋅ ⋅ − − = −       + −       
�  

 2 2 1
0 1

0 0

1( 1) ( 1) ( 1) (2 3)( )
3

n n n n

n n
y c n x c n xx

∞ ∞
+

= =

= − + + − +∑ ∑  

  

5. 2 2 4 6; 3; 0
3( 2)

n
n

ncc c c c
n

ρ+ = = = = = =
+

�  

 1
2 1 1

2 1 2 3 3 1
3(2 1) 3(2 1) 3(5) 3(3) (2 1)3n n

n n cc c
n n n+
− −= ⋅ ⋅ ⋅ ⋅ =
+ − +

�  

 
2 1

0 1
0

( )
(2 1)3

n

n
n

xy c cx
n

+∞

=

= +
+∑  

 

6. 2
( 3)( 4)
( 1)( 2)n n
n nc c
n n+

− −=
+ +

 

The factor  ( 3)n −   in the numerator yields  5 7 9 0,c c c= = = =�  and the factor  ( 4)n −  
yields  6 8 10 0.c c c= = = =�   Hence  yeven and yodd are both polynomials with radius of  
convergence  .ρ = ∞  

 2 4 3
0 1(1 6 ) ( )( )y c x x c x xx = + + + +  

 

7. 
2

2
( 4) ; 3

3( 1)( )2n n
nc c

n n
ρ+

−= − ≥
+ +

 

The factor  ( 4)n −  yields  6 8 10 0,c c c= = = =�   so  yeven  is a 4th-degree polynomial.  

We find first that  3 1 5 1/ 2 and /120c c c c= − = , and then for 3n ≥  that 
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[ ] [ ]

2 2 2

2 1 5

2 2
2 1

12

(2 5) (2 7) 1
3(2 )(2 1) 3(2 2)(2 1) 3(6)(7)

(2 5)!! (2 5)!!
( 1) 9 ( 1)

3 (2 1)(2 1) 7 6 120 3 (2 1)!

n

n n
n n

n nc c
n n n n

n nc c
n n n

+

−
−

    − −= − − ⋅ ⋅ − =    + − −    

− −
= − ⋅ = ⋅ −

+ − ⋅ ⋅ ⋅ +

�

�

 

  

 
2

2 4 3 5 2 1
0 1

3

8 8 1 1 [(2 5)!!] ( 1)1 9( )
3 27 2 120 (2 1)! 3

n
n

n
n

ny c x x c x x x xx
n

∞
+

=

 − − = − + + − + +   +   
∑  

 

8. 2
( 4)( 4)

; 2
2( 1)( 2)n n

n nc c
n n

ρ+
− += ≥
+ +

 

We find first that  3 1 5 15 / 4 and 7 / 32c c c c= − = , and then for 3n ≥  that 

 

2 1 5

1
12

2 1

(2 5)(2 3) (2 7)(2 1) 1 9
2(2 )(2 1) 2(2 2)(2 1) 2(6)(7)

(2 5)!!(2 3)(2 1) 9 7 5! 7 (2 5)!!(2 3)!!4
2 (2 1)(2 ) 7 6 32 7 5 3 32 2 (2 1)!

(2 5)!!(2 3)

n

n n

n

n n n nc c
n n n n

n n n c n n c
n n n

n nc

+

−

+

    − + − + ⋅= ⋅ ⋅ =    + − −    

− + + ⋅ ⋅ − += ⋅ = ⋅ ⋅
+ ⋅ ⋅ ⋅ ⋅ ⋅ +

− +=

�

�

�

1
!!

2 (2 1)!n c
n +

 

 ( )2 4 3 5 2 1
0 1

3

5 7 (2 5)!!(2 3)!!1 4 2( )
4 32 (2 1)! 2

n
n

n

n ny c x x c x x x xx
n

∞
+

=

 − += − + + − + + + 
∑  

 

9. 2
( 3)( 4) 1;
( 1)( 2)n n
n nc c
n n

ρ+
+ + ==
+ +

 

 2 0 0
(2 1)(2 2) (2 1)(2 ) 3 4 1 ( 1)(2 1)

(2 1)(2 ) (2 3)(2 2) 1 2 2n
n n n nc c n n c

n n n n
+ + − ⋅= ⋅ ⋅ ⋅ = + +

− − − ⋅
�  

 2 1 1 1
(2 2)(2 3) (2 )(2 1) 4 5 1 ( 1)(2 3)

(2 )(2 1) (2 2)(2 1) 2 3 3n
n n n nc c n n c

n n n n+
+ + + ⋅= ⋅ ⋅ ⋅ = + +

+ − − ⋅
�  

 2 2 1
0 1

0 0

1( ) ( 1)(2 1) ( 1)(2 3)
3

n n

n n

xy c n n x c n n x
∞ ∞

+

= =

= + + + + +∑ ∑  

 

10. 2
( 4) ;

3( 1)( 2)n n
nc c

n n
ρ+

− = ∞= −
+ +

 

The factor  ( 4)n −  yields  6 8 10 0,c c c= = = =�   so  yeven  is a 4th-degree polynomial.   
We find first that  3 1 5 1/ 6 and / 360c c c c= = , and then for 3n ≥  that 
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2 1 5

2
1

2

2

1 1

(2 5) (2 3) 1
3(2 1)(2 ) 3(2 1)(2 2) 3(7)(6)

(2 5)!!( 1)
3 (2 1)(2 ) (7)(6) 360
3 5! (2 5)!!( 1) (2 5)!!( 1)3
360 3 (2 1)(2 ) (7)(6) 5! 3 (2 1)!

n

n

n

n n

n n

n nc c
n n n n

n c
n n

n nc c
n n n

+

−

−

− − − − −= ⋅ ⋅ ⋅
+ − −

− −= ⋅ =
+ ⋅ ⋅

⋅ − − − −= ⋅ ⋅ = ⋅
+ ⋅ ⋅ ⋅ +

�

�

�

 

 2 4 3 5 2 1
0 1

3

2 1 1 1 (2 5)!!( 1)( ) 1 3
3 27 6 360 (2 1)! 3

n
n

n
n

nxy c x x c x x x x
n

∞
+

=

 − − = + + + + + +   +   
∑  

 

11. 2
2( 5) ;

5( 1)( 2)n n
nc c

n n
ρ+

−= = ∞
+ +

 

The factor  ( 5)n −  yields  7 9 11 0,c c c= = = =�   so  yodd  is a 5th-degree polynomial.   
We find first that  2 1 4 0 6 0, /10 and / 750,c c c c c c= − = =  and then for 4n ≥  that 

 

2 6

3
0

3

3

1 03

2(2 7) 2(2 5) 2(1)
5(2 )(2 1) 5(2 2)(2 3) 5(8)(7)

2 (2 7)!!
5 (2 )(2 1) (8)(7) 750
5 6! 2 (2 7)!! 2 (2 7)!!15

2 750 5 (2 )(2 ) (8)(7) 6! 5 (2 )!

n

n

n

n n

n n

n nc c
n n n n

n c
n n

n nc c
n n n

−

−

− −= ⋅ ⋅ ⋅
− − −

−= ⋅ =
− ⋅ ⋅

⋅ − −= ⋅ ⋅ = ⋅
⋅ ⋅ ⋅ ⋅

�

�

�

 

 
3 5 4 6

2 2
1 0

4

4 4 (2 7)!! 2( ) 1 15
15 375 10 750 (2 )! 5

n
n

n
n

x x x x ny x c x c x x
n

∞

=

   −= − + + − + + +   
   

∑  

 

12. 3 ;
2

n
n

cc
n

ρ+ = ∞=
+

 

 When we substitute  y  =  Σcnxn  into the given differential equation, we find first that 
 2 0,c =   so the recurrence relation yields  5 8 11 0c c c= = = =�  also. 

 
3 3 1

0 1
1 0

( ) 1
2 5 (3 1) ! 3

n n

n
n n

x xxy c c
n n

+∞ ∞

= =

 
= + + ⋅ ⋅ ⋅ − 

∑ ∑
�

 

 

13. 3 ;
3

n
n

cc
n

ρ+ = ∞= −
+

 

 When we substitute  y  =  Σcnxn  into the given differential equation, we find first that 
 2 0,c =   so the recurrence relation yields  5 8 11 0c c c= = = =�  also. 

 
3 3 1

0 1
0 0

( 1) ( 1)( )
! 3 1 4 (3 1)

n n n n

n
n n

x xxy c c
n n

+∞ ∞

= =

− −= +
⋅ ⋅ ⋅ +∑ ∑

�
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14. 3 ;
( 2)( 3)

n
n

cc
n n

ρ+ = ∞= −
+ +

 

 When we substitute  y  =  Σcnxn  into the given differential equation, we find first that 
 2 0,c =   so the recurrence relation yields  5 8 11 0c c c= = = =�  also.  Then 

 0
3 0

1 1 1 ( 1) ,
(3 )(3 1) (3 3)(3 4) 3 2 3 ! (3 1)(3 4) 5 2

n

n n
cc c

n n n n n n n
− − − −= ⋅ ⋅ ⋅ =

− − − ⋅ ⋅ − − ⋅ ⋅ ⋅
�

�

 

 1
3 1 1

1 1 1 ( 1) .
(3 1)(3 ) (3 2)(3 3) 4 3 3 ! (3 1)(3 2) 4 1

n

n n
cc c

n n n n n n n+
− − − −= ⋅ ⋅ ⋅ =

+ − − ⋅ ⋅ + − ⋅ ⋅ ⋅
�

�

 

 
3 3 1

0 1
1 0

( 1) ( 1)( ) 1
3 ! 2 5 (3 1) 3 ! 1 4 (3 1)

n n n n

n n
n n

x xxy c c
n n n n

+∞ ∞

= =

 − −= + + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ + 
∑ ∑

� �

 

 

15. 4 ;
( 3)( 4)

n
n

cc
n n

ρ+ = ∞= −
+ +

 

 When we substitute  y  =  Σcnxn  into the given differential equation, we find first that 
2 3 0,c c= =   so the recurrence relation yields  6 10 0c c= = =�  and  7 11 0c c= = =�   also.  

Then 

 0
4 0

1 1 1 ( 1) ,
(4 )(4 1) (4 4)(4 5) 4 3 4 ! (4 1)(4 5) 5 3

n

n n
cc c

n n n n n n n
− − − −= ⋅ ⋅ ⋅ =

− − − ⋅ ⋅ − − ⋅ ⋅ ⋅
�

�

 

 1
3 1 1

1 1 1 ( 1) .
(4 1)(4 ) (4 3)(4 4) 5 4 4 ! (4 1)(4 3) 9 5

n

n n
cc c

n n n n n n n+
− − − −= ⋅ ⋅ ⋅ =

+ − − ⋅ ⋅ + − ⋅ ⋅ ⋅
�

�

 

 
4 4 1

0 1
1 1

( 1) ( 1)( ) 1
4 ! 3 7 (4 1) 4 ! 5 9 (4 1)

n n n n

n n
n n

x xxy c c x
n n n n

+∞ ∞

= =

   − −= + + +   ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ +   
∑ ∑

� �

 

 

16. The recurrence relation is  2
1 for 1.
1n n

nc c n
n+

−= − ≥
+

  The factor  ( 1)n −  in the 

numerator yields  3 5 7 0.c c c= = = =�   When we substitute  y  =  Σcnxn  into the given  
 differential equation, we find first that  2 0,c c=  and then the recurrence relation gives 

  
1

2 2 0
2 3 2 5 3 1 ( 1) .
2 1 2 3 5 3 2 1

n

n
n nc c c
n n n

−− − −= − ⋅ − ⋅ ⋅ − ⋅ − =
− − −

�  

 Hence 

  

( )

4 6 8
2

1 0

3 5 7
1

1 0 0 1 0

( ) 1
3 5 7

1 tan .
3 5 7

x x xy x c x c x

x x xc x c c x x c x c x x−

 
= + + − + − + 

 

 
= + + − + − + = + + 

 

�

�

 

 With  c0  =  y(0)  =  0  and  c1  =  y'(0)  =  1  we obtain the particular solution  y(x)  =  x. 
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17. The recurrence relation 

    2
( 2)

( 1)( 2)
n

n
n cc

n n+
−= −

+ +
 

yields  c2  =  c0  =  y(0)  =  1  and  c4  =  c6  =  ⋅⋅⋅  =  0.  Because  c1  =  y'(0)  =  0,  it 
follows also that  c1  =  c3  =  c5  =  ⋅⋅⋅  =  0.  Thus the desired particular solution is   

 y(x)  =  1 + x2. 
 
18. The substitution  t  =  x − 1  yields  y'' + ty' + y  =  0,  where primes now denote 

differentiation with respect to  t.  When we substitute  y  =  Σcntn  we get the recurrence 
relation   

    2 .
2

n
n

cc
n+ = −

+
 

 for  n  ≥  0, so the solution series has radius of convergence  .ρ = ∞ .  The initial 
 conditions give  c0  =  2  and  c1  =  0,  so  codd  =  0  and it follows that  

  
2 4 6

2 1 ,
2 2 4 2 4 6
t t ty

 
= − + − + ⋅ ⋅ ⋅ 

�  

  
2 4 6 2

0

( 1) ( 1) ( 1) ( 1) ( 1)( ) 2 1 2 .
2 2 4 2 4 6 !2

n n

n
n

x x x xy x
n

∞

=

 − − − − −= − + − + = ⋅ ⋅ ⋅ 
∑�  

 
19. The substitution  t  =  x − 1  yields  (1 – t2)y'' – 6ty' – 4y  =  0,  where primes now denote 

differentiation with respect to  t.  When we substitute  y  =  Σcntn  we get the recurrence 
relation   

    2
4 .
2n n

nc c
n+

+=
+

 

 for  n  ≥  0, so the solution series has radius of convergence  1,ρ =  and therefore 
converges if  –1 < t < 1.  The initial conditions give  c0  =  0  and  c1  =  1,  so  ceven  =  0  
and 

   2 1 1
2 3 2 1 7 5 2 3.
2 1 2 1 5 3 3n
n n nc c
n n+

+ + += ⋅ ⋅ ⋅ ⋅ =
+ −

�   

 Thus 

  2 1 2 1

0 0

1 1(2 3) (2 3)( 1) ,
3 3

n n

n n
y n t n x

∞ ∞
+ +

= =

= + = + −∑ ∑  

 and the x-series converges if  0 < x < 2. 
 
20. The substitution  t  =  x − 3  yields  (t2 + 1)y'' − 4ty' + 6y  =  0,  where primes now denote 

differentiation with respect to  t.  When we substitute  y  =  Σcntn  we get the recurrence 
relation 

    2
( 2)( 3)
( 1)( 2)n n
n nc c
n n+

− −= −
+ +
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 for  n  ≥  0.  The initial conditions give  c0  =  2  and  c1  =  0.  It follows that  codd  =  0,  
 c2  =  −6  and  c4  =  c6  =  �  =  0,  so the solution reduces to  
 
    y  =  2 − 6t2  =  2 − 6(x − 3)2. 
 
21. The substitution  t  =  x + 2  yields  (4t2 + 1)y''  =  8y,  where primes now denote 

differentiation with respect to  t.  When we substitute  y  =  Σcntn  we get the recurrence 
relation 

    2
4( 2)
( 2)n n

nc c
n+

−= −
+

 

 for  n  ≥  0.  The initial conditions give  c0  =  1  and  c1  =  0.  It follows that  codd  =  0,  
 c2  =  4  and  c4  =  c6  =  �  =  0,  so the solution reduces to  
 
    y  =  2 + 4t2  =  1 + 4(x + 2)2. 
 
22. The substitution  t  =  x + 3  yields  (t2 – 9)y'' + 3ty' − 3y  =  0,  with primes now denoting 

differentiation with respect to  t.  When we substitute  y  =  Σcntn  we get the recurrence 
relation 

    2
( 3)( 1)

9( 1)( 2)n n
n nc c
n n+
+ −=
+ +

 

 for  n  ≥  0.  The initial conditions give  c0  =  0  and  c1  =  2.  It follows that  ceven  =  0   
 and  c3  =  c5  =  ⋅⋅⋅  =  0,  so 

     y  =  2t  =  2x + 6. 
 
In Problems 23–26 we first derive the recurrence relation, and then calculate the solution series  

1( )y x  with  0 11 and 0,c c= =  the solution series  2( )y x  with  0 10 and 1.c c= =  
 
23. Substitution of  y  =  Σcnxn  yields 

  [ ]0 2 1 2
1

2 ( 1)( 2) 0,n
n n n

n
c c c c n n c x

∞

− +
=

+ + + + + + =∑  

 so 

  1
2 0 2

1 , for 1.
2 ( 1)( 2)

n n
n

c cc c c n
n n

−
+

+= − = − ≥
+ +

 

 
2 3 4 3 4 5

1 2( ) 1 ; ( )
2 6 24 6 12 120
x x x x x xy x y x x= − − + + = − − + +� �  

 

24. Substitution of  y  =  Σcnxn  yields 

  [ ]2 1 2
1

2 2 ( 1) ( 1)( 2) 0,n
n n n

n
c c n n c n n c x

∞

− +
=

− + + + − + + =∑  
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 so 

  1
2 2

( 1)0, for 1.
( 1)( 2)
n n

n
c n n cc c n

n n
−

+
+ += = ≥
+ +

 

 
3 5 6 3 4 5

1 2( ) 1 ; ( )
3 5 45 3 6 5
x x x x x xy x y x x= + + + + = + + + +� �  

 

25. Substitution of  y  =  Σcnxn  yields 

  [ ]2 3 2 1 2
2

2 6 ( 1) ( 1)( 2) 0,n
n n n

n
c c x c n c n n c x

∞

− − +
=

+ + + − + + + =∑  

 so 

  2 1
2 3 2

( 1)0, for 2.
( 1)( 2)
n n

n
c n cc c c n

n n
− −

+
+ −= = = − ≥
+ +

 

 
4 7 8 4 5 7

1 2( ) 1 ; ( )
12 126 672 12 20 126
x x x x x xy x y x x= − + + + = − − + +� �  

 

26. Substitution of  y  =  Σcnxn  yields 

  
[ ]

2 3
2 3 4 2 5

4 1 2
4

2 6 12 (2 20 )

( 1)( 2) ( 1)( 2) 0,n
n n n

n

c c x c x c c x

c n n c n n c x
∞

− − +
=

+ + + + +

+ − − + + + =∑
 

 so 

  4 1
2 3 4 5 2

( 1)( 2)0, for 4.
( 1)( 2)

n n
n

c n n cc c c c c n
n n

− −
+

+ − −= = = = = − ≥
+ +

 

 
6 9 12 7 10 13

1 2
29 41( ) 1 ; ( )

30 72 3960 42 90 6552
x x x x x xy x y x x= − + − + = − + − +� �  

 

27. Substitution of  y  =  Σcnxn  yields 

  [ ]0 2 1 3 2 2
2

2 (2 6 ) 2 ( 1) ( 1)( 2) 0,n
n n n

n
c c c c x c n c n n c x

∞

− +
=

+ + + + + + + + + =∑  

 so 

  0 1 2
2 3 2

2 ( 1), , for 2.
2 3 ( 1)( 2)

n n
n

c c c n cc c c n
n n

−
+

+ += − = − = − ≥
+ +

 

 With  0 1(0) 1 and (0) 1,c y c y′= = = = −  we obtain 

  
2 3 4 5 6 7 8 929 13 143 31( ) 1 .

2 3 24 30 720 630 40320 22680
x x x x x x x xy x x= − − + − + + − − + +�   
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 Finally,  x = 0.5  gives 
 

  
(0.5) 1 0.5 0.125 0.041667 0.002604 0.001042

0.000629 0.000161 0.000014 0.000003
(0.5) 0.415562 0.4156.

y

y

= − − + − +
+ − − + +

≈ ≈
�  

 

28. When we substitute  y  =  Σcnxn  and  ( 1) / !x n ne x n− = −∑   and then collect coefficients 
  of the terms involving  1,  x,  x2,  and  x3,  we find that 

  0 0 1 1 0 1
2 3 4 5

3 2, , , .
2 6 12 120
c c c c c cc c c c− += − = = = −  

With the choices  0 1 0 11, 0 and 0, 1c c c c= = = =  we obtain the two series solutions 

 
2 3 5 3 4 5

1 2( ) 1 and ( ) .
2 6 40 6 12 60
x x x x x xy x y x x= − + − + = − + − +� �  

 

29. When we substitute  y  =  Σcnxn  and  2cos ( 1) /(2 )!n nx x n= −∑   and then collect  

 coefficients of the terms involving  2 61, , , , ,x x x�   we obtain the equations 

  0 2 1 3 4 3 52 0, 6 0, 12 0, 2 20 0,c c c c c c c+ = + = = − + =  

  
2 4 6 3 5 6

2 4 6 8

1 15 30 0, 9 42 0,
12 4

1 1 14 56 0.
360 2

c c c c c c

c c c c

− + = − + =

− + − + =
 

Given  0 1and ,c c  we can solve easily for  2 3 8, , ,c c c�  in turn. With the choices  

0 1 0 11, 0 and 0, 1c c c c= = = = we obtain the two series solutions 

 
2 6 8 3 5 7

1 2
13 13( ) 1 and ( ) .

2 720 40320 6 60 5040
x x x x x xy x y x x= − + + + = − − − +� �  

 

30. When we substitute  y  =  Σcnxn  and  sin x  =  Σ (−1)nx2n+1/(2n + 1)!,  and then collect 
  coefficients of the terms involving  2 51, , , , ,x x x�   we obtain the equations 

  1
0 1 2 1 2 3 2 3 42 0, 2 6 0, 3 12 0,

6
cc c c c c c c c c+ + = + + = − + + + =  

  2 1 3
3 4 5 4 5 64 20 0, 5 30 0.

3 120 2
c c cc c c c c c− + + + = − + + + =  

Given  0 1and ,c c  we can solve easily for  2 3 6, , ,c c c�  in turn. With the choices  

0 1 0 11, 0 and 0, 1c c c c= = = = we obtain the two series solutions 
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-3 3
x

-100

100

y

H4
H5

 
2 3 5 6 2 4 5 6

1 2
7( ) 1 and ( ) .

2 6 60 180 2 18 360 900
x x x x x x x xy x y x x= − + − + + = − + − + +� �  

 
33. Substitution of  y  =  Σcnxn  in Hermite's equation leads in the usual way to the recurrence 
 formula 

    2
2( ) .

( 1)( 2)
n

n
n cc

n n
α

+
−= −

+ +
 

 
 Starting with  0 1,c =  this formula yields 
 

  
2 3

2 4 6
2 2 ( 2) 2 ( 2)( 4), , , .
2! 4! 6!

c c cα α α α α α− − −= − = + = − …  

 
 Starting with  1 1,c =  it yields 
 

  
2 3

3 5 7
2( 1) 2 ( 1)( 3) 2 ( 1)( 3)( 5), , , .

3! 5! 7!
c c cα α α α α α− − − − − −= − = + = − …  

 
 This gives the desired even-term and odd-term series  1 2and .y y  If  α  is an integer, 
 then obviously one series or the other has only finitely many non-zero terms.  For 
 instance, with  4α =  we get 
 

  ( )
2

2 4 2 4 4 2
1

2 4 2 4 2 4 1( ) 1 1 4 16 48 12
2 24 3 12

y x x x x x x x⋅ ⋅ ⋅= − + = − + = − + , 

 and with  5α =  we get 

        ( )
2

3 5 3 5 5 3
2

2 4 2 4 2 4 4 1( ) 32 160 120 .
6 120 3 15 120

y x x x x x x x x x⋅ ⋅ ⋅= − + = − + = − +  

 
 The figure below shows the interlaced zeros of the 4th and 5th Hermite polynomials.   
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34.  Substitution of  y  =  Σcnxn  in the Airy equation leads upon shift of index and collection 
 of terms to 

    [ ]2 2 1
1

2 ( 1)( 2) 0.n
n n

n
c n n c c x

∞

+ −
=

+ + + − =∑  

 
 The identity principle then gives  2 0c =  and the recurrence formula 

     3 .
( 2)( 3)

n
n

cc
n n+ =

+ +
 

 Because of the "3-step" in indices, it follows that  2 5 8 11 0.c c c c= = = = =�   Starting 
 with  0 1,c =  we calculate 
 

  3 6 9
1 1 1 1 4 1 4 1 4 7, , , .

2 3 3! 3! 5 6 6! 6! 8 9 9!
c c c⋅ ⋅ ⋅ ⋅= = = = = = =

⋅ ⋅ ⋅ ⋅ ⋅
…  

 
 Starting with  1 1,c =  we calculate 
 

  4 7 10
1 2 2 2 5 2 5 2 5 8, , , .

3 4 4! 4! 6 7 7! 7! 9 10 10!
c c c⋅ ⋅ ⋅ ⋅= = = = = =

⋅ ⋅ ⋅ ⋅ ⋅
…  

    
 Evidently we are building up the coefficients 
 

   3 3 1
1 4 (3 2) 2 5 (3 1)and

(3 )! (3 1)!k k
k kc c

k k+
⋅ ⋅ − ⋅ ⋅ −= =

+
� �  

 
 that appear in the desired series for  1 2( ) and ( ).y x y x   Finally, the Mathematica  
 commands 

  

A@1D =

1

6
; A@k_D :=

A@k− 1D
3 k H3 k− 1L

B@1D =

1

12
; B@k_D :=

B@k− 1D
3 k H3 k+ 1L

n= 40;

y1 = 1+ ‚
k=1

n

A@kD x3 k;

y2 = x + ‚
k=1

n

B@kD x3 k+1;

yA =

y1

32ê3 GammaA 2
3
E

−

y2

31ê3 GammaA 1
3
E
;

yB =

y1

31ê6 GammaA 2
3
E

+

y2

3−1ê6
 GammaA 1

3
E
;

Plot@ 8yA, yB<, 8x, −13.5, 3<, PlotRange → 8−0.75, 1.5<D;  
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-10 -5
x

-0.5

1

y

AiHxL

BiHxL

 
 
produce the figure above.  But with  50n =  (instead of  40n = ) terms we get a figure that is 
visually indistinguishable from Figure 11.2.3 in the textbook. 
 
 
 
 
SECTION 11.3 
 
FROBENIUS SERIES SOLUTIONS 
 
1. Upon division of the given differential equation by  x  we see that  P(x)  =  1 − x2  and  

Q(x)  =  (sin x)/x.  Because both are analytic at  x  =  0  — in particular,  (sin ) / 1x x →   
as  0x →  because  

 

   
2 1 2 2 4 6

0 1

sin 1 ( 1) ( 1) 1
(2 1)! (2 1)! 3! 5! 7!

n n n n

n n

x x x x x x
x x n n

+∞ ∞

= =

− −= = = − + − +
+ +∑ ∑ � 

 — it follows that  x  =  0  is an ordinary point. 
 
2. Division of the differential equation by  x  yields 

    1 0.
xey xy y
x
−′′ ′+ + =  

 Because the function 
 

   
1 2 3

0 1

1 1 1 1
! ! 2! 3! 4!

x n n

n n

e x x x x x
x x n n

−∞ ∞

= =

 − = − = = + + + + 
 
∑ ∑ �  

 is analytic at the origin,  we see that  x  =  0  is an ordinary point. 
 
3. When we rewrite the given equation in the standard form of Equation (3) in  

this section, we see that  p(x)  =  (cos x)/x  and  q(x)  =  x.  Because  (cos ) /x x → ∞  as  
0x →   it follows that  p(x)  is not analytic, so  x  =  0  is an irregular singular point. 
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4. When we rewrite the given equation in the standard form of Equation (3), we have  p(x)  
=  2/3  and  q(x)  =  (1 − x2)/3x.  Since  q(x)  is not analytic at the origin,  x  =  0  is an 
irregular singular point. 

 
5. In the standard form of Equation (3) we have  p(x)  =  2/(1 + x)  and  q(x)  =  3x2/(1 + x).  

Both are analytic, so  x  =  0  is a regular singular point.  The indicial equation is 
 
    r(r − 1) + 2r  =  r2 + r  =  r(r + 1)  =  0, 
 
 so the exponents are  r1  =  0  and r2  =  −1. 
 
6. In the standard form of Equation (3) we have  p(x)  =  2/(1 − x2)  and  q(x)  =   
 −2/(1 − x2), so  x  =  0  is a regular singular point with  p0  =  2  and q0  =  −2.  The 

indicial equation is r2 + r − 2  =  0,  so the exponents are  r  =  −2, 1. 
 
7. In the standard form of Equation (3) we have  p(x)  =  (6 sin x)/x  and  q(x)  =  6,  so   
 x  = 0  is a regular singular point with  p0  =  q0  =  6.  The indicial equation is  r2 + 5r + 6  

=  0,  so the exponents are  r1  =  −2  and  r2  =  −3. 
  
8. In the standard form of Equation (3) we have  p(x)  =  21/(6 + 2x)  and  q(x)  =  
 9(x2 − 1)/(6 + 2x),  so  x  =  0  is a regular singular point with  p0  =  7/2  and  q0  =  −3/2. 

The indicial equation simplifies to  2r2 + 5r − 3  =  0,  so the  exponents are  r  =  −3, 1/2. 
 

9. The only singular point of the differential equation  
2

0
1 1

x xy y y
x x

′′ ′+ + =
− −

 is  x  =  1.  

Upon substituting  t  =  x − 1,  x  =  t + 1  we get the transformed equation 
21 ( 1) 0,t ty y y

t t
+ +′′ ′− − =  where primes now denote differentiation with respect to  t.  

In the standard form of Equation (3) we have  ( ) (1 )p t t= − +   and  2( ) (1 ) .q t t t= − +   
Both these functions are analytic, so it follows that  x  =  1  is a regular singular point of 
the original equation. 

   

10. The only singular point of the differential equation  2
2 1 0

1 ( 1)
y y y

x x
′′ ′+ + =

− −
 is   

 x  =  1.  Upon substituting  t  =  x − 1,  x  =  t + 1  we get the transformed equation 

2
2 1 0,y y y
t t

′′ ′+ + =  where primes now denote differentiation with respect to  t.  In the 

standard form of Equation (3) we have  ( ) 2p t ≡   and  ( ) 1.q t ≡   Both these functions 
are analytic, so it follows that  x  =  1  is a regular singular point of the original equation. 

 

11. The only singular points of the differential equation  2 2
2 12 0

1 1
xy y y
x x

′′ ′− + =
− −

 are  

 x  =  +1  and  x  =  –1. 
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 x  =  +1:  Upon substituting  t  =  x − 1,  x  =  t + 1  we get the transformed equation 
2( 1) 12 0,
( 2) ( 2)

ty y y
t t t t

+′′ ′+ − =
+ +

 where primes now denote differentiation with respect to  

t.  In the standard form of Equation (3) we have  2( 1)( )
2

tp t
t

+=
+

  and  12( ) .
2
tq t

t
= −

+
  

Both these functions are analytic at  t = 0, so it follows that  x  =  +1  is a regular singular 
point of the original equation. 

 
 x  =  –1:  Upon substituting  t  =  x + 1,  x  =  t – 1  we get the transformed equation 

2( 1) 12 0,
( 2) ( 2)

ty y y
t t t t

−′′ ′+ − =
− −

 where primes now denote differentiation with respect to  

t.  In the standard form of Equation (3) we have  2( 1)( )
2

tp t
t

−=
−

  and  12( ) .
2
tq t

t
= −

−
  

Both these functions are analytic at  t = 0, so it follows that  x  =  –1  is a regular singular 
point of the original equation. 

 

12. The only singular point of the differential equation  
3

3
3 0

2 ( 2)
xy y y

x x
′′ ′+ + =

− −
 is   

 x  =  2.  Upon substituting  t  =  x − 2,  x  =  t + 2  we get the transformed equation 
3

3
3 ( 2) 0,ty y y
t t

+′′ ′+ + =  where primes now denote differentiation with respect to  t.  In 

the standard form of Equation (3) we have  ( ) 3p t ≡   and  
3( 2)( ) .tq t

t
+=   Because  q  

is not analytic at  t = 0, it follows that  x  =  2  is an irregular singular point of the original 
equation. 

 

13. The only singular points of the differential equation  1 1 0
2 2

y y y
x x

′′ ′+ + =
− +

 are  

 x  =  +2  and  x  =  –2. 
 
 x  =  +2:  Upon substituting  t  =  x − 2,  x  =  t + 2  we get the transformed equation 

1 1 0,
4

y y y
t t

′′ ′+ + =
+

 where primes now denote differentiation with respect to  t.  In the 

standard form of Equation (3) we have  ( )
4

tp t
t

=
+

  and  ( ) .q t t=   Both these 

functions are analytic at  t = 0, so it follows that  x  =  +2  is a regular singular point of the 
original equation. 

 
 x  =  –2:  Upon substituting  t  =  x + 2,  x  =  t – 2  we get the transformed equation 

1 1 0,
4

y y y
t t

′′ ′+ + =
−

 where primes now denote differentiation with respect to  t.  In the 



 Section 11.3 569 

standard form of Equation (3) we have  ( ) 1p t ≡   and  
2

( ) .
4

tq t
t

=
−

  Both these 

functions are analytic at  t = 0, so it follows that  x  =  –2  is a regular singular point of the 
original equation. 

 

14. The only singular points of the differential equation  
2 2

2 2 2 2
9 4 0

( 9) ( 9)
x xy y y
x x

+ +′′ ′+ + =
− −

 

are  x  =  +3  and  x  =  –3. 
 
 x  =  +3:  Upon substituting  t  =  x − 3,  x  =  t + 3  we get the transformed equation 

2 2

2 2 2 2 2 2
6 13 6 18 0,

( 6) ( 6)
t t t ty y y
t t t t

+ + + +′′ ′+ + =
+ +

 where primes now denote differentiation with 

respect to  t.  Because  
2

2 2
6 13( )

( 6)
t tp t
t t

+ +=
+

  is not analytic at  t = 0, it follows that  x  =  3  

is an irregular singular point of the original equation. 
 
 x  =  –3:  Upon substituting  t  =  x + 3,  x  =  t – 3  we get the transformed equation 

2 2

2 2 2 2 2 2
6 13 6 18 0,

( 6) ( 6)
t t t ty y y
t t t t

− + − +′′ ′+ + =
− −

 where primes now denote differentiation with 

respect to  t.  Because  
2

2 2
6 13( )

( 6)
t tp t
t t

− +=
−

  is not analytic at  t = 0, it follows that  x  =  –3  

is an irregular singular point of the original equation. 
 

15. The only singular point of the differential equation  
2

2 2
4 2 0

( 2) ( 2)
x xy y y
x x

− +′′ ′− + =
− −

 is   

 x  =  2.  Upon substituting  t  =  x − 2,  x  =  t + 2  we get the transformed equation 

2
4 4 0,t ty y y

t t
+ +′′ ′− + =  where primes now denote differentiation with respect to  t.  In 

the standard form of Equation (3) we have  ( ) ( 4)p t t= − +   and  ( ) 4.q t t= +   Both 
these functions are analytic, so it follows that  x  =  2  is a regular singular point of the 
original equation. 

 

16. The only singular points of the differential equation  3 2
3 2 1 0
(1 ) (1 )
xy y y

x x x x
+′′ ′+ + =
− −

 

are  x  =  0  and  x  =  1. 
 

 x  =  0:  In the standard form of Equation (3) we have  2
3 2( )
(1 )
xp x

x x
+=
−

  and  

1( ) .
1

q x
x

=
−

  Since  p  is not analytic at  x = 0,  it follows that  x = 0  is an irregular 

singular point. 
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 x  =  1:  Upon substituting  t  =  x – 1,  x  =  t + 1  we get the transformed equation 

3 2
3 5 0,

( 1) ( 1)
t ty y y

t t
+′′ ′− − =

+ +
 where primes now denote differentiation with respect  

 to  t.  Both  3
(3 5)( )
( 1)
t tp t

t
+≡ −

+
  and  

3

2( )
( 1)

tq t
t

= −
+

 are analytic at  t = 0, so it follows 

that  x  =  1  is a regular singular point of the original equation. 
 

Each of the differential equations in Problems 17−20 is of the form 
 
                   Axy'' + By' + Cy  =  0 
 
with indicial equation  Ar2 + (B − A)r  =  0.  Substitution of  y  =  Σcnxn+r  into the differential  
equation yields the recurrence relation 

    1
2( ) ( )( )

n
n

C cc
A n r B A n r

−= −
+ + − +

 

for  n  ≥  1.  In these problems the exponents  r1  =  0  and  r2  =  (A − B)/A  do not differ by an 
integer, so this recurrence relation yields two linearly independent Frobenius series solutions 
when we apply it separately with  r  =  r1  and with  r  =  r2. 
 

17. With exponent  1 0 :r =    1
24 2

n
n

cc
n n

−= −
−

 

 
( )2

2 3
0

1
0

( 1)
( ) 1 cos

2 24 720 (2 )!

nn

n

xx x xy x x x
n

∞

=

− 
= − + − + = = 

 
∑�  

 With exponent  2
1 :
2

r =    1
24 2

n
n

cc
n n

−= −
+

 

 
( )2 1

2 3
1/ 2

2
0

( 1)
( ) 1 sin

6 120 5040 (2 1)!

nn

n

xx x xy x x x
n

+
∞

=

− 
= − + − + = =  + 

∑�  

 

18. With exponent  1 0 :r =    1
22
n

n
cc
n n

−=
+

 

 
2 3 4

0
1

0

( ) 1
3 30 630 22680 !(2 1)!!

n

n

x x x x xy x x
n n

∞

=

 
= + + + + + =  + 

∑�  

 With exponent  2
1 :
2

r = −    1
22
n

n
cc
n n

−=
−

 

 
2 3 4

1/ 2
2

1

1( ) 1 1
6 90 2520 !(2 1)!!

n

n

x x x xy x x x
n nx

∞
−

=

   
= + + + + + = +   −   

∑�  
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19. With exponent  1 0 :r =    1
22 3

n
n

cc
n n

−=
−

 

 
2 3 4

0
1

2

( ) 1 1
2 18 360 !(2 3)!!

n

n

x x x xy x x x x
n n

∞

=

 
= − − − − − = − −  − 

∑�  

 With exponent  2
3 :
2

r =    1
22 3

n
n

cc
n n

−=
+

 

 
2 3 4

3/ 2 3/ 2
2

1

( ) 1 1 3
5 70 1890 83160 !(2 3)!!

n

n

x x x x xy x x x
n n

∞

=

   
= + + + + + = +   +   

∑�  

 

20. With exponent  1 0 :r =    1
2

2
3

n
n

cc
n n

−= −
−

 

 
2 3 4

0
1

1

( 1) 2( ) 1 1
5 60 1320 ! 2 5 (3 1)

n n n

n

x x x xy x x x
n n

∞

=

  −= − + − + − = +  ⋅ ⋅ ⋅ ⋅ − 
∑�

�

 

 With exponent  2
1 :
3

r =    1
2

2
3

n
n

cc
n n

−= −
+

 

 
2 3 4

1/ 3 1/ 3
2

0

( 1) 2( ) 1
2 14 210 5460 ! 1 4 (3 1)

n n n

n

x x x x xy x x x
n n

∞

=

  −= − + − + − =  ⋅ ⋅ ⋅ ⋅ + 
∑�

�

 

 

The differential equations in Problems 21–24 are all of the form 
 
    Ax2y'' + Bxy' +(C + Dx2)y  =  0    (1) 

with indical equation 
    φ(r)  =  Ar2 + (B − A)r + C  =  0.    (2) 

Substitution of  y  =  Σcnxn+r  into the differential equation yields 
 

  [ ]1
0 1 2

2
( ) ( 1) ( ) 0.r r n r

n n
n

r c x r c x r n c D c xφ φ φ
∞

+ +
−

=
+ + + + + =∑    (3) 

 
In each of Problems 21–24 the exponents  r1  and  r2  do not differ by an integer.  Hence when 
we substitute either  r  =  r1  or  r  =  r2  into Equation (*) above, we find that  c0  is arbitrary 
because ( )rφ  is then zero, that  c1  =  0 — because its coefficient  ( 1)rφ +  is then nonzero — 
and that 

  2 2
2( ) ( ) ( )( )

n n
n

Dc Dcc
r n A n r B A n r Cφ

− −= − = −
+ + + − + +

   (4) 

 
for  n  ≥  2.  Thus this recurrence formula yields two linearly independent Frobenius series 
solutions when we apply it separately with  r  =  r1  and with  r  =  r2. 
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21. With exponent  1 1:r =    2
1

20,
(2 3)

n
n

cc c
n n

−= =
+

 

 
2 4 6 2

1
1

1

( ) 1 1
7 154 6930 ! 7 11 (4 3)

n

n

x x x xy x x x
n n

∞

=

   
= + + + + = +   ⋅ ⋅ ⋅ ⋅ +   

∑�

�

 

 With exponent  2
1 :
2

r = −    2
1

20,
(2 3)

n
n

cc c
n n

−= =
−

 

 
4 6 2

1/ 2 2
2

1

1( ) 1 1
10 270 ! 1 5 (4 3)

n

n

x x xy x x x
n nx

∞
−

=

   
= + + + + = +   ⋅ ⋅ ⋅ ⋅ −   

∑�

�

 

 

22. With exponent  1
3 :
2

r =    2
1

20,
(2 5)

n
n

cc c
n n

−= = −
+

 

 
2 4 6 2

3/ 2 3/ 2
1

1

( ) 1 1
9 234 11934 ! 9 13 (4 5)

n

n

x x x xy x x x
n n

∞

=

   
= − + − + = +   ⋅ ⋅ ⋅ ⋅ +   

∑�

�

 

 With exponent  2 1:r = −    2
1

20,
(2 5)

n
n

cc c
n n

−= = −
−

 

 
4 6 8 1 2

1 2 2
2

2

1 ( 1)( ) 1 1
6 126 5544 ! 3 7 (4 5)

n n

n

x x x xy x x x x
x n n

−∞
−

=

   −= + − + − + = + +   ⋅ ⋅ ⋅ ⋅ −   
∑�

�

 

 

23. With exponent  1
1 :
2

r =    2
1 0,

(6 7)
n

n
cc c

n n
−= =
+

 

 
22 4 6

1/ 2
1

1

1( ) 1
2 ! 19 31 (12 7)38 4712 1215696

n

n
n

xx x xx xy x
n n

∞

=

   += + + + + =    ⋅ ⋅ ⋅ ⋅ +  
∑�

�

 

 With exponent  2
2 :
3

r = −    2
1 0,

(6 7)
n

n
cc c

n n
−= =
−

 

 
22 4 62 / 3 2 / 3

2
1

( ) 11
2 ! 5 17 (12 7)10 680 118320

n

n
n

xx x xxy x x
n n

∞− −

=

  = ++ + + + =   ⋅ ⋅ ⋅ ⋅ −  
∑�

�

 

 

24. With exponent  1
1 :
3

r =    2
1 0,

(3 1)
n

n
cc c

n n
−= = −
+

 

 
2 4 6 2

1/ 3 3
1

1

( 1)( ) 1 1
14 728 82992 2 ! 7 13 (6 1)

n n

n
n

x x x xy x x x
n n

∞

=

   −= − + − + = +   ⋅ ⋅ ⋅ ⋅ +   
∑�

�

 

 With exponent  2 0 :r =    2
1 0,

(3 1)
n

n
cc c

n n
−= = −
−

 

 
22 4 6

0
2

1

( 1)1( ) 1
2 ! 5 11 (6 1)10 440 44880

n n

n
n

xx x xy x x
n n

∞

=

  −+= − + − + =  ⋅ ⋅ ⋅ ⋅ − 
∑�

�
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25.  With exponent  1
1 :
2

r =    1

2
n

n
cc

n
−= −  

 
2 3 4

/ 21/ 2
1

0

( 1)
( ) 1

!22 8 48 384

n n
x

n
n

xx x x x x x ey x x
n

∞
−

=

  − == − + − + − = 
 

∑�  

 With exponent  2 0 :r =    1

2 1
n

n
cc
n

−= −
−

 

 
2 3 4

0
2

1

( 1)1( ) 1
(2 1)!!3 15 105

n n

n

xx x xy x x x
n

∞

=

−  += − + − + − =  − 
∑�  

                

26. With exponent  1
1 :
2

r =    2
1 0, n

n
cc c
n
−= =  

 
2

22 4 6 8
/ 21/ 2

1
0

( ) 1
!22 8 48 384

n
x

n
n

xx x x x ey x x x x
n

∞

=

  == + + + + + = 
 

∑�  

 With exponent  2 0 :r =    2
1

20,
2 1

n
n

cc c
n

−= =
−

 

 
2 4 6 8 2

0
2

1

2 4 8 16 2( ) 1 1
3 21 231 3465 3 7 (4 1)

n n

n

x x x x xy x x
n

∞

=

 
= + + + + + = +  ⋅ ⋅ ⋅ − 

∑�

�

                

 

The differential equations in Problems 27–29 (after multiplication by  x) and the one in Problem 
31 are of the same form (1) above as those in Problems 21–24.  However, now the exponents  r1  
and  r2  =  r1 − 1  do differ by an integer.  Hence when we substitute the smaller exponent  r  =  r2  
into Equation (3), we find that  c0  and  c1  are both arbitrary, and that  cn  is given  (for n  ≥  2)  
by the recurrence relation in (4). Thus the smaller exponent  r2  yields the general solution  

0 1 1 2( ) ( ) ( )y x c y x c y x= +   in terms of the two linearly independent Frobenius series solutions 

1 2( ) and ( ).y x y x  

27. Exponents  1 20 and 1;r r= = −  with  291:
( 1)

n
n

cr c
n n

−= − = −
−

 

 
2 4 6 3 5 7

0 19 27 81 3 27 81( ) 1
2 8 80 2 40 560

c x x x c x x xy x x
x x
   

= − + − + + − + − +   
   

� �  

 
2 4 6 3 5 7

0 19 81 729 27 243 21871 3
2 24 720 3 6 120 5040

c x x x c x x xx
x x
   

= − + − + + − + − +   
   

� �  

 0 1
cos3 1 sin 3( )

3
x xy x c c

x x
= +  

 
The figure at the top of the next page shows the graphs of the independent solutions 

1 2
cos3 sin 3( ) and ( ) .x xy x y x

x x
= =  
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2 p 4 p
x

-1

1

y

y1

y2

 
 

28. Exponents  1 20 and 1;r r= = −  with  241:
( 1)

n
n

cr c
n n

−= − =
−

 

 
4 6 3 5 7

20 12 4 2 2 4( ) 1 2
3 45 3 15 315

c x x c x x xy x x x
x x
   

= + + + + + + + + +   
   

� �  

 
2 4 6 3 5 7

0 14 16 96 8 32 1281 2
2 24 720 2 6 120 5040

c x x x c x x xx
x x
   

= + + + + + + + + +   
   

� �  

 0 1
cosh 2 1 sinh 2( )

2
x xy x c c

x x
= +  

 The figure below shows the graphs of the independent solutions 

 1 2
cosh 2 sinh 2( ) and ( ) .x xy x y x

x x
= =  

 

1 2
x

2

4

6

8

y

y1

y2
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29. Exponents  1 20 and 1;r r= = −  with  21:
4 ( 1)

n
n

cr c
n n

−= − = −
−

 

 
2 4 6 3 5 7

0 1( ) 1
8 384 46080 24 1920 322560

c x x x c x x xy x x
x x
   

= − + − + + − + − +   
   

� �  

 
2 4 6 3 5 7

0 1
2 4 6 3 5 7

21
2 2 2 24 2 720 2 2 6 2 120 2 5040

c x x x c x x x x
x x
   

= − + − + + − + − +   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   
� �  

 0 12( ) cos sin
2 2

c x c xy x
x x

= +  

 The figure below shows the graphs of the independent solutions 

 1 2
cos / 2 sin / 2( ) and ( ) .x xy x y x

x x
= =  

 

2 p 4 p
x

-0.5

0.5

1

y

y1

y2

 
 
 
30. The given differential equation 34 0xy y x y′′ ′− + =  has indicial equation  

2 2 ( 2) 0,r r r r− = − =  so its exponents are  1 22 and 0.r r= =   Taking  r = 0,  

 substitution of the power series  
0

n
n

n
y c x

∞

=

=∑  gives 

  
2 3 4 5

1 3 0 4 1 5 2 6
6 7 8

3 7 4 8 5 9

2 (4 8 ) (4 15 ) (4 24 )

(4 35 ) (4 48 ) (4 63 ) 0.

c c x c c x c c x c c x
c c x c c x c c x

− + + + + + + + +

+ + + + + + =�

 

 
 We see that  1 3 0c c= =  and 

    44 for 4.
( 2)

n
n

cc n
n n

−= − ≥
−

 

 Hence the odd subscripts all vanish, and we obtain 
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4 8 12 6 10 14

2
0 2( ) 1

2 24 720 6 120 5040
x x x x x xy x c x c x

   
= − + − + + − + − +   

   
� �  

  2 2
0 2( ) cos sin .y x c x c x= +  

 The figure below shows the graphs of the independent solutions 
 2 2

1 2( ) cos and ( ) sin .y x x y x x= =  
 

p
2

p
x

-1

1

y

y2

y1

 
 
31. The given differential equation 2 24 4 (3 4 ) 0x y xy x y′′ ′− + − =  has indicial equation  

24 8 3 (2 3)(2 1) 0,r r r r− + = − − =  so its exponents are  1 23/ 2 and 1/ 2.r r= =  
 With  r = 3/2,  the recurrence relation  2 / ( 1)n nc c n n−= −   yields the general solution 
 

  
2 4 6 3 5 7

1/ 2 1/ 2
0 1( ) 1

2 24 720 6 120 5040
x x x x x xy x c x c x x

   
= + + + + + + + + +   

   
� �  

  0 1( ) cosh sinh .y x c x x c x x= +  

 The figure below shows the graphs of the independent solutions 
 1 2( ) cosh and ( ) sinh .y x x x y x x x= =  
 

1
x

1

y

y1

y2
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32. The two indicial exponents are  r1  =  1  and  r2  =  −1/2.   

 With  r1  =  1:  Substitution of  n
ny x c x= ∑  in the differential equation yields 

   2 3 4 4 6
1 0 2 2 3 3 4 4 6(5 ) 14 ( 27 ) (2 44 ) (3 65 ) 0.c c x c x c c x c c x c c x− + + + + + + + + =�  

Hence we see that  1 0 / 5c c=   and  2 3 4 5 0.c c c c= = = =�   Thus the series terminates 
and we obtain the polynomial solution 

   
2

1( ) 1 .
5 5
x xy x x x = + = + 

 
 

With  r2  =  −1/2:  We substitute  1/ 2 n
ny x c x−= ∑  and obtain the Frobenius solution 

  
2 3 4

2
1 5 15 5( ) 1 .

2 8 48 384
x x x xy x

x
 

= − − − + + 
 

�  

Remark:  The Mathematica DSolve function yields the two closed form solutions  1( )y x   
and 

  ( ) ( )1/ 2 / 2 2
3( ) 4 2 1 erf .

2 2
x xy x x e x x x xπ− −= + − + +  

Inquiring minds naturally want to know!  The Mathematica Series command reveals 
the answer that  1

2 32( ) ( ).y x y x= −  
 

33. Exponents  1 21/ 2 and 1r r= = − .  With each exponent we find that  c0  is arbitrary and  
 we can solve recursively for  cn  in terms of  cn–1. 
 

 
2 3 4

1
11 11 671 9577( ) 1
20 224 24192 387072

x x x xy x x
 

= + − + − + 
 

�  

 
3 4

2
2

1 10 7( ) 1 10 5
9 18
x xy x x x

x
 

= + + + − + 
 

�  

 

34. Exponents  1 21 and 1/ 2.r r= = −   With each exponent we find that  c1 = 0 and we can  
 solve recursively for  cn  in terms of  cn–2. 
 

 
2 4 6

1
37( ) 1

42 1320 2494800
x x xy x x

 
= − + − − 

 
�  

 
2 4 6

2
1 7 19 7661( ) 1

24 3200 43545600
x x xy x

x
 

= − + − + 
 

�  
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35. Substitution of  r n
ny x c x= ∑  into the differential equation yields a result of the form 

   1 1
0 ( ) ( ) 0,r r rrc x x x− +− + + + =� � �  

 so we see immediately that  0 0c ≠  implies that  r = 0.  Then substitution of the power 
 series  n

ny c x=∑  yields 

   2 4
0 1 1 2 2 3 3 4( ) (4 2 ) (9 3 ) (16 4 ) 0c c c c x c c x c c x− + − + − + − + =�  

Evidently  1,n nc nc −=   so if  c0 = 1  it follows that  !nc n=   for  1.n ≥   But the series  
! nn x∑ has zero radius of convergence, and hence converges only if  x = 0.  We 

therefore conclude that the given differential equation has no nontrivial Frobenius series 
solution. 
 

36. (a) Substitution of  r n
ny x c x= ∑  into the differential equation 2 0x y Ay By′′ ′+ + =  

 yields a result of the form 

   1 1
0 ( ) ( ) 0,r r rArc x x x− ++ + + =� � �  

 so we see immediately that  0A ≠  and 0 0c ≠  imply that  r = 0.   

 (b) Substitution of  r n
ny x c x= ∑  into the differential equation 3 0x y Axy By′′ ′+ + =  

 yields a result of the form 

   1 2
0( ) ( ) ( ) 0,r r rAr B c x x x+ ++ + + + =� � �  

 so we see immediately that 0 0c ≠  implies that  r = –B/A.    

 (c) Substitution of  r n
ny x c x= ∑ into the differential equation 3 2 0x y Ax y By′′ ′+ + =  

 yields a result of the form 

   1 2
0 ( ) ( ) 0,r r rBc x x x+ ++ + + =� � �  

 which is impossible because both 0 0c ≠  and  0B ≠ .  It follows that no Frobenius series  
 can satisfy this equation. 
 

37. Substitution of  r n
ny x c x= ∑  into the differential equation  3 0x y y y′′ ′− + =  

 yields a result of the form 

   2 1 2
0( 1) ( ) ( ) 0,r r rr c x x x+ +− + + + =� � �  

 so it follows that  r = 1.    But then substitution of  n
ny x c x= ∑  into the differential  

 equation yields  

   2 3 4 5 6
1 2 3 4 54 9 16 25 0,c x c x c x c x c x+ + + + + =�  
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 so it follows that  1 2 3 4 0.c c c c= = = = =�   Hence 0( ) ,y x c x=  
 

38. Exponents  1 21/ 2 and 1/ 2;r r= = −  with  21/ 2 :
( 1)

n
n

cr c
n n

−= − = −
−

 

 
2 4 6 3 5 7

0 1( ) 1
2 24 720 6 120 5040

c x x x c x x xy x x
x x
   

= − + − + + − + − +   
   

� �  

 
2 4 6 3 5 7

0 11
2! 4! 6! 3! 5! 7!

c x x x c x x xx
x x
   

= − + − + + − + − +   
   

� �  

 0 1
cos sin 3( ) x xy x c c

x x
= +  

 

39. Exponents  1 21 and 1;r r= = −  with  2
11: 0,

( 2)
n

n
cr c c

n n
−= + = = −
+

 

 
2 4 6 8

0( ) 1
8 192 9216 737280
x x x xy x c x

 
= − + − + − 

 
�  

 
2 4 6 8

0 2 4 6 81
2 1!2! 2 2!3! 2 3!4! 2 4!5!

x x x xc x
 

= − + − + − 
 

�  

 If  c0 = 1/2, then 

   
2

1
0

( 1)( ) ( ) .
2 !( 1) 2

nn

n

x xy x J x
n n

∞

=

−  = =  +  
∑  

Now, consider the smaller exponent  r2 = –1.  A Frobenius series with  r = –1 is of the 

form 1

0

n
n

n
y x c x

∞
−

=

= ∑  with  0 0.c ≠   However, substitution of this series into Bessel's  

equation of order 1 gives 
 
  2 3 5

1 0 1 3 2 4 3 5( 3 ) ( 8 ) ( 15 ) 0,c c x c c x c c x c c x− + + + + + + + + =�  
 
so it follows that  c0 = 0, after all.  Thus Bessel's equation of order 1 does not have a 
Frobenius series solution with leading term  c0x–1.  However, there is a little more here 
that meets the eye.  We see further that  c2  is arbitrary and that  1 0 andc =  

2 / ( 2) for 2.n nc c n n n−= − >  It follows that our assumed Frobenius series  

1

0

n
n

n
y x c x

∞
−

=

= ∑   actually reduces to 

  
2 4 6 8

2( ) 1
8 192 9216 737280
x x x xy x c x

 
= − + − + − 

 
� . 

But this is the same as our series solution obtained above using the larger exponent 
r = +1 (calling the arbitrary constant  c2  rather than  c0). 
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SECTION 11.4 
 
BESSEL'S EQUATION 
 
Of course Bessel's equation is the most important special ordinary differential equation in 
mathematics, and every student should be exposed at least to Bessel functions of the first kind.   
 

1. 
2 2 1

0 2 2 2 2
1 1

( 1) ( 1) 2( ) 1
2 ( !) 2 ( !)

m m m m

x m m
m m

x m xJ x D
m m

−∞ ∞

= =

 − −′ = + = 
 

∑ ∑  

 
2 1 1 2 1

2 1 2 1
1 0

( 1) ( 1)
2 ( 1)!( !) 2 ( )!( 1!)

m m m m

m m
m m

x x
m m m m

− + +∞ ∞

− +
= =

− −= =
− +∑ ∑  

 
2 1

12 1
0

( 1) ( )
2 ( )!( 1!)

m m

m
m

x J x
m m

+∞

+
=

−= − = −
+∑  

 

2. (a) 2 1 2 1 2 1
2 2 2

n n n+ − −   Γ = ⋅ Γ   
   

 

  2 1 2 3 2 3
2 2 2

n n n− − − = ⋅ ⋅Γ  
 

 

  2 1 2 3 3 1 1
2 2 2 2 2

n n− −  = ⋅ ⋅ ⋅ ⋅ Γ ⋅ 
 

�

�
 

  (2 1)(2 3) 3 1 (2 1)!!
2 2n n

n n nπ π− − ⋅ ⋅ ⋅ −= ⋅ =�  

 (b) 
1
2

1
2

2 2 1

1/ 2 2 1 2 130 02

( 1) 2 ( 1)( )
! 2 (2 1)!! 2! ( ) 2

mm m m

m m m
m m

x xJ x
x m mm m π

+ +∞ ∞

+ − − +
= =

− −= =
+Γ +

∑ ∑  

2 1

0

2 ( 1)
(2 4 2 )(1 3 (2 1))

m m

m

x
x m mπ

+∞

=

−=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +∑

� �

 

2 1

0

2 ( 1) 2 sin
(2 1)!

m m

m

x x
x m xπ π

+∞

=

− ==
+∑  

1/ 2
2( ) cosJ x x
xπ− =   similarly 

 

3. (a) 2 3 2 3 1 3 4 3 4
3 3 3 3 3

m m m mm + − − −     Γ + = Γ = ⋅ ⋅Γ     
     

 



 Section 11.4 581 

  3 1 3 4 5 2 2 2 5 8 (3 1) 2
3 3 3 3 3 3 3m

m m m− − ⋅ ⋅ ⋅ −   = ⋅ ⋅ ⋅ ⋅ ⋅Γ = Γ   
   

�

�  

 (b) 
2 1/ 3 1/3 2

1/ 3
0 0

( 1) ( / 2) ( 1) 3( )
! ( 2 / 3) 2 (2 / 3) ! 2 3 8 (3 1)

mm m m m

m m

x x xJ x
m m m m

− −∞ ∞

−
= =

− − = = Γ + Γ ⋅ ⋅ ⋅ ⋅ ⋅ − 
∑ ∑

�

 

 

4. With  p  =  1/2  in Equation (26) in the text we have  

       

( ) ( )

3/ 2 1/ 2 1/ 2

3

1 1 2 2( ) ( ) ( ) sin cos

1 2 2sin cos sin cos

J x J x J x x x
x x x x

x x x x x x
x x x

π π

π π

−= − = −

= − = −
 

 

5. Starting with  p  =  3  in Equation (26) we get 

   

4 3 2 2 1 2

1 0 12

2 2

0 12 3

6 6 4( ) ( ) ( ) ( ) ( ) ( )

24 2 61 ( ) ( ) ( )

24 8(6 )( ) ( )

J x J x J x J x J x J x
x x x

J x J x J x
x x x

x xJ x J x
x x

 = − = − −  

   = − − −      

− −= +

 

 

8. When we carry out the differentiations indicated in Equations (22) and (23) in the text, 
we get 

         
1

1

1
1

( ) ( ) ( ),

( ) ( ) ( ).

p p p
p p p

p p p
p p p

p x J x x J x x J x

p x J x x J x x J x

−
−

− − −
+

′+ =

′− + = −
 

 When we solve these two equations for ( )pJ x′   we get Equations (24) and (25) in the text. 
 

9. Γ(p + m + 1)  =  (p + m)(p + m − 1) ⋅ ⋅� (p + 2)(p + 1)Γ(p + 1),  so 

  

2

0

2

0

( 1)( )
! ( 1) 2

( / 2) ( 1) .
( 1) !( 1)( 2) ( ) 2

m pm

p
m

mp m

m

xJ x
m p m

x x
p m p p p m

+∞

=

∞

=

−  =  Γ + +  

−  =  Γ + + + ⋅ ⋅ +  

∑

∑
�

 

 
10. Substitution of the power series of Problem 9 yields 
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5/ 2 5/ 2 5

2
1/ 2 1/ 2

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

x A x B x A By x x
x C x D x C D

−

−

+ + + + + += ⋅ =
+ + + + + +
� � � �

� � � �

 

  
 where  A  =  1/(25/2Γ(7/2)),  B  =  1/(2−5/2Γ(−3/2),)  C  =  1/(21/2Γ(3/2)),  and  
 D  =  (1/2−1/2)Γ(1/2).  Hence 
 

  
1/ 2 2

5/ 2

( ) ( )0 2 (1/ 2) 2 (1/ 2)( )0 3.
( ) ( )0 2 ( 3/ 2) (4 / 3) (1/ 2
A B By
C D D

−

−

+ + +⋅ Γ Γ= = = = =
+ + +⋅ Γ − Γ
� �

� �

 

 
In Problems 11–18 we use a conspicuous dot i  to indicate our choice of  u  and  dv  in the 
integration by parts formula  .u dv uv v du= −∫ ∫i   We use repeatedly the facts (from Example 

1) that  0 1( ) ( )xJ x dx xJ x C= +∫   and  1 0( ) ( ) .J x dx J x C= − +∫  
 
11. 2

0 0( ) ( )x J x dx x xJ x dx=∫ ∫ i  

 2
1 1( ) ( )x J x x J x dx= − ∫ i  

 ( )2
1 0 0( ) ( ) ( )x J x xJ x J x dx= − − + ∫  

 2
1 0 0( ) ( ) ( )x J x xJ x J x dx C= + − +∫  

 
12. 3 2

0 0( ) ( )x J x dx x xJ x dx=∫ ∫ i  

 3 2
1 1( ) 2 ( )x J x x J x dx= − ∫ i  

 ( )3 2
1 0 0( ) 2 ( ) 2 ( )x J x x J x xJ x dx= − − + ∫  

3 2 3 2
1 0 1 1 0( ) 2 ( ) 4 ( ) ( 4 ) ( ) 2 ( )x J x x J x xJ x C x x J x x J x C= + − + = − + +  

 
13. 4 3

0 0( ) ( )x J x dx x xJ x dx=∫ ∫ i  

 4 3
1 1( ) 3 ( )x J x x J x dx= − ∫ i  

 ( )4 3
1 0 0( ) 3 ( ) 3 ( )x J x x J x x xJ x dx= − − + ∫ i  

 ( )4 3 2
1 0 1 1( ) 3 ( ) 9 ( ) ( )x J x x J x x J x x J x dx= + − − ∫ i  

 ( )4 3 2
1 0 1 0 0( ) 3 ( ) 9 ( ) 9 ( ) ( )x J x x J x x J x xJ x J x dx= + − + − + ∫  

 4 2 3
1 0 0( 9 ) ( ) (3 9 ) ( ) 9 ( )x x J x x x J x J x dx C= − + − + +∫  

 
14. 1 1 0 0( ) ( ) ( ) ( )xJ x dx x J x dx xJ x J x dx C= = − + +∫ ∫ ∫i  
 
15. 2 2

1 1( ) ( )x J x dx x J x dx=∫ ∫ i  
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 2 2
0 0 0 1( ) 2 ( ) ( ) 2 ( )x J x xJ x dx x J x xJ x C= − + = − + +∫  

 
16. 3 3

1 1( ) ( )x J x dx x J x dx=∫ ∫ i  

 3
0 0( ) 3 ( )x J x x xJ x dx= − + ∫ i  

 ( )3 2
0 1 1( ) 3 ( ) ( )x J x x J x x J x dx= − + − ∫ i  

 ( )3 2
0 1 0 0( ) 3 ( ) 3 ( ) ( )x J x x J x xJ x J x dx= − + − − + ∫  

 3 2
0 1 0( 3 ) ( ) 3 ( ) 3 ( )x x J x x J x J x dx C= − + + − +∫  

 
17. 4 4

1 1( ) ( )x J x dx x J x dx=∫ ∫ i  

 4 2
0 0( ) 4 ( )x J x x xJ x dx= − + ∫ i  

 ( )4 3 2
0 1 1( ) 4 ( ) 2 ( )x J x x J x x J x dx= − + − ∫ i  

 ( )4 3 2
0 1 0 0( ) 4 ( ) 8 ( ) 2 ( )x J x x J x x J x xJ x dx= − + − − + ∫  

 4 2 3
0 1( 8 ) ( ) (4 16 ) ( )x x J x x x J x C= − + + − +  

 
18. With  p = 1,  Eq. (23) in the text gives  1 1

2 1( ) ( ) .x J x dx x J x C− −= − +∫   Hence 

  
( )

1
2 2

1 1 1
1 1 1 1

( ) ( )

( ) ( ) ( ) ( ) .

J x dx x x J x dx

x x J x x J x J x x J x dx

−

− − −

=

= − + = − +

∫ ∫

∫ ∫

i

 

 But Eq. (26) with  p = 1  gives  [ ]1 1
1 0 22( ) ( ) ( ) ,x J x J x J x− = +  so 

  1 1
2 1 0 22 2( ) ( ) ( ) ( ) .J x dx J x J x dx J x dx= − + +∫ ∫ ∫  

 Finally, we can solve this last equation for 

  2 1 0( ) 2 ( ) ( ) .J x dx J x J x dx C= − + +∫ ∫  
 
Problems 19–30 are routine applications of the theorem in this section.  In each case it is 
necessary only to identify the coefficients  A, B, C  and the exponent  q  in the differential 
equation 
 
    2 ( ) 0.qx y Axy B Cx y′′ ′+ + + =     (1) 

Then we can calculate the values 

   
2(1 ) 41 2, , ,

2 2
A BA q Ck p

q q
α β − −−= = = =   (2) 
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and finally write the general solution    

    1 2( ) ( ) ( )p py x x c J kx c J kxα β β
− = +      (3) 

specified in Theorem 1 on solutions in terms of Bessel functions.  This is a "template procedure" 
that we illustrate only in a couple of problems. 
 

19. We have  1, 1, 1, 2A B C q= − = = =   so 

  
2(1 ( 1)) 4(1)1 ( 1) 2 2 11, 1, 1, 0,

2 2 2 2
k pα β − − −− −= = = = = = = =  

 so our general solution is   y(x)  =  x[c1J0(x) + c2Y0(x)],  using  Y0(x)  because  p = 0  is an  
 integer.   

 

20. y(x)  =  x−1[c1J1(x) + c2Y1(x)] 
 

21. y(x)  =  x[c1J1/2(3x2) + c2J−1/2(3x2)]  
 

22. y(x)  =  x3[c1J2(2x1/2) + c2Y2(2x1/2)] 
 

23. To match the given equation with Eq. (1) above, we first divide through by the leading  
 coefficient 16 to obtain the equation 

    2 35 5 1 0
3 36 4

x y xy x y ′′ ′+ + − + = 
 

 

 with  5 / 3, 5 / 36, 1/ 4, and 3.A B C q= = − = =   Then 

     
2(1 5 / 3) 4( 5 / 36)1 5 / 3 1 3 2 1/ 4 1 1, , , ,

3 3 2 3 3 3 3
k pα β − − −−= = − = = = = =  

 so our general solution is   y(x)  =  x−1/3[c1J1/3(x3/2/3) + c2J−1/3(x3/2/3)]. 
 
24. y(x)  =  x−1/4[c1J0(2x3/2) + c2Y0(2x3/2)] 
 

25. y(x)  =  x−1[c1J0(x) + c2Y0(x)]   
 

26. y(x)  =  x2[c1J1(4x1/2) + c2Y1(4x1/2)] 
 

27. y(x)  =  x1/2[c1J1/2(2x3/2) + c2J−1/2(2x3/2)] 
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28. y(x)  =  x−1/4[c1J3/2(2x5/2/5) + c2J−3/2(2x5/2/5)] 
 

29. y(x)  =  x1/2[c1J1/6(x3/3) + c2J−1/6(x3/3)] 
 

30. y(x)  =  x1/2[c1J1/5(4x5/2/5) + c2J−1/5(4x5/2/5)]                                                 
 

31. We want to solve the equation  xy'' + 2y' + xy  =  0.  If we rewrite it as 
 
     x2y'' + 2xy' + x2y  =  0 
 
 then we have the form in Equation (1) with  A  =  2,  B  =  0,  C  =  1,  and   
 q  =  2.  Then Equation (2) gives  α  =  −1/2,  β  =  1,  k  =  1,  and  p  =  1/2,  so by 

Equation (3) the general solution is 
 

  

[ ]

( )

1/ 2
1 1/ 2 1 1/ 2

1/ 2
1 2

1 2

( ) ( ) ( )

2 2cos sin

1 cos sin

y x x c J x c J x

x c x c x
x x

a x a x
x

π π

−
−

−

= +

 
= + 

 

= +

 

 (with  2 /i ia c π= ),  using Equations (19) in Section 11.4. 
 

33. The substitution 

    
2

2

( ),u u uy y
u u u
′ ′ ′′′= − = −  

 immediately transforms  y'  =  x2 + y2  to  u'' + x2u  =  0.  The equivalent equation 
 
     x2u'' + x4u  =  0 
 
 is of the form in (1) with  A  =  B  =  0,  C  =  1,  and  q  =  4.  Equations (2) give  α  =  

1/2,  β  =  2,  k  =  1/2,  and  p  =  1/4,  so the general solution is 
 
          u(x)  =  x1/2[c1J1/4(x2/2) + c2J−1/4(x2/2)]. 

To compute  u'(x),  let  z  =  x2/2  so  x  =  21/2z1/2.  Then Equation (22) in Section 11.4  
with  p  =  1/4  yields 

   ( ) ( )1/ 2 2 1/ 4 1/ 4
1/ 4 1/ 4( / 2) 2 ( )d d dzx J x z J z

dx dz dx
= ⋅  
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1/ 4 1/ 4
3/ 4

1/ 2
1/ 4 2 3/ 2 2

3/ 4 3/ 41/ 4

2 ( )

2 ( / 2) ( / 2).
2

dzz J z
dx

x J x x x J x

−

− −

= ⋅

= ⋅ ⋅ =
 

 Similarly, Equation (23) in Section 11.4 with  p  =  −1/4  yields 

  ( ) ( )1/ 2 2 1/ 4 1/ 4 3/ 2 2
1/ 4 1/ 4 3/ 4( / 2) 2 ( ) ( / 2).d d dzx J x z J z x J x

dx dz dx− −= ⋅ = −  

 Therefore 
     u'(x)  =  x3/2[c1J−3/4(x2/2) − c2J3/4(x2/2)]. 
 
 It follows finally that the general solution of the Riccati equation  y′  =  x2 + y2  is 
 

   
2 21 1

3/ 4 3/ 42 2
2 21 1

1/ 4 1/ 42 2

( ) ( )( )
( ) ( )

J x c J xuy x x
u c J x J x

−

−

′ −= − = ⋅
+

 

 
 where the arbitrary constant is  c  =  c1/c2. 
 

34. Substitution of the series expressions for the Bessel functions in the formula for  y(x)  in  
 Problem 33 yields 
 

   
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3/ 4 3/ 42 21 1
2 2

1/ 4 1/ 42 21 1
2 2

1 1
( )

1 1

A x c B x
y x x

cC x D x

−

−

+ − +
= ⋅

+ + +

� �

� �

 

 where each pair of parentheses encloses a power series in  x  with constant term  1,  and 
 
       A  =  2−3/4/Γ(7/4)          B  =  23/4/Γ(1/4) 

        C  =  2−1/4/Γ(5/4)           D  =  21/4/Γ(3/4). 
 
 Multiplication of numerator and denominator by  x1/2  and a bit of simplification gives 
 

   
( ) ( )
( ) ( )

3/ 4 3 3/ 4

1/ 4 1/ 4

2 1 2 1
( ) .

2 1 2 1
Ax c B

y x
cCx D

−

−

+ − +
=

+ + +
� �

� �

 

  

 

 It now follows that 

   
( )1/ 2 3/ 43/ 4

1/ 4 1/ 4

2 2 / (1/ 4)2 (3 / 4)(0) 2 .
2 2 / (3 / 4) (1/ 4)

cBy c
D

− Γ− Γ= = = − ⋅
Γ Γ

      (*) 
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 (a) If  y(0)  =  0  then (*) gives  c  =  0  in the general solution formula of Problem 33. 
 
 (b) If  y(0)  =  1  then (*) gives  c  =  −Γ(1/4)/2Γ(3/4).  More generally, (*) yields the 

formula 

   
( ) ( )
( ) ( )

2 23 1 1 1
3/ 4 0 3/ 44 2 4 2

2 23 1 1 1
1/ 4 0 1/ 44 2 4 2

2 ( ) ( )
( )

2 ( ) ( )
J x y J x

y x x
J x y J x

−

−

Γ + Γ
= ⋅

Γ − Γ  

  
 for the solution of the initial value problem 
 
    y′  =  x2 + y2,     y(0)  =  y0. 
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APPENDIX A 
 
EXISTENCE AND UNIQUENESS OF SOLUTIONS 
 
 
In Problems 1–12 we apply the iterative formula 
 

1 ( , ( ))
x

n na
y b f t y t dt+ = + ∫  

 
to compute successive approximations  {yn(x)}  to the solution of the initial value problem 
 
                      y′  =  f (x, y),  y(a)  =  b. 
 
starting with  y0(x)  =  b. 
 
1. y0(x)  =  3 

 y1(x)  =  3 + 3x 

 y2(x)  =  3 + 3x + 3x2/2 

 y3(x)  =  3 + 3x + 3x2/2 + x3/2 

 y4(x)  =  3 + 3x + 3x2/2 + x3/2 + x4/8 

 y(x)   =  3 - 3x + 3x2/2 + x3/2 + x4/8 + ⋅⋅⋅  =  3ex   
 
 
2. y0(x)  =  4 

 y1(x)  =  4 - 8x 

 y2(x)  =  4 - 8x + 8x2 

 y3(x)  =  4 - 8x + 8x2 - (16/3)x3 

 y4(x)  =  4 - 8x + 8x2 - (16/3)x3 + (8/3)x4 

 y(x)   =  4 - 8x + 8x2 - (16/3)x3 + (8/3)x4 - ⋅⋅⋅  =  4e-2x 
 
 
3. y0(x)  =  1 

 y1(x)  =  1 - x2 

 y2(x)  =  1 - x2 + x4/2 

 y3(x)  =  1 - x2 + x4/2 - x6/6 

 y4(x)  =  1 - x2 + x4/2 - x6/6 + x8/24 
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 y(x)   =  1 - x2 + x4/2 - x6/6 + x8/24 - ⋅⋅⋅  =  exp(-x2) 
 
4. y0(x)  =  2 

 y1(x)  =  2 + 2x3 

 y2(x)  =  2 + 2x3 + x6 

 y3(x)  =  2 + 2x3 + x6 + (1/3)x9 

 y4(x)  =  2 + 2x3 + x6 + (1/3)x9 + (1/12)x12 

 y(x)   =  2 + 2x3 + x6 + (1/3)x9 + (1/12)x12 + ⋅⋅⋅  =  2 exp(x3) 
 
 
5. y0(x)  =  0 

 y1(x)  =  2x 

 y2(x)  =  2x + 2x2 

 y3(x)  =  2x + 2x2 + 4x3/3 

 y4(x)  =  2x + 2x2 + 4x3/3 + 2x4/3 

 y(x)   =   2x + 2x2 + 4x3/3 + 2x4/3 + ⋅⋅⋅  =   e2x - 1    
 
 
6. y0(x)  =  0 

 y1(x)  =  (1/2)x2 

 y2(x)  =  (1/2)x2 + (1/6)x3 

 y3(x)  =  (1/2)x2 + (1/6)x3 + (1/24)x4 

 y4(x)  =  (1/2)x2 + (1/6)x3 + (1/24)x4 + (1/120)x5  

 y(x)   =  (1/2!)x2 + (1/3!)x3 + (1/4!)x4 + (1/5!)x5 + ⋅⋅⋅  =  ex - x - 1 
 
 
7. y0(x)  =  0 

 y1(x)  =  x2 

 y2(x)  =  x2 + x4/2 

 y3(x)  =  x2 + x4/2 + x6/6 

 y4(x)  =  x2 + x4/2 + x6/6 + x8 /24 

 y(x)   =  x2 + x4/2 + x6/6 + x8/24 + ⋅⋅⋅  =  exp(x2) - 1 
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8. y0(x)  =  0 

 y1(x)  =  2x4 

 y2(x)  =  2x4 + (4/3)x6 

 y3(x)  =  2x4 + (4/3)x6 + (2/3)x8  

 y4(x)  =  2x4 + (4/3)x6 + (2/3)x8 + (4/15)x10 

 y(x)   =  2x4 + (4/3)x6 + (2/3)x8 + (4/15)x10 + ⋅⋅⋅  =  exp(2x2) - 2x2 - 1 
 
 
9. y0(x)  =  1 

 y1(x)  =  (1 + x) + x2/2 

 y2(x)  =  (1 + x + x2) + x3/6 

 y3(x)  =  (1 + x + x2 + x3/3) + x4/24 

 y(x)   =  1 + x + x2 + x3/3 + x4/12 + ⋅⋅⋅  =  2ex - 1 - x 
  
 
10. y0(x)  =  0 

 y1(x)  =  x + (1/2)x2 + (1/6)x3 + (1/24)x4 + ⋅⋅⋅  =  ex - 1  

 y2(x)  =  x +        x2 + (1/3)x3 + (1/12)x4 + ⋅⋅⋅  =  2ex - x - 2 

 y3(x)  =  x +         x2 + (1/2)x3 +  (1/8)x4 + ⋅⋅⋅  =  3ex - (1/2)x2 - 2x - 3 

 y(x)    =  x +         x2 + (1/2)x3 + (1/6)x4 + ⋅⋅⋅  =   xex  
 
 
11. y0(x)  =  1 

 y1(x)  =  1 + x 

 y2(x)  =  (1 + x + x2) + x3/3 

 y3(x)  =  (1 + x + x2 + x3) + 2x4/3 + x5/3 + x6/9 + x7/63 

 y(x)   =  1 + x + x2 + x3 + x4 + ⋅⋅⋅  =  1/(1 - x) 
 
 
12. y0(x)  =  1 

 y1(x)  =  1 + (1/2)x 

 y2(x)  =  1 + (1/2)x + (3/8)x2 +  (1/8)x3 +  (1/64)x4 

 y3(x)  =  1 + (1/2)x + (3/8)x2 + (5/16)x3 + (13/64)x4 + ⋅⋅⋅ 

 y(x)   =  1 + (1/2)x + (3/8)x2 + (5/16)x3 + (35/128)x4 + ⋅⋅⋅  =  (1 - x)-1/2 
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13. 0

0

( ) 1
( ) 1

x t
y t

   
=   −  

 

 

 1

1

( ) 1 3
( ) 1 5

x t t
y t t

+   
=   − +  

 

 

 
21

2 2
21

2 2

( ) 1 3
( ) 1 5

x t t t
y t t t

 + + 
=    − + −   

 

 

 
2 31 1

3 2 3
2 351

3 2 6

( ) 1 3
( ) 1 5

x t t t t
y t t t t

 + + + 
=    − + − +   

       

 
 

14. 
0

1 11( )
0 1 1!

n

n

n
t t

n

∞

=

    
=     

    
∑x  

 0 1

0

1
! ( 1)!

10
!

n n

n n

n

n

t t
n n

t
n

∞ ∞

= =

∞

=

 
  −   =   
    

  

∑ ∑

∑

 

 
1
10

t t

t

e t e
e

   
=    

  
 

 
(1 )

( )
t

t

t e
t

e
 +

=  
 

x  

   
 
16. y0(x)  =  0 

 y1(x)  =  (1/3)x3 

 y2(x)  =  (1/3)x3 + (1/63)x7 

 y3(x)  =  (1/3)x3 + (1/63)x7 + (2/2079)x11 + (1/59535)x15 
 
 Then  y3(1)  ≈  0.350185,  which differs by only 0.0134% from the Runge-Kutta 

approximation  y(1)  ≈  0.350232.  As a denouement we may recall from the result of 
Problem 16 in Section 8.6 that the exact solution of our initial value problem here is 
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( )
( )

21
3/ 4 2

21
1/ 4 2

( )
J x

y x x
J x−

= ⋅  

 
 so the exact value at  x  =  1  is  
 

               
( )
( )

1
3/ 4 2

1
1/ 4 2

( )1 0.35023 18443.
J

y
J−

= ≈  


